
Latent Geodesics of Model Dynamics for
Offline Reinforcement Learning

Guy Tennenholtz, Nir Baram, and Shie Mannor

Abstract

Model-based offline reinforcement learning approaches generally rely on bounds
of model error. While contemporary methods achieve such bounds through an
ensemble of models, we propose to estimate them using a data-driven latent metric.
Particularly, we build upon recent advances in Riemannian geometry of generative
models to construct a latent metric of an encoder-decoder based forward model.
Our proposed metric measures both the quality of out of distribution samples as
well as the discrepancy of examples in the data. We show that our metric can be
viewed as a combination of two metrics, one relating to proximity and the other to
epistemic uncertainty. Finally, we leverage our metric in a pessimistic model-based
framework, showing a significant improvement upon contemporary model-based
offline reinforcement learning benchmarks.

1 Introduction

This work focuses on leveraging Riemannian geometry of generative models in offline reinforcement
learning.

Offline reinforcement learning (offline RL) (Levine et al., 2020), a.k.a. batch-mode reinforcement
learning (Ernst et al., 2005; Riedmiller, 2005; Fonteneau et al., 2013), involves learning a policy
from potentially suboptimal data. In contrast to imitation learning (Schaal, 1999), offline RL does
not rely on expert demonstrations, but rather seeks to surpass the average performance of the agents
that generated the data. Methodologies such as the gathering of new experience fall short in offline
settings, requiring reassessment of fundamental learning paradigms (Buckman et al., 2020; Wang
et al., 2020; Zanette, 2020).

The geometry of latent generative models has recently gained interest in unsupervised domains
(Chen et al., 2018; Arvanitidis et al., 2018; Chen et al., 2020a; Arvanitidis et al., 2020). There,
variational autoencoders (VAEs) have been shown to capture significant metrics in their latent
representations. The resulting manifold has been shown to capture a smooth metric of the ambient
output space, as well as properly capture uncertainty estimates in out of distribution (OOD) regions
(Arvanitidis et al., 2018).

In this work, we introduce the aforementioned Riemannian theory of generative models to reinforce-
ment learning. Specifically, we generalize previous results in VAEs to learn a Riemannian manifold
w.r.t. the environment’s dynamics. We achieve this by training a variational forward model of the
next state. Our latent model induces a manifold and metric which capture the natural characteristics
of the environment’s dynamics. Moreover, we show that this metric can be analytically decoupled
into metrics relating to proximity and uncertainty. Our proposed metric can be utilized in a vast range
of model-based approaches in reinforcement learning (e.g., offline RL, planning). Here, we show
how our learned metric can be leveraged in a model-based offline reinforcement learning framework.

Our contributions are as follows.
Technical Contributions: (1) We introduce a natural metric for forward model dynamics. The
induced metric, for which we derive analytical expression for in Section 4, can be represented as

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

a union of two metrics; namely, a metric of proximity and a metric of uncertainty. We depict the
geodesics of the induced metric on a grid-like environment, suggesting our latent model captures
valuable structural dependencies. (2) We integrate our metric in a model-based offline RL framework,
where an agent is penalized with accordance to its distance to the data. As such, we demonstrate
improved performance to contemporary offline RL approaches on several benchmarks (Section 6).
Broader Impact: Our proposed metric can be leveraged in a vast range of domains. While our work
is focused on its application to offline RL, its unique characteristics can be utilized in online control,
planning, and predictive analysis, as well as improve explainability of the agent and the environment.
Still, using approximate models to make decisions in the real world can bring to negative social
impact. Wrongful, unethical, or dangerous decisions may harm individuals affected by such actions.

2 Preliminaries

2.1 Offline Reinforcement Learning

We consider the standard Markov Decision Process (MDP) framework (Sutton et al., 1998) defined
by the tuple (S,A, r, P, α), where S is the state space, A the action space, r : S ×A 7→ [0, 1] the
reward function, P : S ×A× S 7→ [0, 1] the transition kernel, and α ∈ (0, 1) is the discount factor.

In the online setting of reinforcement learning (RL), the environment initiates at some state s0 ∼ ρ0.
At any time step the environment is in a state s ∈ S, an agent takes an action a ∈ A and receives a
reward r(s, a) from the environment as a result of this action. The environment transitions to state s′
according to the transition function P (·|s, a). The goal of online RL is to find a policy π(a|s) that
maximizes the expected discounted return vπ = Eπ

[∑∞
t=0 α

tr(st, at)|s0 ∼ ρ0

]
.

Unlike the online setting, the offline setup considers a dataset Dn = {si, ai, ri, s′i}
n
i=1 of transitions

generated by some unknown agents. The objective of offline RL is to find the best policy in the test
environment (i.e., real MDP) given only access to the data generated by the unknown agents.

2.2 Riemannian Manifolds

We define the Riemannian pullback metric, a fundamental component of our proposed method. We
refer the reader to Carmo (1992) for further details on Riemannian geometry.

We are interested in studying a smooth surface M with a Riemannian metric g. A Riemannian metric
is a smooth function that assigns a symmetric positive definite matrix to any point in M . At each
point z ∈M a tangent space TzM specifies the pointing direction of vectors “along” the surface.
Definition 1. Let M be a smooth manifold. A Riemannian metric g on M changes smoothly and
defines a real scalar product on the tangent space TzM for any z ∈M as

gz(x, y) = 〈x, y〉z = 〈x,G(z)y〉, x, y ∈ TzM,

where G(z) ∈ Rdz×dz is the corresponding metric tensor. (M, g) is called a Riemannian manifold.

The Riemannian metric enables us to easily define geodesic curves. Consider some differentiable
mapping γ : [0, 1] 7→M ⊆ Rdz , such that γ(0) = z0, γ(1) = z1. The length of the curve γ measured
on M is given by

L(γ) =

∫ 1

0

√〈
∂γ(t)

∂t
,G(γ(t))

∂γ(t)

∂t

〉
dt. (1)

The geodesic distance d(z1, z2) between any two points z1, z2 ∈M is then the infimum length over
all curves γ for which γ(0) = z0, γ(1) = z1. That is,

d(z1, z2) = inf
γ
L(γ) s.t. γ(0) = z0, γ(1) = z1.

The geodesic distance can be found by solving a system of nonlinear ordinary differential equations
(ODEs) defined in the intrinsic coordinates (Carmo, 1992).

Pullback Metric. Assume an ambient (observation) space X and its respective Riemannian manifold
(MX , gX). Learning gX can be hard (e.g., learning the distance metric between images). Still, it

2

Offline Data

Simulated
Environment Agent

MOPO
(Yu et al., 2020)

GELATO
(ours)

Model Ensemble

Riemannian Metric
(Equation 5)

Figure 1: A reward-penalized (pessimistic) MDP is constructed from the offline data. In MOPO, the penalty is
constructed using an ensemble of learned transition models. Instead, we propose to estimate the error in model
dynamics through a Riemannian metric induced by a variational forward model.

may be captured through a low dimensional submanifold. As such, it is many times convenient to
parameterize the surface MX by a latent space Z = RdZ and a smooth function f : Z 7→ X , where
Z is a low dimensional latent embedding space. As learning the manifold MX can be hard, we turn
to learning the immersed low dimensional submanifold MZ (for which the chart maps are trivial,
since Z = RdZ). Given a curve γ : [0, 1] 7→MZ we have that〈

∂f(γ(t))

∂t
,GX (f(γ(t)))

∂f(γ(t))

∂t

〉
=

〈
∂γ(t)

∂t
, JTf (γ(t))GX (f(γ(t)))Jf (γ(t))

∂γ(t)

∂t

〉
,

where the Jacobian matrix Jf (z) = ∂f
∂z ∈ RdX×dZ maps tangent vectors in TMZ to tangent vectors

in TMX . The induced metric is thus given by

Gf (z) = Jf (z)TGX (f(z))Jf (z). (2)

The metric Gf is known as the pullback metric, as it “pulls back" the metric GX on X back to Gf
via f : Z 7→ X . The pullback metric captures the intrinsic geometry of the immersed submanifold
while taking into account the ambient space X . The geodesic distance in ambient space is captured
by geodesics in the latent space Z , reducing the problem to learning the latent embedding space Z
and the observation function f . Indeed, learning the latent space and observation function f can be
achieved through a encoder-decoder framework, such as a VAE (Arvanitidis et al., 2018).

3 Background: Model Error in Offline RL

A key element of model-based RL methods involves estimating a model P̂ (s′|s, a). In model-based
offline RL, a pessimistic MDP1 is constructed through an upper bound on the error of the estimated
model. This work builds upon MOPO, a recently proposed model-based offline RL framework (Yu
et al., 2020)). Particularly, we assume access to an approximate MDP (S,A, r̂, P̂ , α) (e.g., trained
by maximizing the likelihood of the data), and define a penalized MDP (S,A, r̃, P̂ , α), such that

r̃(s, a) = r̂(s, a)− λd(P (·|s, a), P̂ (·|s, a)),∀s ∈ S, a ∈ A,
where d is a given metric (e.g., the total variation distance) and λ > 0. The offline RL problem is
then solved by executing an online algorithm in the reward-penalized (simulated) MDP.

Unfortunately, as P (·|s, a) is unknown, d(P (·|s, a), P̂ (·|s, a)) cannot be calculated. Nevertheless,
one can attempt to upper bound the distance, i.e., for some U : S ×A 7→ R,

d(P (·|s, a), P̂ (·|s, a)) ≤ U(s, a),∀s ∈ S, a ∈ A.
Figure 1 depicts the general framework. A question arises: how should U(s, a) be chosen? In
practice, MOPO learns an ensemble of models P̂1, . . . , P̂k to measure the upper bound U(s, a). In
this work, we propose to use a naturally induced metric of a variational forward model, which we
show can introduce a more effective upper bound for offline RL. In Section 4 we define this metric,
and finally, we leverage it to upper bound the model error in Section 5.

1Pessimism is a key element of offline RL algorithms (Jin et al., 2020), limiting overestimation of a trained
policy due to the distribution shift between the data and the trained policy.

3

4 Metrics of Model Dynamics

We propose to measure the error in the model dynamics d(P (·|s, a), P̂ (·|s, a)) by embedding the
offline data in a smooth Riemmanian manifold, equipped with a natural metric, enabling us to measure
the error of out of distribution samples. Our metric is a generalization of the metric proposed by
Arvanitidis et al. (2018) for generative models.

4.1 A Pullback Metric of Model Dynamics

We begin by defining the immersed Riemannian submanifold and our proposed metric. The metric
is defined by a latent space Z and an observation function f , which will be defined later by our
variational forward model.

Definition 2. We define a Riemannian submanifold (MZ , gZ) by a differential function f : Z 7→ S
and latent space Z such that

dZ(z1, z2) = inf
γ

∫ 1

0

∥∥∥∥∂f(γ(t))

∂t

∥∥∥∥ dt s.t. γ(0) = z1, γ(1) = z2.

A similar metric has been used in previous work on generative latent models (Chen et al., 2018;
Arvanitidis et al., 2018). It states that latent codes are close w.r.t. dZ according to the curve which
induces minimal energy in ambient observation space. It is closely related to the pullback metric (see
Section 2.2), as shown by the following proposition (see Appendix for proof).

Proposition 1. Let (MZ , gZ) as defined above. Then Gf (z) = JTf (z)Jf (z), for any z ∈ Z .

Indeed, Proposition 1 shows us that Gf is a pullback metric. Particularly Z and Jf define the
structure of the ambient observation space S. In what follows we characterize the submanifold MZ
when z = E(s, a) and f(z) ∼ P (·|s, a) = P (·|z). We show that the expected pullback metric
EP (f)

[
GZ(z)

]
captures notions of proximity and uncertainty and discuss how it can be utilized to

measure distance to the data manifold.

4.2 Metric of Proximity and Uncertainty of a Latent Forward Model

We consider modeling P̂ (s′|s, a) using a generative latent model. Specifically, we consider a latent
model which consists of an encoder E : S × A 7→ B(Z) and a decoder D : Z 7→ B(S), where
B(X) is set of probability measures on the Borel sets of X . While the encoder E learns a latent
representation of s, a, the decoder D estimates the next state s′ according to P (·|s, a). This model
corresponds to the decomposition P (·|s, a) = D(·|E(s, a)), where here D plays the role of the
observation function f , and E maps states and actions to the latent space Z . Such a model can be
trained by maximizing the evidence lower bound (ELBO) over the data. That is, given a prior P (z),
we model Eφ, Dθ as parametric functions and maximize the ELBO

max
θ,φ

EEφ(z|s,a)

[
logDθ(s

′|z)
]
−DKL(Eφ(z|s, a)||P (z))

We refer the reader to the appendix for an exhaustive overview of training VAEs by maximum
likelihood and the ELBO.

Having trained the latent model over the data Dn, we may consider the Riemannian submanifold
induced by its latent space Z and observation function D. Since D is stochastic, the metric GZ also
becomes stochastic, complicating analysis. Instead, Arvanitidis et al. (2018) proposed to use the
expected pullback metric E [GZ], showing it is a good approximation of the underlying stochastic
metric. Using Proposition 1, we have the following result (see Appendix for proof).

Theorem 1. [Arvanitidis et al. (2018)] Assume D(·|z) ∼ N (µ(z), σ(z)I). Then

ED(·|z)

[
GD(z)

]
= ED(·|z)

[
JD(z)TJD(z)

]
= Gµ(z)︸ ︷︷ ︸

proximity

+ Gσ(z)︸ ︷︷ ︸
uncertainty

, (3)

where Gµ(z) = JTµ (z)Jµ(z) and Gσ(z) = JTσ (z)Jσ(z).

4

Pullback Metric (Proximity and Uncertainty)

Figure 2: Plot depicts the variational latent forward model and its respective pullback metrics. Expressions for
the expected pullback metrics are given in Theorems 1 and 2.

Given an embedded latent space Z , the expected metric in Equation (3) gives us a sense of the
topology of the latent space manifold induced by D. The terms Gµ = JTµ Jµ and Gσ = JTσ Jσ are
in fact the induced pullback metrics of µ and σ, respectively. As shortest geodesics will tend to
follow small values of ‖E [GD]‖, Gµ will keep away from areas with no latent codes, whereas Gσ
will remain small in regions of low uncertainty. We therefore recognize Gµ and Gσ as metrics of
proximity and uncertainty, respectively.

A skewed metric. Due to the inherent decoupling between proximity and uncertainty, it may be
beneficial to control the curvature of the expected metric by only focusing on one of the metrics.
Denoting αprox ∈ [0, 1] as the proximity coefficient, we define the skewed pullback metric of D as

GαD = αproxGµ + (1− αprox)Gσ. (4)
The skewed pullback metric will become valueable in Section 6, as we carefully control the tradeoff
between proximity and uncertainty in the tested domains.

4.3 Capturing Epistemic and Aleatoric Uncertainty

The previously proposed encoder-decoder model induces a metric which captures both proximity and
uncertainty w.r.t. the learned dynamics. However, the decoder variance, σ(z), does not differentiate
between aleatoric uncertainty (relating to the environment dynamics) and epistemic uncertainty
(relating to missing data). To bound the validity of out of distribution (OOD) samples, we wish to
capture epistemic uncertainty.

The epistemic uncertainty can be captured by methods such as model ensembles or Monte-Carlo
dropout (Gal & Ghahramani, 2016). Instead, we apply an additional forward model to our previously
proposed variational model. Specifically, we assume a latent model which consists of an encoder
E : S × A 7→ B(Z), forward model F : Z 7→ B(X) and decoder D : X 7→ B(S) such that
P (·|s, a) = D(·|x), and x ∼ F (·|E(s, a)). This structure enables us to capture the aleatoric
uncertainty under the forward transition model F , and the epistemic uncertainty using the decoder D.
That is, σD(z) is used as a measure of epistemic uncertainty, as σF (z) can capture the stochasticity
in model dynamics. This forward model is depicted in Figure 2.

Next, we turn to analyze the pullback metric induced by the proposed forward transition model. As
both F and D are stochastic (capturing epistemic and aleatoric uncertainty), the result of Theorem 1
cannot be directly applied to their composition. The following proposition provides an analytical
expression for the expected pullback metric of D ◦ F (see Appendix for proof).
Theorem 2. Assume F (·|z) ∼ N (µF (z), σF (z)I), D(·|x) ∼ N (µD(x), σD(x)I). Then, the ex-
pected pullback metric of the composite function (D ◦ F) is given by

EP (D◦F)

[
GD◦F (z)

]
= JTµF (z)GD(z)JµF (z) + JTσF (z)diag

(
GD(z)

)
JσF (z),

where here, GD(z) = Ex∼F (·|z)

[
JTµD (x)JµD (x) + JTσD (x)JσD (x)

]
.

Unlike the metric in Equation (3), the composite metric distorts the decoder metric with Jacobian
matrices of the forward model statistics. The composite metric takes into account both proximity and
uncertainty w.r.t. the ambient space as well as the latent forward model. As before, a skewed version
of the metric can be designed, replacing GD with its skewed version.

5

Algorithm 1 GELATO: Geometrically Enriched LATent model for Offline reinforcement learning

1: Input: Offline dataset Dn, RL algorithm
2: Train variational latent forward model on dataset Dn by maximizing ELBO.
3: Construct approximate MDP (S,A, r̂, P̂ , α)

4: Define r̃d(s, a) = r̂(s, a)− λ
(

1
K

∑K
k=1 dZ(E(s, a),NN(k)

E(s,a))
)

, with distance dZ induced by
pullback metric GD◦F (Theorem 2).

5: Train RL algorithm over penalized MDP (S,A, r̃d, P̂ , α)

5 GELATO: Incorporating the Metric in Offline RL

Having defined our metric, we are now ready to leverage it in a model based offline RL framework
(see Figure 1). Specifically, provided a dataset Dn = {(si, ai, ri, s′i)}

n
i=1 we train the variational

latent forward model depicted in Figure 2. The model consists of an encoder E, which maps states
and actions to a latent space Z , a forward function F which maps the latent point E(s, a) to a latent
point x ∼ F (·|E(s, a), and finally a decoder which maps x to the next state s′ ∼ D(·|x). The model
is trained by maximizing the likelihood of state transitions in the data (a full derivation is given in the
appendix). Our latent forward model induces a latent space Z and a pullback metric GD◦F (z) which
define the distance metric dZ (Definition 2).

Algorithm 1 presents GELATO, our proposed approach. In GELATO, we estimate an upper bound,
U(s, a), on the model error by measuring the distance of a new sample to the data manifold. That is,

d(P (·|s, a), P̂ (·|s, a)) ≤ U(s, a)
∆
=

(
1

K

K∑
k=1

dZ(E(s, a),NN(k)
E(s,a))

)
, (5)

where here, NN(k)
E(s,a) is the kth nearest neighbor of E(s, a) in Dn w.r.t. the metric dZ . Note the sum

over K nearest neighbors, allowing for more robust quantification of the distance.

We construct the reward-penalized MDP defined in Section 3 for which the upper bound U(s, a)
acts as a pessimistic regularizer. Finally, we train an RL algorithm over the pessimistic MDP with
transition P̂ (·|s, a) and reward r(s, a)− λU(s, a).

6 Experiments

6.1 Metric Visualization

To better understand the inherent structure of our metric, we constructed a grid-world environment
for visualizing our proposed latent representation and metric. The 15× 15 environment, as depicted
in Figure 3, consists of four rooms, with impassable obstacles in their centers. The agent, residing
at some position (x, y) ∈ [−1, 1]2 in the environment can take one of four actions: up, down, left,
or right – moving the agent 1, 2 or 3 steps (uniformly distributed) in that direction. We collected a
dataset of 10000 samples, taking random actions at random initializations of the environment. The
ambient state space was represented by the position of the agent – a vector of dimension 2, normalized
to values in [−1, 1]. Finally, we trained a variational latent model with latent dimension dZ = 2.
We used a standard encoder z ∼ N (µθ(s), σθ(s)) and decoder s′ ∼ N (µφ(z), σφ(z)) represented
by neural networks trained end-to-end using the evidence lower bound. We refer the reader to the
appendix for an exhaustive description of the training procedure.

The latent space output of our model is depicted by yellow markers in Figure 3a. Indeed, the latent
embedding consists of four distinctive clusters, structured in a similar manner as our grid-world
environment. Interestingly, the distortion of the latent space accurately depicts an intuitive notion of
distance between states. As such, rooms are distinctively separated, with fair distance between each
cluster. States of pathways between rooms clearly separate the room clusters, forming a topology
with four discernible bottlenecks.

6

(a)
√

det(GD) (b) Latent Geodesic Distance (c) Latent Euclidean Distance

Figure 3: (a) The latent space (yellow markers) of the grid world environment and the geometric volume
measure of the decoder-induced metric (background). (b, c) The geodesic distance of the decoder-induced
submanifold and the Euclidean distance of latent states, as viewed in ambient space. All distances are calculated
w.r.t. the yellow marked state. Note: colors in (a), which measure magnitude, are unrelated to colors in (b,c),
which measure distance to the yellow marked state.

In addition to the latent embedding, Figure 3a depicts the geometric volume measure2
√

det(GD) of
the trained pullback metric induced by D. This quantity demonstrates the effective geodesic distances
between states in the decoder-induced submanifold. Indeed geodesics between data points to points
outside of the data manifold (i.e., outside of the red region), would attain high values as integrals over
areas of high magnitude. In contrast, geodesics near the data manifold would attain low values.

Comparison to Euclidean distance. We visualize the decoder-induced geodesic distance and
compare it to the latent Euclidean distance in Figures 3b and 3c, respectively. The plots depict the
normalized distances of all states to the state marked by a yellow square. Evidently, the geodesic
distance captures a better notion of distance in the said environment, correctly exposing the “land
distance" in ambient space. As expected, states residing in the bottom-right room are farthest from
the source state, as reaching them comprises of passing through at least two bottleneck states. In
contrast, the latent Euclidean distance does not properly capture these geodesics, exhibiting a similar
distribution of distances in other rooms. Nevertheless, both geodesic and Euclidean distances reveal
the intrinsic topological structure of the environment, that of which is not captured by the extrinsic
coordinates (x, y) ∈ [−1, 1]2. Particularly, the state coordinates (x, y) would wrongly assign short
distances to states across impassible walls or obstacles, i.e., measuring the “air distance".

6.2 Continuous Control

We performed experiments to analyze GELATO on various continuous control datasets.

Datasets. We used D4RL (Fu et al., 2020) (CC BY 4.0 license) as a benchmark for all of our
experiments. We tested GELATO on three Mujoco (Todorov et al., 2012) environments (Hopper,
Walker2d, Halfcheetah) on datasets generated by a single policy and a mixture of two policies.
Specifically, we used datasets generated by a random agent (1M samples), a partially trained agent,
i.e, medium agent (1M samples), and a mixture of partially trained and expert agents (2M samples).

Implementation Details. We trained our variational model with latent dimension
dim(Z) = 32 + dim(A). The latent model was trained for 100k steps by stochastic gradient descent
with batch size of 256. We split training into two phases. First, the model was fully trained using a
calibrated Gaussian decoder (Rybkin et al., 2020). Specifically, a maximum-likelihood estimate of
the variance was used σ∗ = MSE(µ, µ̂) ∈ arg maxσN (µ̂|µ, σ2I). Then, in the second stage we fit
the variance decoder network.

In order to practically estimate the geodesic distance in Algorithm 1, we defined a parametric curve
in latent space and used gradient descent to minimize the curve’s energy. The resulting curve and
pullback metric were then used to calculate the geodesic distance by a numerical estimate of the
curve length (Equation (4)) (See Appendix for an exhaustive overview of the estimation method).

We used FAISS (Johnson et al., 2019) (MIT-license) for efficient GPU-based k-nearest neighbors
calculation. We set K = 20 neighbors for the penalized reward (Equation (5)). Finally, we used a

2The geometric volume measure captures the volume of an infinitesimal area in the latent space.

7

Hopper Walker2d Halfcheetah
Method Rand Med Med-Expert Rand Med Med-Expert Rand Med Med-Expert
Data Score 299 1021 1849 1 498 1062 -303 3945 8059
GELATO 685 1676 574 412 1269 1515 116 5168 6449

GELATO-unc 481 1158 879 290 487 1473 23 3034 7130
GELATO-prox 240 480 920 158 571 1596 -28 3300 7412

MOPO 677 1202 1063 396 518 1296 4114 4974 7594
MBPO 444 457 2105 251 370 222 3527 3228 907
SAC 664 325 1850 120 27 -2 3502 -839 -78

Imitation 615 1234 3907 47 193 329 -41 4201 4164

Table 1: Performance of GELATO and its variants in comparison to contemporary model-based methods on
D4RL datasets. Scores correspond to the return, averaged over 5 seeds (standard deviation removed due to space
constraints and is given in the appendix). Results for MOPO, MBPO, SAC, and imitation are taken from Yu et al.
(2020). Mean score of dataset added for reference. Bold scores show an improved score w.r.t other methods.

variant of Soft Learning, as proposed by Yu et al. (2020) as our RL algorithm, trained for 1M steps.
Each experiment was run on a single GPU, RTX 2080 (see Appendix for more details).

Proximity vs. Uncertainty. To test GELATO we constructed two variants, trading off proximity
and uncertainty through our latent-induced metric. Particularly, we denote by GELATO-UNC and
GELATO-PROX variants which implement the skewed metric (see Equation (4)), with αprox = 0.1
and αprox = 0.9, respectively. We compared GELATO and its variants to contemporary model-based
offline RL approaches; namely, MOPO (Yu et al., 2020) and MBPO (Janner et al., 2019), as well as
the standard baselines of SAC (Haarnoja et al., 2018) and imitation (behavioral cloning).

Results for all of the tested domains are shown in Table 1. For the non-skewed version of GELATO
(i.e., αprox = 0.5) we found performance increase on most domains, and most significantly in the
medium domain, i.e., partially trained agent. We believe this to be due to the inherent nature of our
metric to take into account both proximity and uncertainty, allowing the agent to leverage proximity
to the data in areas of high uncertainty. Since the medium dataset contained average behavior, mixing
proximity benefited the agent’s overall performance.

In most of the tested datasets we found an increase in performance for at least one of the GELATO
variants. The med-expert datasets showed better performance for the proximity-oriented metric.
These suggest flexibility of our metric to increase performance when the quality of the dataset is
known, a reasonable assumption in many domains. Moreoever, the non-skewed version of GELATO,
showed consistency over all datasets, favorably leveraging the strengths of proximity and uncertainty.

6.3 RBF Networks.

A question arises as to how to represent σD(z). In general, neural networks may result in a poor
measure of uncertainty, due to uncontrolled extrapolations of the neural network to arbitrary regions
of the latent space, i.e., areas of little data. However, Arvanitidis et al. (2017) showed that the inverse
variance β(z) = (σ2(z))−1 with a positive Radial Basis Function (RBF) network achieves a reliable
uncertainty estimate, with well-behaved extrapolations in latent space. Formally the RBF network is
defined by σ(z) =

√
(β(z))−1 where β(z) = WTφ(z), φi(z) = exp

(
− 1

2λi ‖z − ci‖
2
2

)
, W are the

positive learned weights of the network, λi the bandwith, and ci the centers trained using k-means
over the learned latent representations of the offline data.

We tested GELATO on D4RL Mujoco benchmarks with an RBF decoder network. Specifically, we
followed a similar training procedure with two training phases. In the first training phase we trained
our variational model with a calibrated decoder as before. In the second training phase we used
k-means to cluster our dataset to 128 clusters, after which an RBF network was trained for a second
phase of 50000 iterations.

Hopper

Method Random Medium Med-Expert
GELATO 685 ± 15 1676 ± 223 574 ± 16

GELATO-RBF 613 ± 24 1700 ± 319 498 ± 55

Table 2: Performance of GELATO using an RBF decoder compared to standard decoder.

8

Results for GELATO with RBF decoder networks for the Hopper environment are presented in
Table 2. We did not find significant improvement in using RBF networks over decoder variance. We
believe this is due to the smoothness in ambient space, allowing for well behaved extrapolations of
uncertainty. We conjecture RBF networks may show improved performance on higher dimensional
problems (e.g., images), yet we leave this for future work, as these may involve utilizing more
involved variational models (Vahdat & Kautz, 2020).

7 Related Work

Offline Reinforcement Learning. The field of offline RL has recently received much attention as
several algorithmic approaches were able to surpass standard off-policy algorithms. Value-based
online algorithms do not perform well under highly off-policy batch data (Fujimoto et al., 2019;
Kumar et al., 2019; Fu et al., 2019; Fedus et al., 2020; Agarwal et al., 2020), much due to issues with
bootstrapping from out-of-distribution (OOD) samples. These issues become more prominent in the
offline setting, as new samples cannot be acquired.

Several works on offline RL have shown improved performance on standard continuous control
benchmarks (Laroche et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Chen et al., 2020b;
Swazinna et al., 2020; Kidambi et al., 2020; Yu et al., 2020; Kumar et al., 2020). In this work we were
specifically interested in model-based approaches (Yu et al., 2020; Kidambi et al., 2020), in which
the agent is incentivized to remain close to areas of low uncertainty. Our work focused on controlling
uncertainty estimation in high dimensional environments. Our methodology utilized recent success
on the geometry of deep generative models (Arvanitidis et al., 2018, 2020), proposing an alternative
approach to uncertainty estimation.

Representation Learning. Representation learning seeks to find an appropriate representation of
data for performing a machine-learning task (Goodfellow et al., 2016). Variational Auto Encoders
(Kingma & Welling, 2013; Rezende et al., 2014) have been a popular representation learning
technique, particularly in unsupervised learning regimes (Kingma et al., 2014; Sønderby et al.,
2016; Chen et al., 2016; Van Den Oord et al., 2017; Hsu et al., 2017; Serban et al., 2017; Engel
et al., 2017; Bojanowski et al., 2018; Ding et al., 2020), though also in supervised learning and
reinforcement learning (Hausman et al., 2018; Li et al., 2019; Petangoda et al., 2019; Hafner et al.,
2019, 2020). Particularly, variational models have been shown able to derive successful behaviors in
high dimensional benchmarks (Hafner et al., 2020).

Various representation techniques in reinforcement learning have also proposed to disentangle
representation of both states (Engel & Mannor, 2001; Littman & Sutton, 2002; Stooke et al., 2020;
Zhu et al., 2020), and actions (Tennenholtz & Mannor, 2019; Chandak et al., 2019). These allow
for the abstraction of states and actions to significantly decrease computation requirements, by e.g.,
decreasing the effective dimensionality of the action space (Tennenholtz & Mannor, 2019). Unlike
previous work, GELATO is focused on measuring proximity and uncertainty for the purpose of
mitigating the OOD problem and enhancing offline reinforcement learning performance.

8 Discussion and Future Work

This work presented a metric for model dynamics and its application to offline reinforcement learning.
While our metric showed supportive evidence of improvement in model-based offline RL we note
that it was significantly slower – comparably, 5 times slower than using the decoder’s variance for
uncertainty estimation. The apparent slowdown in performance was mostly due to computation of the
geodesic distance. Improvement in this area may utilize techniques for efficient geodesic estimation
(Chen et al., 2018, 2019).

We conclude by noting possible future applications of our work. In Section 6.1 we demonstrated the
inherent geometry our model had captured, its corresponding metric, and geodesics. Still, in this
work we focused specifically on metrics related to the decoded state. In fact, a similar derivation
to Theorem 2 could be applied to other modeled statistics, e.g., Q-values, rewards, future actions,
and more. Each distinct statistic would induce its own unique metric w.r.t. its respective probability
measure. Particularly, this concept may benefit a vast array of applications in continuous or large
state and action spaces.

9

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement

learning. In International Conference on Machine Learning, pp. 104–114. PMLR, 2020.

Arvanitidis, G., Hansen, L. K., and Hauberg, S. Maximum likelihood estimation of riemannian
metrics from euclidean data. In International Conference on Geometric Science of Information, pp.
38–46. Springer, 2017.

Arvanitidis, G., Hansen, L. K., and Hauberg, S. Latent space oddity: On the curvature of deep
generative models. In 6th International Conference on Learning Representations, ICLR 2018,
2018.

Arvanitidis, G., Hauberg, S., and Schölkopf, B. Geometrically enriched latent spaces. arXiv preprint
arXiv:2008.00565, 2020.

Bojanowski, P., Joulin, A., Lopez-Pas, D., and Szlam, A. Optimizing the latent space of generative
networks. In International Conference on Machine Learning, pp. 600–609, 2018.

Buckman, J., Gelada, C., and Bellemare, M. G. The importance of pessimism in fixed-dataset policy
optimization. arXiv preprint arXiv:2009.06799, 2020.

Carmo, M. P. d. Riemannian geometry. Birkhäuser, 1992.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and Thomas, P. Learning action representations
for reinforcement learning. In International Conference on Machine Learning, pp. 941–950, 2019.

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., and Smagt, P. Metrics for deep generative
models. In International Conference on Artificial Intelligence and Statistics, pp. 1540–1550.
PMLR, 2018.

Chen, N., Ferroni, F., Klushyn, A., Paraschos, A., Bayer, J., and van der Smagt, P. Fast approximate
geodesics for deep generative models. In International Conference on Artificial Neural Networks,
pp. 554–566. Springer, 2019.

Chen, N., Klushyn, A., Ferroni, F., Bayer, J., and van der Smagt, P. Learning flat latent manifolds
with vaes. 2020a.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I., and Abbeel,
P. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., and Ross, K. Bail: Best-action imitation learning
for batch deep reinforcement learning. Advances in Neural Information Processing Systems, 33,
2020b.

Ding, Z., Xu, Y., Xu, W., Parmar, G., Yang, Y., Welling, M., and Tu, Z. Guided variational autoencoder
for disentanglement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7920–7929, 2020.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Engel, J., Hoffman, M., and Roberts, A. Latent constraints: Learning to generate conditionally from
unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.

Engel, Y. and Mannor, S. Learning embedded maps of markov processes. In Proceedings of the
Eighteenth International Conference on Machine Learning, pp. 138–145, 2001.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6(Apr):503–556, 2005.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., and Dabney, W.
Revisiting fundamentals of experience replay. In International Conference on Machine Learning,
pp. 3061–3071. PMLR, 2020.

10

Fonteneau, R., Murphy, S. A., Wehenkel, L., and Ernst, D. Batch mode reinforcement learning based
on the synthesis of artificial trajectories. Annals of operations research, 208(1):383–416, 2013.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bottlenecks in deep q-learning algorithms. In
International Conference on Machine Learning, pp. 2021–2030, 2019.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without exploration.
In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059, 2016.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep learning, volume 1. MIT press
Cambridge, 2016.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel, C., Veloso, M., and Salakhutdinov, R.
MineRL: A large-scale dataset of Minecraft demonstrations. Twenty-Eighth International Joint
Conference on Artificial Intelligence, 2019. URL http://minerl.io.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pp. 1861–1870. PMLR, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering atari with discrete world models. arXiv
preprint arXiv:2010.02193, 2020.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. Learning an embedding
space for transferable robot skills. In International Conference on Learning Representations, 2018.

Hsu, W.-N., Zhang, Y., and Glass, J. Unsupervised learning of disentangled and interpretable
representations from sequential data. In Advances in neural information processing systems, pp.
1878–1889, 2017.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy
optimization. arXiv preprint arXiv:1906.08253, 2019.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? arXiv preprint
arXiv:2012.15085, 2020.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data, 2019.

Kalatzis, D., Eklund, D., Arvanitidis, G., and Hauberg, S. Variational autoencoders with riemannian
brownian motion priors. In Proceedings of the 37th International Conference on Machine Learning
(ICML). PMLR, 2020.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. Morel: Model-based offline reinforce-
ment learning. arXiv preprint arXiv:2005.05951, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and Welling, M. Semi-supervised learning with
deep generative models. Advances in neural information processing systems, 27:3581–3589, 2014.

11

http://minerl.io

Klushyn, A., Chen, N., Kurle, R., Cseke, B., and van der Smagt, P. Learning hierarchical priors in
vaes. In Advances in Neural Information Processing Systems, pp. 2870–2879, 2019.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabilizing off-policy q-learning via bootstrap-
ping error reduction. In Advances in Neural Information Processing Systems, pp. 11784–11794,
2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for offline reinforcement
learning. arXiv preprint arXiv:2006.04779, 2020.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe policy improvement with baseline bootstrap-
ping. In International Conference on Machine Learning, pp. 3652–3661. PMLR, 2019.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, M., Wu, L., Jun, W., and Ammar, H. B. Multi-view reinforcement learning. In Advances in neural
information processing systems, pp. 1420–1431, 2019.

Littman, M. L. and Sutton, R. S. Predictive representations of state. In Advances in neural information
processing systems, pp. 1555–1561, 2002.

Petangoda, J. C., Pascual-Diaz, S., Adam, V., Vrancx, P., and Grau-Moya, J. Disentangled skill
embeddings for reinforcement learning. arXiv preprint arXiv:1906.09223, 2019.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference
in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Riedmiller, M. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005.

Rybkin, O., Daniilidis, K., and Levine, S. Simple and effective vae training with calibrated decoders.
arXiv preprint arXiv:2006.13202, 2020.

Schaal, S. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., and
Hüllermeier, E. Reliable classification: Learning classifiers that distinguish aleatoric and epistemic
uncertainty. Information Sciences, 255:16–29, 2014.

Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y. A hierarchical
latent variable encoder-decoder model for generating dialogues. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O. Ladder variational
autoencoders. In Advances in neural information processing systems, pp. 3738–3746, 2016.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling representation learning from reinforce-
ment learning. arXiv preprint arXiv:2009.08319, 2020.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforcement learning, volume 135. MIT press
Cambridge, 1998.

Swazinna, P., Udluft, S., and Runkler, T. Overcoming model bias for robust offline deep reinforcement
learning. arXiv preprint arXiv:2008.05533, 2020.

Tennenholtz, G. and Mannor, S. The natural language of actions. In International Conference on
Machine Learning, pp. 6196–6205, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

12

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

Van Den Oord, A., Vinyals, O., et al. Neural discrete representation learning. In Advances in Neural
Information Processing Systems, pp. 6306–6315, 2017.

Wang, R., Foster, D. P., and Kakade, S. M. What are the statistical limits of offline rl with linear
function approximation? arXiv preprint arXiv:2010.11895, 2020.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. Mopo: Model-based
offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

Zanette, A. Exponential lower bounds for batch reinforcement learning: Batch rl can be exponentially
harder than online rl. arXiv preprint arXiv:2012.08005, 2020.

Zhu, J., Xia, Y., Wu, L., Deng, J., Zhou, W., Qin, T., and Li, H. Masked contrastive representation
learning for reinforcement learning. arXiv preprint arXiv:2010.07470, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] computational limitation (discus-

sion section).
(c) Did you discuss any potential negative societal impacts of your work? [Yes] broader

impact in introduction section
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] standard deviation in Table 1
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] FAISS is under MIT license. Our usage of D4RL dataset does
not require consent according to CC BY 4.0 license.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Data is of standard Mujoco benchmarks

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

Hopper Walker2d Halfcheetah
Method Random Medium Med-Expert Random Medium Med-Expert Random Medium Med-Expert
Data Score 299± 200 1021± 314 1849± 1560 1± 6 498± 807 1062± 1576 -303± 79 3945± 494 8059± 4204
GELATO 685± 15 1676± 223 574± 16 412± 85 1269± 549 1515± 379 116± 43 5168± 849 6449± 2790

GELATO-unc 481± 29 1158± 423 879± 153 290± 79 487± 289 1473± 389 23± 35 3034± 585 7130± 3780
GELATO-prox 240± 22 480± 15 920± 249 158± 35 571± 326 1596± 416 -28± 31 3300± 613 7412± 3166

MOPO 677± 13 1202± 400 1063± 193 396± 76 518± 560 1296± 374 4114± 312 4974± 200 7594± 4741
MBPO 444± 193 457± 106 2105± 1113 251± 235 370± 221 222± 99 3527± 487 3228± 2832 907± 1185
SAC 664 325 1850 120 27 -2 3502 -839 -78

Imitation 615 1234 3907 47 193 329 -41 4201 4164

Table 3: Results of GELATO as presented in Table 1 with added std for each run, averaged over 5 seeds.

Figure 4: A graphical representation of our latent variable model. (a) The state s is embedded via the state
embedding function (i.e., approximate posterior) z ∼ q(·|s). (b) The action and embedded state pass through an
invertible embedding function E to produce the state-action embedding Ez,a. (c,d) The state-action embedding
is passed through a reward predictor and latent forward model, r̂ ∼ P (·|Ez,a) and z′ ∼ P (·|z, a), respectively.
(e) The next latent state z′ is decoded back to observation space to generate ŝ′ ∼ P (·|z′). (f) Finally, during
training, the target state s′ is embedded and compared to z′ (by the KL-divergence term in Equation (7)),
preserving the consistency of the latent space Z .

Appendix

9 Variational Latent Model

We begin by describing our variational forward model. The model, based on an encoder, latent forward
function, and decoder framework assumes the underlying dynamics and reward are governed by a
state-embedded latent spaceZ ⊆ RdZ . The probability of a trajectory τ = (s0, a0, r0, . . . , sh, ah, rh)
is given by

P (τ) =

∫
z0,...,zh

P (z0)

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)
h∏
j=1

P (zj |Ezj−1,aj−1)dz0 . . . dzh, (6)

where E : Z ×A 7→ E ⊆ RdE is a deterministic, invertible embedding function which maps pairs
(z, a) to a state-action-embedded latent space E . Ez,a is thus a sufficient statistic of (z, a). The
proposed graphical model is depicted in Figure 4. We note that an extension to the partially observable
setting replaces st with ht = (s0, a0, . . . , st), a sufficient statistic of the unknown state.

Maximizing the log-likelihood logP (τ) is hard due to intractability of the integral in Equation (6).
We therefore introduce the approximate posterior q(z|s) and maximize the evidence lower bound.

To clear notations we define Ez−1,a−1
= 0, so that we can rewrite the above expression as

P (s0, a0, r0, . . . , sh, ah, rh) =

∫
z0,...,zh

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1
)

15

Introducing q(zi|si) we can write

log

∫
z0,...,zh

h∏
i=0

q(zi|si)
q(zi|si)

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1
)

≥
∫
z0,...,zh

h∏
i=0

q(zi|si)

(
h∑
i=0

log

(
P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1

)

q(zi|si)

))

=

H∑
i=0

Eq(zi|si)
[
log(P (si | zi)π(ai | si)P (ri|Ezi,ai))

]
−
H−1∑
i=0

Eq(zi|si)
[
DKL(q(zi+1 | si+1) || P (zi+1|Ezi,ai))

]
−DKL(q(z0 | s0) || P (z0)).

Hence,

h∑
i=0

Ezi∼q(zi|si)
[
log(P (si | zi)π(ai | si)P (ri|Ezi,ai))

]
−
h−1∑
i=0

Ezi∼q(zi|si)
[
DKL(q(zi+1 | si+1) || P (zi+1|Ezi,ai))

]
−DKL(q(z0 | s0) || P (z0)). (7)

The distribution parameters of the approximate posterior q(z|s), the likelihoods
P (s|z), π(a|s), P (r|Ez,a), and the latent forward model P (z′|Ez,a) are represented by neu-
ral networks. The invertible embedding function E is represented by an invertible neural network,
e.g., affine coupling, commonly used for normalizing flows (Dinh et al., 2014). Though various latent
distributions have been proposed (Klushyn et al., 2019; Kalatzis et al., 2020), we found Gaussian
parametric distributions to suffice for all of our model’s functions. Particularly, we used two outputs
for every distribution, representing the expectation µ and variance σ. All networks were trained
end-to-end to maximize the evidence lower bound in Equation (7).

Our latent variable model is designed to capture both the epistemic and aleatoric uncertainty (Senge
et al., 2014). The variance output of the decoder captures epistemic uncertainty , while stochasticity
of the latent forward model P (z′|Ez,a) captures aleatoric uncertainty. For the purpose of offline RL,
we will focus on the epistemic uncertainty of our model.

We tested the quality of our variational model on datasets of two tasks in Minecraft (Guss et al.,
2019); namely, a navigation task (150k examples) and a tree chopping task (250k examples), both
generated by human players. The variational model was trained only on the navigation task. We

Figure 5: TSNE projection of latent space Z for navigation dataset (blue) and tree chopping dataset (red) in
Minecraft (Guss et al., 2019). Darker colors correspond to higher decoder variance.

16

Encoder
MLP

AC Forward
MLP

Decoder
MLP

Figure 6: Latent model architecture (does not depict reward MLP).

embedded the data from both datasets using our trained model, and measured the decoder variance for
all samples. Figure 5 depicts a TSNE projection of the latent space Z , coloring in blue the navigation
task and in red the tree chopping task. Light colors correspond to low variance (i.e., sharp images),
whereas dark colors correspond to large variance (i.e. OOD samples). We found that our variational
model was able to properly distinguish between the two tasks, with some overlap due to similarity
in state space features. Additionally, we noticed a clear transition in decoding variance as samples
farther away from the trained latent data attained larger variance, suggesting our variational model
was properly able to distinguish OOD samples.

We refer the reader to the appendix for further analysis and approaches of uncertainty quantification
in variational models. In our experiments, we found that the standard decoder variance sufficed for
all of the tested domains.

10 Specific Implementation Details

As a preprocessing step rewards were normalized to values between [−1, 1]. We trained our variational
model with latent dimensions dim(Z) = 32 and dim(E) = dim(Z) + dim(A). All domains were
trained with the same hyperparameters. Specifically, we used a 2-layer Multi Layer Perceptron (MLP)
to encode Z , after which a 2-layer Affine Coupling (AC) (Dinh et al., 2014) was used to encode E .
We also used a 2-layer MLP for the forward, reward, and decoder models. All layers contained 256
hidden layers.

The latent model was trained in two separate phases for 100k and 50k steps each by stochastic gradient
descent and the ADAM optimizer (Kingma & Ba, 2014). First, the model was fully trained using a
calibrated Gaussian decoder (Rybkin et al., 2020). Specifically, a maximum-likelihood estimate of
the variance was used σ∗ = MSE(µ, µ̂) ∈ arg maxσN (µ̂|µ, σ2I). Finally, in the second stage we
fit the variance decoder network. We found this process of to greatly improve convergence speed
and accuracy, and mitigate posterior collapse. We used a minimum variance of 0.01 for all of our
stochastic models.

To further stabilize training we used a momentum encoder. Specifically we updated a target encoder
as a slowly moving average of the weights from the learned encoder as

θ̄ ← (1− τ)θ̄ + τθ

Hyperparameters for our variational model are summarized in Table 4. The latent architecture is
visualized in Figure 6.

17

Parameter Value Parameter Value
dim(Z) 32 LEARNING RATE 10−3

dim(E) 32 + dim(A) BATCH SIZE 128
ENCODER MLP HIDDEN 256, 256 TARGET UPDATE τ 0.01
FORWARD MLP HIDDEN 256, 256 TARGET UPDATE INTERVAL 1
DECODER MLP HIDDEN 256, 256 PHASE 1 UPDATES 100000
REWARD MLP HIDDEN 256, 256 PHASE 2 UPDATES 50000

Table 4: Hyper parameters for variational model

Figure 7: Illustration of geodesic curve optimization in Algorithm 2.

10.1 Geodesic Distance Estimation

In order to practically estimate the geodesic distance between two points e1, e2 ∈ E we defined a
parametric curve in latent space and used gradient descent to minimize the curve’s energy 3. The
resulting curve and pullback metric were then used to calculate the geodesic distance by a numerical
estimate of the curve length (Equation (4)).

Pseudo code for Geodesic Distance Estimation is shown in Algorithm 2. Our curve was modeled
as a cubic spline with 8 coefficients. We used SGD (momentum 0.99) to optimize the curve energy
over 20 gradient iterations with a grid of 10 points and a learning rate of 10−3. An illustration of the
convergence of such a curve is illustrated in Figure 7

10.2 RL algorithm

Our learning algorithm is based on the Soft Learning framework proposed in Algorithm 2 of Yu et al.
(2020). Pseudo code is shown in Algorithm 3. Specifically we used two replay buffersRmodel,Rdata,
where |Rmodel| = 50000 and Rdata contained the full offline dataset. In every epoch an initial state
s0 was sampled from the offline dataset and embedded using our latent model to generate z0 ∈ Z .
During rollouts of π, embeddings Ez,a ∈ E were then generated from z and used to (1) sample
next latent state z′, (2) sample estimated rewards r, and (3) compute distances to K = 20 nearest
neighbors in embedded the dataset.

We used Algorithm 2 to compute the geodesic distances, and FAISS (Johnson et al., 2019) for
efficient nearest neighbor computation on GPUs. To stabilize learning, we normalized the penalty
1
K

∑K
k=1 dk according to the maximum penalty, ensuring penalty lies in [0, 1] (recall that the latent

reward predictor was trained over normalized rewards in [−1, 1]). For the non-skewed version of

3Other methods for computing the geodesic distance include solving a system of ODEs (Arvanitidis et al.,
2018), using graph based geodesics (Chen et al., 2019), or using neural networks (Chen et al., 2018).

18

Algorithm 2 Geodesic Distance Estimation

Input: forward latent F , decoder D, learning rate λ, number of iterations T , grid size n, eval
points e0, e1

Initialize: parametric curve γθ : γθ(0) = e0, γθ(1) = e1

for t = 1 to T do
Lµ(θ)←

∑n
i=1 µD(µF (γθ(

i
n)))− µD(µF (γθ(

i−1
n)))

Lσ(θ)←
∑n
i=1 σD(µF (γθ(

i
n)))− σD(µF (γθ(

i−1
n)))

L(θ)← Lµ(θ) + Lσ(θ)
θ ← θ − λ∇θL(θ)

end for
GD◦F = JTµFGDJµF + JTσF diag

(
GD
)
JσF

∀i,∆i ← γθ(
i
n)− γθ(i−1

n)

d(e0, e1)←
∑n
i=1

(
∂γθ
∂t

∣∣
i
n

)T
GD◦F (γθ(

i
n))
(
∂γθ
∂t

∣∣
i
n

)
∆i

Return: d(e0, e1)

Algorithm 3 GELATO with Soft Learning

Input: Reward penalty coefficient λ, rollout horizon h, rollout batch size b, training epochs T ,
number of neighbors K.
Train variational latent forward model on dataset D by maximizing ELBO (Equation (7))
Construct embedded dataset Dembd = {Ei}ni=1 using latent model to initialize KNN.
Initialize policy π and empty replay bufferRmodel ← ∅.
for epoch = 1 to T do

for i = 1 to b (in parallel) do
Sample state s1 from D for the initialization of the rollout and embed using latent model to
produce z1.
for j = 1 to h do

Sample an action aj ∼ π(·|zj).
Embed (zj , aj)→ Ezj ,aj using latent model
Sample zj+1 from latent forward model F (Ezj ,aj).
Sample rj from latent reward model R(Ezj ,aj).

Use Algorithm 2 to compute K nearest neighbors
{

NN(k)
zj ,aj

}K
k=1

and their distances

{dk}Nk=1 to Ezj ,aj .

Compute r̃j = rj − λ
(

1
K

∑K
k=1 dk

)
Add sample (zj , aj , r̃j , zj+1) toRmodel.

end for
end for
Drawing samples fromRdata ∪Rmodel, use SAC to update π.

end for

GELATO, we used λ = 1 as our reward penalty coefficient and λ = 2 for the skewed versions. We
used rollout horizon of h = 5, and did not notice significant performance improvement for different
values of h.

19

11 Missing Proofs

11.1 Proof of Proposition 1

For any curve γ, we have that∫ 1

0

∥∥∥∥∂f(γ(t))

∂t

∥∥∥∥ dt =

∫ 1

0

∥∥∥∥∥∂f(γ(t))

∂γ(t)

T
∂γ(t)

∂t

∥∥∥∥∥ dt
=

∫ 1

0

∥∥∥∥Jf (γ(t))T
∂γ(t)

∂t

∥∥∥∥ dt
=

∫ 1

0

√〈
∂γ(t)

∂t
, JTf (γ(t))Jf (γ(t))

∂γ(t)

∂t

〉
dt

=

∫ 1

0

√〈
∂γ(t)

∂t
,Gf (γ(t))

∂γ(t)

∂t

〉
dt.

This completes the proof.

11.2 Proof of Theorems 1 and 2

We begin by restating the theorems.
Theorem 1. [Arvanitidis et al. (2018)] Assume D(·|z) ∼ N (µ(z), σ(z)I). Then

ED(·|z)

[
GD(z)

]
= ED(·|z)

[
JD(z)TJD(z)

]
= Gµ(z)︸ ︷︷ ︸

proximity

+ Gσ(z)︸ ︷︷ ︸
uncertainty

, (3)

where Gµ(z) = JTµ (z)Jµ(z) and Gσ(z) = JTσ (z)Jσ(z).

Theorem 2. Assume F (·|z) ∼ N (µF (z), σF (z)I), D(·|x) ∼ N (µD(x), σD(x)I). Then, the ex-
pected pullback metric of the composite function (D ◦ F) is given by

EP (D◦F)

[
GD◦F (z)

]
= JTµF (z)GD(z)JµF (z) + JTσF (z)diag

(
GD(z)

)
JσF (z),

where here, GD(z) = Ex∼F (·|z)

[
JTµD (x)JµD (x) + JTσD (x)JσD (x)

]
.

Notice that Theorem 1 is a special case of Theorem 2 with F being the trivial identity function.
Additionally, a complete proof of Theorem 1 can be found in Arvanitidis et al. (2018). We turn to
prove Theorem 2.

We begin by proving the following auxilary lemma.

Lemma 1. Let ε ∼ N (0, IK), f : Rd 7→ RK , A ∈ RK×K . Denote Si = diag
(
∂f1

∂zi
, ∂f

2

∂zi
, . . . , ∂f

K

∂zi

)
for 1 ≤ i ≤ d and

B = [S1ε, S2ε, . . . , Sdε]K×d .

Then E
[
BTAB

]
= JTf diag(A)Jf .

Proof. We have that

E
[
BTAB

]
= E

εTST1
εTST2

...
εTSTd

A [S1ε, S2ε, . . . , Sdε]

=

E
[
εTST1 AS1ε

]
,E
[
εTST1 AS2ε

]
, . . . ,E

[
εTST1 ASdε

]
,

E
[
εTST2 AS1ε

]
,E
[
εTST2 AS2ε

]
, . . . ,E

[
εTST2 ASdε

]
,

. . .
E
[
εTSTd AS1ε

]
,E
[
εTSTd AS2ε

]
. . . ,E

[
εTSTd ASdε

]
 .

20

Finally notice that for any matrix M

E
[
εTMε

]
=

d∑
i=1

d∑
j=1

MijE [εiεj] =

d∑
i=1

Mii = trace(M).

Then,

E
[
BTAB

]
=

trace

(
ST1 AS1

)
, trace

(
ST1 AS2

)
, . . . , trace

(
ST1 ASd

)
trace

(
ST2 AS1

)
, trace

(
ST2 AS2

)
, . . . , trace

(
ST2 ASd

)
. . .

trace
(
STd AS1

)
, trace

(
STd AS2

)
, . . . , trace

(
STd ASd

)
 .

Next, note that

trace(SiASj) =

K∑
k=1

∂fk

∂zi

∂fk

∂zj
Akk.

Therefore,

E
[
BTAB

]
= JTf diag(A)Jf .

We are now ready to prove Theorem 2.

Proof of Theorem 2. We can write z′ = µF (z)+σF (z)� εF and s′ = µD(z′)+σD(z′)� εD where
εF ∼ N (0, Id), εD ∼ N (0, IK), µF : Rd 7→ R`,µD : R` 7→ RK and σF : Rd 7→ R`, σD : R` 7→
RK .

Applying the chain rule we get

JD◦F =
∂(D ◦ F)

∂z
= JµDJµF + JµDBεF +BεDJµF +BεDBεF

where

BεF = (SF,1εF , SF,2εF , . . . , SF,dεF)d×d ,

SF,i = diag
(
∂σ1

F

∂zi
,
∂σ2

F

∂zi
, . . . ,

∂σdF
∂zi

)
d×d

, and

BεD = (SD,1εD, SD,2εD, . . . , SD,dεD)K×d ,

SD,i = diag
(
∂σ1

D

∂z′i
,
∂σ2

D

∂z′i
, . . . ,

∂σdD
∂z′i

)
K×K

.

This yields

E
[
JTF◦DJF◦D

]
= E

[
(JµDJµF + JµDBεF +BεDJµF +BεDBεF)

T
(JµDJµF + JµDBεF +BεDJµF +BεDBεF)

]
= JTµF J

T
µDJµDJµF + E

[
BTεF J

T
µDJµDBεF

]
+ E

[
JTµFB

T
εDBεDJµF

]
+ E

[
BTεFB

T
εDBεDBεF

]
= JTµF

(
JTµDJµD + E

[
BTεDBεD

])
JµF + E

[
BTεF

(
JTµDJµD +BTεDBεD

)
BεF

]
where in the second equality we used the fact that εD, εF are independent and E [Bε] = 0. By
Lemma 1 we have

E
[
BTεDBεD

]
= JTσDJσD .

Similarly,

E
[
BTεFB

T
εDBεDBεF

]
= E

[
E
[
BTεFB

T
εDBεDBεF |εF

]]
= E

[
BTεF J

T
σDJσDBεF

]
= JTσF diag

(
JTσF JσF

)
JσF

Finally,

E
[
BTεF J

T
µDJµDBεF

]
= JTσF diag

(
JTµDJµD

)
JσF .

This completes the proof.

21

	Introduction
	Preliminaries
	Offline Reinforcement Learning
	Riemannian Manifolds

	Background: Model Error in Offline RL
	Metrics of Model Dynamics
	A Pullback Metric of Model Dynamics
	Metric of Proximity and Uncertainty of a Latent Forward Model
	Capturing Epistemic and Aleatoric Uncertainty

	GELATO: Incorporating the Metric in Offline RL
	Experiments
	Metric Visualization
	Continuous Control
	RBF Networks.

	Related Work
	Discussion and Future Work
	Variational Latent Model
	Specific Implementation Details
	Geodesic Distance Estimation
	RL algorithm

	Missing Proofs
	Proof of prop: metric
	Proof of Theorems 1 and 2

