
Domain Knowledge Guided Offline Q Learning

Xiaoxuan Zhang* Sijia Zhang* Yen-Yun Yu

Ancestry.com Operations Inc.

Abstract

Offline reinforcement learning (RL) is a promising method for applications where
direct exploration is not possible but a decent initial model is expected for the
online stage. In practice, offline RL can underperform because of overestimation
attributed to distributional shift between the training data and the learned policy. A
common approach to mitigating this issue is to constrain the learned policies so
that they remain close to the fixed batch of interactions. This method is typically
used without considering the application context. However, domain knowledge is
available in many real-world cases and may be utilized to effectively handle the
issue of out-of-distribution actions. Incorporating domain knowledge in training
avoids additional function approximation to estimate the behavior policy and results
in easy-to-interpret policies. To encourage the adoption of offline RL in practical
applications, we propose the Domain Knowledge guided Q learning (DKQ). We
show that DKQ is a conservative approach, where the unique fixed point still exists
and is upper bounded by the standard optimal Q function. DKQ also leads to
lower chance of overestimation. In addition, we demonstrate the benefit of DKQ
empirically via a novel, real-world case study - guided family tree building, which
appears to be the first application of offline RL in genealogy. The results show that
guided by proper domain knowledge, DKQ can achieve similar offline performance
as standard Q learning and is better aligned with the behavior policy revealed from
the data, indicating a lower risk of overestimation on unseen actions. Further, we
demonstrate the efficiency and flexibility of DKQ with a classical control problem.

1 Introduction

In recent years, reinforcement learning (RL) has been increasingly applied in a variety of domains as
an elegant approach for sequential decision making and data-driven personalization [1, 2]. Offline
RL with a fixed batch of historical trajectories is a data-efficient strategy for applications where
further interactions with the environment is expensive or unfeasible. Even if online reinforcement
is achievable, we can still utilize offline RL to provide a good initial policy. However, the adoption
of offline RL can be challenging in practice due to several limitations, such as distributional shift
between the new policy and the batch data [3, 4], unrealistic reward estimation of unseen actions
[5, 6], and challenges in approximating the unknown behavior policy from training trajectories [7, 8].
Some of these barriers may be overcome by considering the application context and available domain
knowledge. For example, if we have domain knowledge that contains information about the action
distribution in behavioral data, we can use it to sample actions to reduce distributional shift in training
while avoiding errors introduced by generating behavioral models. The main goal of this paper is
to offer a framework, Domain Knowledge guided Q learning (DKQ), that makes the integration of
domain knowledge and offline RL possible and flexible. To further bridge the gap between offline RL
and real-world applications, in addition to theoretically proving the validity of the proposed DKQ
method, we showcase its usage and benefits with a unique industry application – guided family tree
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building for a popular online genealogy service. To the best of our knowledge, this is the first study
that applies RL to provide data-driven and metric-driven guidance for family tree building.

Genealogy-oriented businesses harness the information in historical records to help customers trace
ancestry and build family trees. Family trees represent family members as nodes and demonstrate
family relationships (father, spouse, etc.) and degrees of relationship (kinship distance). Recent
development in internet technologies and artificial intelligence have allowed digitization of billions
of historical records and encouraged millions of people to build and share their family trees online
[9–11]. However, many of the genealogy website users are amateur. Unlike professional genealogist,
amateur users may not have the knowledge to design an effective research plan. This can lead
to dead ends on family trees or difficulty in trawling through a large amount of historical records
available to users. One possible approach to help amateur users is to design a tree building policy that
suggests the next best node to work on. We formulate Next Best Node as an RL problem since tree
building is a sequential task. DKQ can provide a suitable solution because it is capable of learning
good policies from a diverse set of tree building trajectories while incorporating domain knowledge
from genealogists or previous data analysis. An offline RL setting reduces potential disturbances of
customer experience and ensures performance before deployment.

DKQ calculates the weighted average of Q value estimates from multiple action subsets, which can
be selected based on domain knowledge. We show through theoretical analysis that DKQ can result
in conservative Q values. The case study demonstrates that DKQ reduces the chance of obtaining
unrealistic estimates for unseen actions, a common problem in offline RL [5, 6]. Besides genealogy,
this method has the potential to be extended to other products and services where domain knowledge
and rich user data are readily available. We summarize our major contributions as follows:

• We propose a framework named Domain Knowledge guided Q learning (DKQ) that flexibly
incorporates domain knowledge without introducing additional function approximation.

• We theoretically study the properties of DKQ in the tabular setting by proving that DKQ is a
conservative approach and the sub-optimality is bounded as a function of domain knowledge.

• We illustrate the benefit of DKQ via a real-world case study, which, to the best of our knowledge,
is the first study that applies RL to provide guidance for family tree building.

2 Related Work

Offline RL is a promising learning approach when online interactions are costly or unfeasible [12–14].
For example, in healthcare applications, avoiding online policy updates mitigates safety concerns.
For recommender systems, extensive offline evaluation helps ensure positive customer experience.
Despite the benefits of data-driven RL in real-world applications, effective learning with fixed offline
batch is difficult to achieve. A major challenge is extrapolation error, defined as unseen action-state
pairs getting unrealistic Q-value estimates [5, 3]. Such error can be propagated during training when
greedy exploitation is employed to select actions, leading to suboptimal policies.

To correct for extrapolation error and address the underlying distributional mismatch between the
new policy and the batch data, two categories of solutions have been developed: (1) restricting the
policy to lie close to the behavior policy and (2) correcting for overly loose Q estimates by penalizing
uncertainty [4]. A few recent algorithms are particularly relevant to our work. The Batch-Constrained
deep Q-learning (BCQ) [5] considers only candidate actions sampled from a perturbed generative
model in order to strike a balance between staying close to the batch and increasing the diversity of
actions. Further, a modified Clipped Double Q-learning approach [15] is used to penalize rare or
unseen states. Another method to control for uncertainly is bootstrapping ensembles of Q functions.
For instance, the Random Ensemble Mixture model [16] demonstrates that even simple random
convex combination of various Q-value estimates can enhance the generalization in offline RL.

Although constraining actions and averaging Q-values with random weights performed well on
common benchmarks, they did not consider the application context or domain knowledge. A recent
study [7] following BCQ suggests the importance of generative model design for estimating behavior
policies in offline RL. If we already have domain knowledge for a specific application, we could
directly incorporate domain knowledge in policy learning and thus avoid errors from estimating
behavior policies. Prior work shows that domain knowledge can be used to warm start reinforcement
learning and tighten regret bound [17, 18]. An Expert-Supervised RL framework has been developed
to allow for application-specific risk averse implementation to learn safe and optimal policies in
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domains like healthcare [8]. However, the training data needs to be collected from experts to impose
safety constraints, and it cannot readily handle continuous state space or cases where not all actions
are always available. Given limitations of existing approaches, we propose DKQ to incorporate
domain knowledge and various action conditions from a diverse set of trajectories.

Fitted Q-iteration (FQI) is a class of offline RL that exploits regression algorithms to approximate
the Q function by iteratively expanding the optimization horizon [19]. It has become increasingly
popular due to good performance and data efficiency [4, 20]. However, FQI may still fail to find the
optimal policy because of extrapolation error, especially when teh data is high-dimensional[21, 4].
Although convergence is not guaranteed, FQI will not lead to unbounded divergence [19, 21]. We
prove that DKQ with FQI as the function appoximator preserves this property.

3 Preliminaries

Reinforcement learning is typically described as a Markov Decision Process (MDP) defined by a tuple
(S,A, r, P, γ). S and A respectively represent the state and action space. P (s′|s,a) represents the
dynamics (transition probability), and r(s,a) is the reward function. We assume that r is uniformly
bounded by Rl and Ru, i.e., Rl ≤ r(s,a) ≤ Ru, ∀s,a . γ ∈ [0, 1) is the discount factor. The goal is
to learn a policy π(a|s) that maximizes the expected discounted cumulative reward. The action-value
function for policy π is defined as Qπ(s,a) = Eπ[

∑∞
t=0 γ

tr(st,at)|S0 = s, A0 = a]. The optimal
action value function is Q*(s,a) = maxπ Qπ(s,a). Let T represent the Bellman optimality operator
for action-value function defined as (1), then Q* is the fixed point of T .

T Q(s,a) = r(s,a) + γEs′∼P (s′|s,a)
[

max
a′

Q(s′,a′)
]
. (1)

Existing research of offline RL, such as [5–7], mainly focuses on resolving the issue of inaccurate
value estimates of out-of-distribution actions. Those studies assume no knowledge of the underlying
domain and estimate the unknown behavior policy from data. However, in many real-world appli-
cations, like the case studied in this paper, domain knowledge is indeed available. In those cases,
incorporating the domain knowledge into training procedures could be more effective and valuable
than simply trying to mitigate the problem of distributional shift without the application context.
Definition 1. We define domain knowledge as F = {(fi, αi)}Ki=1, where fi : A → {0, 1} is an
indicator function that describes a type of actions, and αi ∈ [0, 1] is a normalized non-negative
weight of importance, i.e.,

∑K
i=1 αi = 1.

The domain knowledge F is interpreted as follows: If an action meets the constraint defined by fi,
it has the importance measured by αi. An example of the indicator function is f(a) = I[e>

j a>0],
which describes the action set {a ∈ A|a[j] > 0}, where ej is the unit vector on the direction
of j-th axis and a[j] is the j-th element of a. If domain experts believe that certain types of
actions are no recommended, their weights can be set to zero. Besides, we denote the data set as
D = {(st,at, rt, s′t, τt)}Tt=0, where τt is an indicator of termination.

4 Domain Knowledge Guided Q Learning

In industry applications, domain knowledge is typically available. Companies can gain insights
of their products and customers from various channels, such as A/B tests, customer research and
domain experts. Offline RL is a promising approach when online interactions are expensive or
disturb customer experience. Even if companies plan to reinforce the model in an online setting,
a well-performing initial policy trained offline with expert knowledge would still be beneficial.
Incorporating domain knowledge into training has the potential to result in better policies because
we make the learning process both data driven and human knowledge guided. However, domain
knowledge can be too complicated or obscure to be formulated as a policy, which is expressed as
a conditional probability distribution. To address this issue, we first provide a flexible definition of
domain knowledge (Definition 1), then propose the Domain Knowledge guided Q Learning (DKQ).

4.1 Q Operator Guided by Domain Knowledge

By convention, we provide theoretical analysis of the properties for tabular MDP setting. As a result
of page limit, all missing proofs are placed in the Appendix.
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We define the Q operator guided by domain knowledge F as TF . Specifically,

TFQ(s,a) := r(s,a) + γEs′∼P (s′|s,a)
[ K∑
i=1

αi max
a′∈supp(fi)

Q(s′,a′)
]
, (2)

where supp(fi) represents the support of fi. In the case where K = 1 (leading to α1 = 1) and
supp(f1) = A, TF becomes the Bellman optimality operator for standard Q learning. When K = 1
and f1(a) = µ(a|s), where µ(a|s) is the estimated behavior policy, TF becomes the Expected-Max
Q-Learning (EMaQ) with sample size N →∞ [7].

To study the property of DKQ, we first show that TF still has a unique fixed point denoted by Q*
F in

Theorem 1.
Theorem 1. For all domain knowledge F defined in Definition 1, TF is a contraction operator on
the Banach space of functions defined over S × A and the supremum norm‖·‖∞. Thus, TF has a
unique fixed point, denoted by Q*

F .

Since the unique fixed point exists, we can still use existing approaches to learn a function approxima-
tion of Q*

F . However, we also need a policy derived from the learned Q function to make predictions
at test time. For this purpose, we construct a policy π*

F (·|s) based on F and Q*
F , and show that its

action value function is Q*
F in Theorem 2.

Theorem 2. Let π*
F (·|s) be the policy that selects arg maxa∈supp(fi)Q

*
F (s,a) with probability αi

and selects other actions with 0 probability. Then Q*
F is the action-value function of π*

F (·|s).

Note that if arg maxa∈supp(fi)Q
*
F (s,a) overlaps with arg maxa∈supp(fj)Q

*
F (s,a) where i 6= j,

π*
F (·|s) selects these actions with probability αi + αj .

TF by definition is a conservative operator compared to T . Lemma 1 formally describes this property.
This property also leads to a conservative fixed point. Specifically, Q* is lower bounded by Q*

F
everywhere on S ×A (Theorem 3).
Lemma 1. ∀Q1, Q2 : S ×A → R, if ∀s ∈ S,a ∈ A, Q1(s,a) ≤ Q2(s,a), then we have

∀s ∈ S,a ∈ A, TFQ1(s,a) ≤ T Q2(s,a).

Theorem 3. ∀s ∈ S,a ∈ A, we have Q*
F (s,a) ≤ Q*(s,a).

Inspired by [7], we also analyze the sub-optimality bounds for DKQ, shown in Theorem 4. Theorem
4 indicates that the sub-optimality is bounded by the weighted sum of the gap of Q values on A and
supp(fi), where the weights come from the knowledge F . The conclusion applies for not only Q*

F
but also Q* (details in Theorem 4). Of note, in the case of good domain knowledge, the αi assigned
to important action group is large, while those assigned to other groups are small or even close to
zero. Thus, the bounds are small and Q*

F is close to Q*.
Theorem 4. The sub-optimality of Q*

F is bounded as follows:

‖Q*
F −Q*‖∞ ≤

γ

1− γ
min

( K∑
i=1

αi max
s

∆F,i(s),

K∑
i=1

αi max
s

∆′F,i(s)

)
, (3)

where ∆F,i(s) := maxa∈AQ
*
F (s,a) − maxa∈supp(fi)Q

*
F (s,a) and ∆′F,i(s) :=

maxa∈AQ
*(s,a)−maxa∈supp(fi)Q

*(s,a).

4.2 Fitted Iteration for DKQ

In this subsection, we describe a function approximation of DKQ through fitted iterations [19].
Fitted iteration is easy to implement and can utilize different function approximators. The Domain
Knowledge Guided Fitted Q Iteration is listed in Algorithm 1.

As described in [21], fitted iteration is not guaranteed to converge. However, it converges to an l∞
ball around Q*, when the projection error at each iteration is uniformly bounded (Theorem B.1 in
[21]). In Theorem 5, we show that this conclusion still holds for DKQ.
Theorem 5. If the error of function approximation at each iteration is uniformly bounded by δ, that
is ∀n, ‖Q̂(n+1)

F −TF Q̂(n)
F ‖∞ ≤ δ, the error in the final solution of Algorithm 1 is bounded as follows:

lim
n→∞

‖Q̂(n)
F −Q

*
F‖∞ ≤

δ

1− γ
. (4)
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Algorithm 1 DK − FQI(f ,α, γ,D, N)

1: Initialize Q̂0 = 0
2: for t = 1, . . . , T do
3: xt ← (st,at)
4: end for
5: for n = 1, . . . , N do
6: Build the training set D(n) = {(xt, y(n)t )}Tt=0 by setting each

y
(n)
t as follows:

y
(n)
t ← rt + γ

∑K
i=1 αi maxa′∈supp(fi) Q̂

(n−1)
F (s′t,a

′)

7: Q̂
(n)
F ← regression_training(D(n))

8: end for
9: return Q̂(N)

F

As suggested by previous
studies [5, 6], a key chal-
lenge in offline RL is unre-
alistic estimation of Q val-
ues for "out-of-distribution"
actions. Although this is
not the focus of this paper,
we still demonstrate theo-
retically that good domain
knowledge F can mitigate
the problem of overestima-
tion. Specifically, through
F , DKQ restricts the ac-
tions being selected and its
impact. Depending on the
application, it is possible for
domain knowledge to con-
tain information about the behavior policies that generated the historical data. In the presence of
such domain knowledge, DKQ can avoid sampling unseen actions outside the behavior distribution.
Meanwhile, DKQ does not introduce additional function approximation for the behavior policy, and
thus further reduces errors.

5 Case Study: Suggest Next Best Node to Grow Family Tree with DKQ

In this section, we introduce a case study with DKQ. As described in the Introduction, we aim to
help people grow their family trees by improving a genealogy service - a website or app where users
can search for historical records, such as census records and birth certificates, to understand their
heritage and family history. We formulate this problem as a RL model because family tree building is
a sequential task. Users first create a node with basic information, and then use the genealogy service
to find supporting documents for that node. Information discovered from relevant documents can
inspire users to create the next node. Many people interested in family history lack genealogical
research skills and reach a dead end when building family trees. Users may break through this barrier
by exploring nodes that the genealogy service still has records for. However, it is challenging to
locate those nodes, because a family tree can contain hundreds of nodes and users may not know
which ones still have undiscovered documents. We can provide users with guidance for tree building
using two methods: heuristic approaches based on domain knowledge and data-driven approaches.
With DKQ, we can construct a solution that leverages both data and domain knowledge. Domain
knowledge can come from consultation with professional genealogists, customer interviews and data
analytics. In the rest of this section, we demonstrate in detail how DKQ utilizes available domain
knowledge to suggest Next Best Node.

5.1 Data and features

For this case study, we used real data collected by a genealogy company with customer consent. We
define trajectory as a sequence of nodes that a user interacted with. The data contains trajectories
within a month from 1,000 family trees, with a total of 95,363 steps. We formulate the problem with
DKQ by defining state, action, reward and domain knowledge as follows.

Reward The goal is to guide users to the node where new information is most likely to be discovered.
If the user finds a record/document and believes that it belongs to a person (represented by a node on
the family tree) in his/her family, then he/she typically saves the record to tree. We consider a record
saved to tree as a "successful discovery" and assign a high reward score (10 points) as ground truth.
If the user explores the node but saves no documents, we assign a lower positive reward (1 point).

State features The state is characterized by both user status and tree status, including user’s product
engagement level, number of nodes in tree, and content availability. The content availability feature
estimates how many relevant documents exist in the genealogy service database for a particular tree.

Action features An action is a node in the family tree at a given timestamp. It is represented by an
array with the following dimensions: me-person flag, generation, direct relative flag, recently being
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interacted, kinship, engagement history, and node status. Me person is the focus person of the tree,
which is specified by the user. The me-person flag is a binary feature to indicate whether the node
is me-person or not. Generation is the number of generations counted from me person. The direct
relative flag indicates whether a node is on the direct line of kinship with me-person, such as parents,
grandparents, child, grandchild. The feature "recently being interacted" is a flag to track the last 10
nodes modified by the user. Kinship includes the relationships of the target node with both me-person
and recently interacted nodes. Engagement history is the aggregate engagement level of the target
node up to a given timestamp. Node status captures the level of information completeness.

5.2 DKQ and baselines

We implemented the Fitted Iteration version of DKQ with CatBoost Regressor [22] as the regression
model. We chose CatBoost because it is a state-of-the-art ensemble algorithm and is capable of
handling tabular data and categorical features.

Domain knowledge To maximize the chance of discovery, we take users’ current interest into
consideration. Previous analysis suggests that users are likely to continue working on nodes that they
recently interacted with and those around the last interacted node. This knowledge partially reflects
the behavior policy, which are confirmed by our experimental results shown in the next section.
Accordingly, we define domain knowledge as follows:
• f1(a) = 1 if a is one of the ten recently interacted nodes.
• f2(a) = 1 if a is within two steps, in terms of kinship, from the ten recently interacted nodes.
• f3(a) = 1 if a is within three generations around me-person.
• f4(a) = 1 if a is a direct relative of me-person.
Otherwise, fi(a) = 0 for i = 1, 2, 3, 4. Due to page limit, the list of parameter values α =
[α1, α2, α3, α4] for experiments in Table 1 is included in the Appendix. Note that the available
domain knowledge only covers f1 and f2. The corresponding models are listed in line 1, 2, 5 in
Table 1. We include f3 and f4 (Table 1, line 3, 4, 7-11) as variants to show how different domain
knowledge affects the performance.

Table 1: Mean reward on actions where the learned policy agrees/disagrees with the behavior policy

Experiment name R+ R−

1 Ten recently interacted nodes 13.92 7.21
2 Around recently interacted nodes 13.27 6.82
3 Three generations around me-person 16.74 8.19
4 Direct relatives 14.91 7.91
5 Ten recently interacted nodes OR Around recently interacted nodes 14.04 7.26
6 Ten recently interacted nodes OR Three generations around me-person 15.27 7.75
7 Ten recently interacted nodes OR Direct relatives 14.97 7.59
8 Around recently interacted nodes OR Three generations around me-person 14.84 7.72
9 Around recently interacted nodes OR Direct relatives 14.83 7.63

10 Three generations around me-person OR Direct relatives 15.50 7.93
11 Ten recently interacted nodes OR Around recently interacted nodes OR

Direct relatives
14.79 7.68

12 All nodes 15.91 7.85
13 Last interacted node (baseline) 8.41 8.13

Baselines We consider two baselines: Last Interacted Node (Table 1, line 13) and Q Learning
Without Domain Knowledge (Table 1, line 12). The first one is a rule-based approach. Intuitively, it
is safer, because it rarely recommends a node far from customer intent. However, it follows the user
behavior and is not driven by the defined success metric. On the other hand, the second baseline is
completely data-driven with no human guidance. It may result in worse online performance due to
too many unseen actions and unrealistic value estimates in offline training.

5.3 Evaluation and results

The evaluation of offline RL is a well-known challenge, because the learned policy has not been
rolled out online and the test data is still from the behavioral policy. The expected average reward
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of the learned policy π̂ defined as V (π̂) = 1
T

∑T
t=1 Es∼Dt [r(st, π̂(st))] is impossible to estimate,

where Dt is the marginal distribution of data at step t. Moreover, for this specific problem, it
is not feasible to collect data using some randomized policy. Inspired by [23], we simplify this
estimator as the mean reward on actions where the model agrees with the data, represented by R+ =
1
T

∑T
t=1 Iat=π̂(st)r(st,at). Similarly, we define R− = 1

T

∑T
t=1 Iat 6=π̂(st)r(st,at). Intuitively, the

idea is to associate the difference between the behavior policy and the learned policy with a desired
outcome, which is the reward or discoveries in our case. The learned policy is expected to recommend
high-reward actions in the behavioral data and deviate from low- or no-reward actions. If the learned
policy π̂ is good, the reward should be high on actions where the behavior policy agrees with π̂, and
low on actions where the behavior policy disagrees with π̂. Thus we examine if each learned policy
has a high R+ and a low R− as shown in Table 1.

Figure 1 shows: 1. Considering "ratio of rewards", all data driven algorithms are evidently better than
the rule-based baseline. 2. The "percentage of actions agreed" of rule-based baseline is substantially
larger than others. This also verifies that the domain knowledge partially reflects the behavior policy.
3. The data driven models have similar performance with respect to "ratio of rewards", but differ in the
"percentage of actions agreed". The baseline without domain knowledge represented by "All nodes"
show only about 5% agreement with the data, which is caused by a large number of out-of-distribution
actions. The three variants guided by domain knowledge, "Ten recently interacted nodes", "Around
recently interacted nodes" and "Ten recently interacted nodes OR Around recently interacted nodes",
hold the highest "percentage of actions agreed" and relatively high "ratio of rewards". Therefore,
policies generated from these three variants better balance issue of unseen data and predicted reward.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
ratio of rewards

Ten recently interacted nodes
Around recently interacted nodes

Three generations around me-person
Direct relatives

Ten recently interacted nodes OR Around recently interacted nodes
Ten recently interacted nodes OR Three generations around me-person

Ten recently interacted nodes OR Direct relatives
Around recently interacted nodes OR Three generations around me-person

Around recently interacted nodes OR Direct relatives
Three generations around me-person OR Direct relatives

Ten recently interacted nodes OR Around recently interacted nodes OR Direct relatives
All nodes

Last interacted node (baseline)
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% of actions agreed

Ten recently interacted nodes
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Direct relatives

Ten recently interacted nodes OR Around recently interacted nodes
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Around recently interacted nodes OR Three generations around me-person

Around recently interacted nodes OR Direct relatives
Three generations around me-person OR Direct relatives

Ten recently interacted nodes OR Around recently interacted nodes OR Direct relatives
All nodes

Last interacted node (baseline)

% of actions agreed

Figure 1: The ratio R+/R− and the proportion of the observed data agreed the learned policy.

6 Experiments on Benchmark Dataset

In this section, we further demonstrate the benefits of DKQ with a classic control problem, Acrobot
[24, 25]. The acrobot system includes a two-link pendulum that hangs downwards initially. The goal
is to swing the end of the lower link above a given height. Acrobot has a continuous state space with
six dimensions, including sin() and cos() of the two joint angles and the joint angular velocities.
There are three possible actions, which are applying -1, 0, or +1 torque on the joint between the two
pendulum links. Reward is 0 for reaching the goal and -1 otherwise. We conducted experiments
using the Intel Coach library (Apache License 2.0) [26] on an AWS r5a.2xlarge CPU instance.

6.1 DKQ with random action sampling and BCQ

For DKQ, each Q-update maximizes over a subset of actions that are pre-determined by domain
knowledge. Since we do not have the domain knowledge for the Acrobot problem, we define the
support of fi in Equation (2) as a set of two random actions drawn from the three possible actions
(-1, 0, 1). Both K and α are set to 1. This formulation becomes a Markov decision process with
stochastic action sets as described in [27]. Work in [27] suggests that Q-learning with sampled action
sets will converge to the optimal Q-function. We compare DKQ with random action sampling to BCQ
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mentioned in Section 2. BCQ restricts the action space by training a generative model to produce
only actions that were seen before [5]. Action sampling in BCQ forces the offline agent to stay close
to the previous behavioral policy. Both DKQ and BCQ in this experiment employed Double DQN
[28] for function approximation. The same neural network parameters were used in both methods. In
comparison to DKQ, there are two potential issues with applying approaches like BCQ in practice.
Training a model to emulate the behavioral policy may introduce additional approximation errors
and will increase computation time [7, 29]. Although certain choices of the generative model for
estimating behavioral policies, such as autoregressive models, have been shown to perform better,
they may be even slower and require extra engineering effort to speed up [7]. We examined those two
issues by evaluating the computation time and the performance of BCQ and DKQ with random action
sampling. We assess the performance using two off-policy evaluation estimators, namely weighted
importance sampling [30] and sequential doubly robust estimator [31].

6.2 Results

We used a small and simple dataset containing 30 episodes with an average of 325 transitions per
episode. We repeated both BCQ and DKQ 30 times with 100 epochs in each run. The output bias was
initialized to -100. We evaluated the wall time for every 100 epochs and the best-performing agent of
each run. As shown in Figure 2, the performances of BCQ and DKQ with random action sampling
are comparable for both weighted importance sampling and sequential doubly robust estimators.
However, DKQ with random action sampling is 4.5 times faster. The median computation time is
353 seconds and 77 seconds for BCQ and DKQ, respectively.
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Figure 2: Comparison between BCQ and DKQ with random action sampling using weighted
importance sampling and sequential doubly robust off-policy estimators.

Although the computation time depends on implementation and device, BCQ has been shown
previously to be much slower than DQN [29]. Given the substantial speed difference between BCQ
and DKQ with random action sampling on such a small and simple benchmark set, we expect
DKQ to be a more efficient offline RL framework than BCQ and similar methods in real-world
applications. Real-world data is more complex and scaling up is typically needed, but optimization
can be expensive. Further, companies usually have domain knowledge about their product and
services, which may help break the trade-off between training time and performance.

7 Conclusions

This paper aims to further bridge the gap between offline RL and broad real-world applications
in the presence of domain knowledge. We propose a framework, Domain Knowledge guided Q
learning (DKQ), that flexibly incorporates domain knowledge into offline policy learning. We not
only theoretically study the properties of DKQ in the tabular setting, but also provide a real-world case
study, which applies DKQ to help users with family tree building for the first time. The results show
that DKQ lowers the risk of overestimation on unseen data while preserving high offline performance.
A potential issue is that DKQ relies on domain knowledge, regardless of the knowledge quality.
Nevertheless, our findings suggest that DKQ is sound from the RL perspective and it is an effective
and efficient method for real-world applications where domain knowledge is readily available.
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A Proofs

A.1 Proof of Theorem 1

Proof. ∀Q1, Q2 : S ×A → R,
‖TFQ1 − TFQ2‖∞ (5)

= ‖r(s,a) + γEs′∼P (s′|s,a)
[ K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)
]

(6)

− r(s,a)− γEs′∼P (s′|s,a)
[ K∑
i=1

αi max
a′∈supp(fi)

Q2(s′,a′)
]
‖∞ (7)

= γmax
s,a

∣∣∣∣Es′∼P (s′|s,a)

[ K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q2(s′,a′)

]∣∣∣∣ (8)

≤ γmax
s,a

Es′∼P (s′|s,a)

[∣∣∣∣ K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q2(s′,a′)

∣∣∣∣] (9)

= γmax
s,a

Es′∼P (s′|s,a)

[∣∣∣∣ K∑
i=1

αi
(

max
a′∈supp(fi)

Q1(s′,a′)− max
a′∈supp(fi)

Q2(s′,a′)
)∣∣∣∣] (10)

≤ γmax
s,a

Es′∼P (s′|s,a)

[ K∑
i=1

αi

∣∣∣∣ max
a′∈supp(fi)

Q1(s′,a′)− max
a′∈supp(fi)

Q2(s′,a′)

∣∣∣∣] (11)

≤ γmax
s,a

Es′∼P (s′|s,a)

[ K∑
i=1

αi max
a′∈supp(fi)

∣∣∣∣Q1(s′,a′)−Q2(s′,a′)

∣∣∣∣] (12)

≤ γmax
s,a

Es′∼P (s′|s,a)

[ K∑
i=1

αi max
a′∈supp(fi)

‖Q1 −Q2‖∞
]

(13)

= γ

K∑
i=1

αi‖Q1 −Q2‖∞ (14)

= γ‖Q1 −Q2‖∞ (15)

Step (12) is because ∀g1, g2 : A → R, we have
|max

a
g1(a)−max

a
g2(a)| ≤ max

a
|g1(a)− g2(a)|. (16)

Specifically, denote a1 = arg maxa g1(a), a2 = arg maxa g2(a), then we have
max

a
|g1(a)− g2(a)| ≥ g1(a1)− g2(a1) ≥ g1(a1)− g2(a2) = max

a
g1(a)−max

a
g2(a) (17)

max
a
|g2(a)− g1(a)| ≥ g2(a2)− g1(a2) ≥ g2(a2)− g1(a1) = max

a
g2(a)−max

a
g1(a) (18)

Combine (17) and (18), we have (16).

Step (15) is because
∑K
i=1 αi = 1. Thus, TF is a contraction operator, and there exists a unique fixed

point denoted as Q*
F . And we have Q*

F = TFQ*
F .

A.2 Proof of Theorem 2

Proof.
Q*
F (s,a) = TFQ*

F (s,a) (19)

= r(s,a) + γEs′∼P (s′|s,a)
[ K∑
i=1

αi max
a′∈supp(fi)

Q*
F (s′,a′)

]
(20)

= r(s,a) + γEs′∼P (s′|s,a)Ea′∼π*
F (a′|s′)

[
Q*
F (s′,a′)

]
(21)
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Step (19) is because Q*
F is the fixed point of TF . In step (21), we get Ea′∼π*

F (a′|s′)
[
Q*
F (s′,a′)

]
=∑K

i=1 αi maxa′∈supp(fi)Q
*
F (s′,a′) from the definition of π*

F (·|s).

Thus Q*
F satisfies the Bellman expectation equation of policy π*

F . Because the Bellman expectation
operator has unique fixed point which is the action-value function of the policy, then Q*

F is the
action-value function of π*

F .

A.3 Proof of Lemma 1

Proof. ∀Q1, Q2 : S ×A → R such that ∀s ∈ S,a ∈ A, Q1(s,a) ≤ Q2(s,a), then we have

∀s ∈ S,a ∈ A,

T Q2(s,a)− TFQ1(s,a) (22)

= γEs′∼P (s′|s,a)
[

max
a′∈A

Q2(s′,a′)
]
− γEs′∼P (s′|s,a)

[ K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)
]

(23)

= γEs′∼P (s′|s,a)
[

max
a′∈A

Q2(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)
]

(24)

= γEs′∼P (s′|s,a)
[ K∑
i=1

αi max
a′∈A

Q2(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q1(s′,a′)
]

(25)

= γEs′∼P (s′|s,a)
[ K∑
i=1

αi
(

max
a′∈A

Q2(s′,a′)− max
a′∈supp(fi)

Q1(s′,a′)
)]

(26)

≥ γEs′∼P (s′|s,a)
[ K∑
i=1

αi
(

max
a′∈A

Q1(s′,a′)− max
a′∈supp(fi)

Q1(s′,a′)
)]

(27)

≥ 0 (28)

Step (25) is because
∑K
i=1 αi = 1 and αi ≥ 0.

Step (27) is because the Q1(s,a) ≤ Q2(s,a) (∀s,a).

In step (28), supp(fi) ⊆ A, thus ∀s′ ∈ S,maxa′∈AQ1(s′,a′) ≥ maxa′∈supp(fi)Q1(s′,a′).

Therefore, ∀s,a, TFQ1(s,a) ≤ T Q2(s,a).

A.4 Proof of Theorem 3

Proof. Let (T )n and (TF )n respectively denote applying T and TF by n times.

If for some n ∈ N, ∀s ∈ S,a ∈ A, (TF )nQ(s,a) ≤ (T )nQ(s,a), then we have

(TF )n+1Q(s,a) = TF ((TF )nQ(s,a)) (29)
≤ T ((T )nQ(s,a)) (30)

= (T )n+1Q(s,a), (31)

where (30) is from Lemma 1.

And because (TF )0Q(s,a) ≤ (T )0Q(s,a), through induction, we have that ∀s ∈ S,a ∈ A,∀n ∈ N,

(TF )nQ(s,a) ≤ (T )nQ(s,a). (32)

We know that limn→∞(TF )nQ = Q*
F and limn→∞(T )nQ = Q*. Thus, let n→∞ on both sides

of inequality (32), we get Q*
F (s,a) ≤ Q*(s,a) (∀s,a).
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A.5 Proof of Theorem 4

Proof. The proof is very similar to the proof of Theorem 3.5 of EMaQ [7]. According to the proof of
Theorem 1, ∀Q1, Q2, we have ‖TFQ1 − TFQ2‖∞ ≤ γ‖Q1 −Q2‖∞. Thus,

‖(TF )n+1Q− (TF )nQ‖∞ = ‖TF
(
(TF )nQ

)
− TF

(
(TF )n−1Q

)
‖∞

≤ γ‖(TF )nQ− (TF )n−1Q‖∞
≤ γ2‖(TF )n−1Q− (TF )n−2Q‖∞
. . . . . .

≤ γn‖(TF )Q−Q‖∞.

That is, ∀Q : S ×A → R, n ∈ N, we have

‖(TF )n+1Q− (TF )nQ‖∞ ≤ γn‖TFQ−Q‖∞. (33)

Similarly, ∀Q : S ×A → R, n ∈ N, we have

‖(T )n+1Q− (T )nQ‖∞ ≤ γn‖T Q−Q‖∞. (34)

Then we derive both parts of the bound separately. We will prove that ‖Q*
F − Q*‖∞ ≤

γ
1−γ

∑K
i=1 αi maxs ∆F,i(s) in Part 1, and prove ‖Q*

F − Q*‖∞ ≤ γ
1−γ

∑K
i=1 αi maxs ∆′F,i(s) in

Part 2.

Part 1: Proof of ‖Q*
F −Q*‖∞ ≤ γ

1−γ
∑K
i=1 αi maxs ∆F,i(s).

‖Q*
F −Q*‖∞ = ‖Q*

F − lim
n→∞

(T )nQ*
F‖∞ (35)

= ‖ lim
n→∞

(
Q*
F − (T )nQ*

F
)
‖∞ (36)

= ‖ lim
n→∞

n−1∑
k=0

(
(T )kQ*

F − (T )k+1Q*
F
)
‖∞ (37)

= ‖
∞∑
k=0

(
(T )kQ*

F − (T )k+1Q*
F
)
‖∞ (38)

≤
∞∑
k=0

‖(T )kQ*
F − (T )k+1Q*

F‖∞ (39)

≤
∞∑
k=0

γk‖Q*
F − T Q*

F‖∞ (40)

=
1

1− γ
‖Q*
F − T Q*

F‖∞ (41)

(42)

Step (35) is because limn→∞(T )nQ*
F = Q*. Step (40) is from (34).
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Then because Q*
F is the fixed point of TF ,

‖Q*
F −Q*‖∞ ≤

1

1− γ
‖Q*
F − T Q*

F‖∞ (43)

=
1

1− γ
‖TFQ*

F − T Q*
F‖∞ (44)

=
1

1− γ
max
s,a
|TFQ*

F (s,a)− T Q*
F (s,a)| (45)

=
1

1− γ
max
s,a

(
T Q*
F (s,a)− TFQ*

F (s,a)
)

(46)

=
1

1− γ
max
s,a

(
γEs′

[
max
a′∈A

Q*
F (s′,a′)

]
− γEs′

[ K∑
i=1

αi max
a′∈supp(fi)

Q*
F (s′,a′)

])
(47)

=
γ

1− γ
max
s,a

Es′
[

max
a′∈A

Q*
F (s′,a′)−

K∑
i=1

αi max
a′∈supp(fi)

Q*
F (s′,a′)

]
(48)

=
γ

1− γ
max
s,a

Es′
[ K∑
i=1

αi max
a′∈A

Q*
F (s′,a′)−

K∑
i=1

αi max
a′∈supp(fi)

Q*
F (s′,a′)

]
(49)

=
γ

1− γ
max
s,a

Es′
[ K∑
i=1

αi
(

max
a′∈A

Q*
F (s′,a′)− max

a′∈supp(fi)
Q*
F (s′,a′)

)]
(50)

=
γ

1− γ
max
s,a

K∑
i=1

αiEs′
[

max
a′∈A

Q*
F (s′,a′)− max

a′∈supp(fi)
Q*
F (s′,a′)

]
(51)

=
γ

1− γ
max
s,a

K∑
i=1

αiEs′
[
∆F,i(s

′)
]

(52)

≤ γ

1− γ
max
s′

K∑
i=1

αi∆F,i(s
′) (53)

≤ γ

1− γ

K∑
i=1

αi max
s′

∆F,i(s
′) (54)

In step (46), from Lemma 1, we have T Q*
F (s,a) ≥ TFQ*

F (s,a) (∀s,a).

Part 2: Proof of ‖Q*
F −Q*‖∞ ≤ γ

1−γ
∑K
i=1 αi maxs ∆′F,i(s).
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The proof follows a similar process as that of Part 1.

‖Q*
F −Q*‖∞ = ‖ lim

n→∞
(TF )nQ* −Q*‖∞ (55)

= ‖ lim
n→∞

(
(TF )nQ* −Q*)‖∞ (56)

= ‖ lim
n→∞

n−1∑
k=0

(
(TF )k+1Q* − (TF )kQ*)‖∞ (57)

= ‖
∞∑
k=0

(
(TF )k+1Q* − (TF )kQ*)‖∞ (58)

≤
∞∑
k=0

‖(TF )k+1Q* − (TF )kQ*‖∞ (59)

≤
∞∑
k=0

γk‖TFQ* −Q*‖∞ (60)

=
1

1− γ
‖TFQ* −Q*‖∞ (61)

=
1

1− γ
‖TFQ* − T Q*‖∞ (62)

=
1

1− γ
max
s,a
|TFQ*(s,a)− T Q*(s,a)| (63)

=
1

1− γ
max
s,a

(
T Q*(s,a)− TFQ*(s,a)

)
(64)

=
1

1− γ
max
s,a

(
γEs′

[
max
a′∈A

Q*(s′,a′)
]
− γEs′

[ K∑
i=1

αi max
a′∈supp(fi)

Q*(s′,a′)
])

(65)

=
γ

1− γ
max
s,a

Es′
[

max
a′∈A

Q*(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q*(s′,a′)
]

(66)

=
γ

1− γ
max
s,a

Es′
[ K∑
i=1

αi max
a′∈A

Q*(s′,a′)−
K∑
i=1

αi max
a′∈supp(fi)

Q*(s′,a′)
]

(67)

=
γ

1− γ
max
s,a

Es′
[ K∑
i=1

αi
(

max
a′∈A

Q*(s′,a′)− max
a′∈supp(fi)

Q*(s′,a′)
)]

(68)

=
γ

1− γ
max
s,a

K∑
i=1

αiEs′
[

max
a′∈A

Q*(s′,a′)− max
a′∈supp(fi)

Q*(s′,a′)
]

(69)

=
γ

1− γ
max
s,a

K∑
i=1

αiEs′
[
∆′F,i(s

′)
]

(70)

≤ γ

1− γ
max
s′

K∑
i=1

αi∆
′
F,i(s

′) (71)

≤ γ

1− γ

K∑
i=1

αi max
s′

∆′F,i(s
′) (72)

Therefore, by combining Part 1 and 2, we get

‖Q*
F −Q*‖∞ ≤

γ

1− γ
min

( K∑
i=1

αi max
s

∆F,i(s),

K∑
i=1

αi max
s

∆′F,i(s)

)
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A.6 Proof of Theorem 5

Proof. This theorem has a similar form as that of Theorem B.1 of [21], except that the operator
analyzed in this paper is TF . The proof also follows a similar process. Specifically, ∀n ∈ N,

‖Q̂(n+1)
F −Q*

F‖∞ = ‖Q̂(n+1)
F − TF Q̂(n)

F + TF Q̂(n)
F −Q

*
F‖∞ (73)

≤ ‖Q̂(n+1)
F − TF Q̂(n)

F ‖∞ + ‖TF Q̂(n)
F −Q

*
F‖∞ (74)

≤ δ + ‖TF Q̂(n)
F −Q

*
F‖∞ (75)

= δ + ‖TF Q̂(n)
F − TFQ

*
F‖∞ (76)

≤ δ + γ‖Q̂(n)
F −Q

*
F‖∞ (77)

Now we prove that

‖Q̂(n+1)
F −Q*

F‖∞ ≤
n∑
k=0

δγk + γn+1‖Q̂(0)
F −Q

*
F‖∞. (78)

From (77), let n = 0, we get the base case

‖Q̂(1)
F −Q

*
F‖∞ ≤ δ + γ‖Q̂(0)

F −Q
*
F‖∞. (79)

If (78) holds for n = n′, and from (77),

‖Q̂(n′+1+1)
F −Q*

F‖∞ ≤ δ + γ‖Q̂(n′+1)
F −Q*

F‖∞ (80)

≤ δ + γ

( n′∑
k=0

δγk + γn
′+1‖Q̂(0)

F −Q
*
F‖∞

)
(81)

≤
n′+1∑
k=0

δγk + γ(n
′+1)+1‖Q̂(0)

F −Q
*
F‖∞ (82)

Thus, (78) also holds for n = n′+ 1. Combining this with the base case (79), we have that (78) holds
for all n ∈ N.

Then, let n→∞ on both sides of (78), we have

lim
n→∞

‖Q̂(n)
F −Q

*
F‖∞ ≤

δ

1− γ
. (83)

B Parameters in Case Study

We set equal weight to each piece of the knowledge, specifically, in Table 1.
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Table 2: Parameter setting in domain knowledge

Experiment name α

1 Ten recently interacted nodes [1, 0, 0, 0]
2 Around recently interacted nodes [0, 1, 0, 0]
3 Three generations around me-person [0, 0, 1, 0]
4 Direct relatives [0, 0, 0, 1]
5 Ten recently interacted nodes OR Around recently interacted nodes [0.5, 0.5, 0, 0]
6 Ten recently interacted nodes OR Three generations around me-person [0.5, 0, 0.5, 0]
7 Ten recently interacted nodes OR Direct relatives [0.5, 0, 0, 0.5]
8 Around recently interacted nodes OR Three generations around me-person [0, 0.5, 0.5, 0]
9 Around recently interacted nodes OR Direct relatives [0, 0.5, 0, 0.5]

10 Three generations around me-person OR Direct relatives [0, 0, 0.5, 0.5]
11 Ten recently interacted nodes OR Around recently interacted nodes OR

Direct relatives
[0.33, 0.33, 0, 0.33]

12 All nodes N/A
13 Last interacted node (baseline) N/A
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