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Abstract

The discovery of reusable sub-routines simplifies decision-making and planning in
complex reinforcement learning problems. Previous approaches propose to learn
such temporal abstractions in a purely unsupervised fashion through observing
state-action trajectories gathered from executing a policy. However, a current
limitation is that they process each trajectory in an entirely sequential manner,
which prevents them from revising earlier decisions about sub-routine boundary
points in light of new incoming information. In this work we propose SloTTAr, a
fully parallel approach that integrates sequence processing Transformers with a Slot
Attention module for learning about sub-routines in an unsupervised fashion. We
demonstrate how SloTTAr is capable of outperforming strong baselines in terms of
boundary point discovery, while being up to 30x faster on existing benchmarks.

1 Introduction

An intelligent goal-seeking agent situated in the real world should make decisions along various
timescales to act and plan efficiently. A natural approach that facilitates this behavior is via a divide-
and-conquer strategy, where goals are decomposed along sub-goals, and solutions to such sub-goals
(i.e. ‘correct’ sequences of actions) are stored as reusable ‘primitive’ sub-routines [9, 4, 35]. Viewing
complex goal-directed behavior as (novel) compositions of known sub-routines simplifies both
decision-making and planning [36, 43], while also benefiting out-of-distribution generalization [32].

The options framework [42] introduced a design strategy for the hierarchical organization of behavior
within the context of reinforcement learning. Crucial to its success is the quality of each ‘option’
(or sub-routine) in terms of the level of modularity and reusability it offers. Consider for example,
the task of planning a travel itinerary to go from London to New York. Useful sub-routines in
this context may include purchasing flight tickets, navigating to the airport, or boarding the flight.
This factorization into sub-routines is desirable as these sub-routines capture mostly self-contained
activities. Thus they are far more likely to apply to other travel plans between two different cities,
which may again involve taking flights, etc.

Prior approaches propose to address this issue by learning about useful sub-routines directly from
data [2, 37, 23, 27]. Of particular interest is the fully unsupervised setting, where the learner is
only given access to state-action trajectories from an (expert) policy. Two relevant works can
be distinguished: CompILE [23] and OMPN [27]. In CompILE expert trajectories are modeled
using an RNN-based latent variable model that infers a pre-determined number of boundary points
by iteratively processing the entire trajectory multiple times to recover segments associated with
reusable sub-routines. Alternatively, OMPN equips an RNN with a multi-layer hierarchical memory,
where information processing at different levels in the memory can be interpreted as belonging to
separate segments. While OMPN additionally includes a strong preference for capturing hierarchical
relationships between different sub-routines, both methods are limited insofar they process the

Workshop on Offline Reinforcement Learning, NeurIPS 2021



Figure 1: SloTTAr comprises of 3 modules: learning spatio-temporal features of action-observation
sequences (TransformerEnc), learning a similarity-based grouping of actions to their respective
sub-routines through computing slot-based representations (Slot Attention [26]), and decoding slots
to end positions and action segments of the sub-routine they capture (Decoder).

trajectory in an entirely sequential manner. This prevents them from revising earlier decisions
about boundary points in light of new information that becomes only accessible at a future stage.
Moreover, iteratively processing the sequence multiple times (as in CompILE) or interfacing with a
deep hierarchical memory (as in OMPN) incurs significant computational costs (Table 2).

In this paper we propose a novel architecture to learning sub-routines that addresses these short-
comings, which we call Slot-based Transformer for Temporal Abstraction (SloTTAr). Central to
our approach is the similarity between the spatial grouping of pixels into visual objects and the
temporal grouping of state-action pairs into self-contained sub-routines. This motivates us to combine
a parallel Transformer encoder with a Slot Attention module [26] (developed for learning object
representations [16]), to group learned features at different temporal positions and recover a modular
factorization into ‘slots’ (sub-routines) of the inputs. A parallel Transformer decoder reconstructs the
action sequence from each slot and outputs an unnormalized distribution over endpoints. From these,
the segment belonging to each sub-routine and a standard reconstruction objective for unsupervised
training can be derived. We demonstrate the efficacy of our approach on Craft [27] and MiniGrid [6]
where we typically observe significant improvements over CompILE and OMPN in terms of recov-
ering ‘ground-truth’ sub-routines. In this way, we show how general principles of similarity-based
grouping used to segment visual inputs into objects [40, 25, 24, 16] are also relevant for grouping
other input modalities [33].

2 Method

Given an input sequence of actions a = [a1, a2, ..., aL] : al ∈ {1, .., A} where A is the size of
the action space and observations o = [o1,o2, ...,oL] : ol ∈ RDobs of length L. Our goal is
to infer the unique constituent latent sub-routine to which a pair of (al,ol) belongs and learn its
associated representation (slot_k ∈ RDslots ). Similar to CompILE [23], we consider an unsupervised
reconstruction objective for training, yet here we strive for a fully parallel approach that employs
more general-purpose modules for grouping inputs based on their internal predictive structure.

Our model, SloTTAr, consists of three modules, as shown in Figure 1. First, a Transformer en-
coder [44] learns suitable spatio-temporal features from the input sequences a, o. This encoder
benefits from global access to the whole input sequence to learn suitable context features at each
location, unlike prior purely sequential RNN-based approaches [23, 27]. Subsequently, we use a Slot
Attention module [26] to iteratively group the features at each temporal location in parallel based on
their internal predictive structure and obtain K slot representations slot_k. The slot representations
are decoded in parallel by a decoder that outputs both a predicted actions â(k) and an unnormalized
distribution over the end position of the sub-routine modelled by the respective slot (end_logits_k).
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Algorithm 1 Our implementation of the Slot Attention update [26].
Inputs: inputs ∈ RL×Din, slots where slot_k ∼ N (µk, diag(σk)) ∈ RDslots ∀k ∈ K
Params: Linear projections for attention: key, query, value; GRU; MLP; LayerNorm x2

1: for t = 0, 1, ..., T do
2: slots_prev = slots
3: slots = LayerNorm(slots)
4: attn = Softmax( 1√

Dslots
key(inputs)· query(slots)T, axis=‘slots’) . norm.

5: updates := WeightedSum(weights=attn, values=value(inputs)) . aggregate
6: slots = GRU(state=slots_prev, inputs=updates) . GRU update (per-slot)
7: slots += MLP(LayerNorm(slots)) . residual update (per-slot)
8: end for
9: return slots

Sub-routine segment masks are generated from the unnormalized distributions to compute the aggre-
gated action sequence logits â. Finally, a reconstruction objective between â and a can be defined.

Encoder. We process action tokens a and observations o by Embedding and Linear layers re-
spectively to acquire separately learned distributed representations for each. Next, we learn a joint
representation of the action and observation representations at each position using an MLP, after which
a sinusoidal positional encoding psin

l ∈ RDenc is added [44]. Finally, we apply a number of standard
Transformer encoder layers to learn suitable spatio-temporal features based on the content of the
entire sequence and add a learned positional encoding plearn ∈ RDenc for follow-up processing:

zal , z
o
l = Embedding(al), Linear(ol) zaol = MLP(concat(zal , z

o
l )) ∀ l ∈ L

h = TransformerEnc(zao + psin) + plearn

Slot Attention. We use Slot Attention [26] to group these spatio-temporal features according to their
constituent sub-routines and learn associated representations given by the slots. Slot Attention was
previously only applied to the visual setting where pixels are grouped according to constituent visual
objects to model images. Here we hypothesize that sub-routines take on a similar role as modular and
reusable primitives when modeling action sequences, suggesting that they similarly can be inferred
using a grouping mechanism that focuses on their internal predictive structure (modularity) [16].

The iterative grouping mechanism in Slot Attention (reproduced in Algorithm 1) is implemented via
key-value attention and a stateful slot update rule using a recurrent neural network (GRU [7], see also
earlier work [12]). The input features are projected to keys and values using linear layers key(·),
value(·), queries are computed from slots using a linear layer query(·), and dot-product attention
between keys and queries is used to distribute value vectors among the slots. Initial representations
for each slot (slot_k) are sampled from a GaussianN (µk, diag(σk)). Importantly, slots compete to
represent parts of the input sequence via a Softmax over slots, thereby encouraging a decomposition
of the input into modular parts that can be processed separately and represented efficiently. Unlike
the original Slot Attention formulation, we use separate shift and scaling parameters (µk and σk)
for each slot, which allows for ordering them as later needed by the decoder. Finally, we replaced
the WeightedMean (line 9 in Algorithm 3 in Appendix A.3), which we found to lead to more stable
training and better performance.

Decoder. To decode the slot representations and obtain a correspondence of actions in a to their
constituent sub-routine segments, we adapt the spatial broadcast decoder architecture [45] to the
sequential setting using Transformers. Each slot representation is decoded in parallel to obtain the
predicted action logits â(k) as well as an unnormalized distribution over the end position of the
sub-routine in the sequence (end_logits_k). The latter is used to generate the segment masks
corresponding to each sub-routine as described in Algorithm 2. We enforce temporal contiguity of
the segment modeled by each slot and use a fixed ordering to compose them, which is different from
the standard mixture formulation adopted by prior work on discovering visual objects [15, 14, 26].
This has a similar effect to the sequential decoding in CompILE [23] and provides a useful inductive
bias for treating sub-tasks as contiguous chunks in time that can be ordered along the temporal axis.
The entire system is trained end-to-end to minimize the cross-entropy loss between the aggregated
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Table 1: F1 scores and alignment accuracies on Craft [27] (fully & partially observable) and on the
partially observable Doorkey-8x8 environment from MiniGrid [6]. F1 scores are computed with
tolerance=1 consistent with [27]. * We observed that 4 of the 5 seeds for the OMPN-2 failed to train
stably and loss resulted in NaNs despite only making changes the memory hierarchy depth.

Craft (fully) Craft (partial) DoorKey-8x8 (partial)

F1 score Align. acc. F1 score Align. acc. F1 score Align. acc.

CompILE 83.03 (3.06) 86.60 (0.46) 71.99 (13.38) 69.27 (15.48) 50.58 (4.01) 72.88 (2.58)
OMPN 96.80 (2.10) 95.98 (2.37) 92.10 (2.81) 89.10 (3.05) 41.10 (12.13) 56.61 (5.15)
OMPN-2 96.34 (1.12) 95.26 (2.85) 90.41 (3.23) 84.18 (3.37) 30.24* 52.81*

SloTTAr 99.58 (0.55) 99.47 (0.49) 80.41 (3.17) 82.11 (3.01) 94.77 (3.88) 94.51 (2.84)

predicted action logits
∑

k mask_k · â(k) and the ground-truth a. For additional details on the model
architecture please refer to Appendix A.3.

Algorithm 2 Mask Generation
Inputs: end_logits ∈ RK×L, masks = [], end_cdf_k = 1, mask_upto_km1 = 0

1: for k = 1, ...,K do
2: end_dist_k = Softmax(end_logits_k, axis=‘L’) . norm. over sequence length
3: end_cdf_k = CumSum(end_dist_k, axis=‘L’) . end position CDF
4: mask_k = mask_upto_k * (1 - mask_upto_km1) . compute kth mask.
5: masks = Append(masks, mask_k) . append kth mask
6: end for
7: return masks

3 Additional Related Work

The Craft environment was originally introduced to evaluate the method of Andreas et al. [2], however
they rely on annotations of sub-routine sequences (‘policy sketches’) as additional supervision to the
model. TACO [37] was also proposed to address this setting, but views it as a sequence alignment and
classification problem using an LSTM [18] trained with a CTC loss [13]. In other recent work [1] the
primitives are learned directly from offline data for continuous control. However, these methods [1]
learn a continuous (low-dimensional) space of primitives whereas our method represents primitives
as a discrete set.

In the context of the options framework, several methods have been proposed for option and/or
sub-goal discovery [3, 28, 29, 41, 8, 39, 38]. However, these methods are not easily extendable to
the case with highly nonlinear function approximation. Alternatively, other methods using nonlinear
function approximation seek to maximize coverage (diversity) of learned skills by maximizing the
mutual information between options and terminal states achieved by their execution [17, 11].

Many recent works have applied Transformers to modalities beyond natural language, such as images
[10, 46], and other high-dimensional input domains [21, 20]. The application of Transformers to
reinforcement learning has also recently received a lot of interest [31, 34, 22, 5, 19].

4 Experiments

We compare SLoTTAr to CompILE [23] and OMPN [27] on the partially and fully observable versions
of Craft environment [27] and on a partially observable environment in MiniGrid [6]. Here our focus
is on the fully unsupervised setting without the use of task sketches as an auxiliary supervision [2, 37].
We use 3 tasks in the Craft environment namely, MakeAxe, MakeBed, MakeShears consistent with
prior work [27]. In MiniGrid we use the DoorKey-8x8 environment. Episodes in this environment
are procedurally generated leading to far greater variability for actions that constitute a sub-routine
compared to Craft. Further in the DoorKey-8x8 environment, two actions (‘PICKUP’ or ‘TOGGLE’)
are used to determine sub-routine boundaries as opposed to in Craft where this is marked by only a
single ‘USE’ action.
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Table 2: Number of tokens (in thousand) processed per-second during training and testing on a single
Nvidia GTX 1080Ti GPU card. These numbers are computed on the fully observable Craft task using
a batch size of 128 and a sequence length of 65 tokens. The number of segments is 4. OMPN and
OMPN-2 use 3 and 2 levels of memory hierarchy respectively.

Train Test

CompILE 14 36
OMPN 3 7
OMPN-2 4 10

SloTTAr 92 226

Evaluation. To quantitatively measure the quality of the action sequence decomposition, we use
the F1 score (with a tolerance=1) based on the accuracy of the boundary index predictions with
respect to ground-truth. Further, we also report the alignment accuracy between the predicted and
ground-truth sub-routines consistent with prior work [27]. Please refer to Appendix A.1 for further
details on how ground truth sub-routine boundaries are computed.

Hyperparameter Search. Below we report results after conducting an extensive hyperparameter
search (up to 200 configurations) for each method. We include training parameters like batch size and
learning rate, capacity parameters like layer sizes, and model-specific parameters such as the number
of Slot Attention iterations in case of SloTTAr. Results are reported for the best configurations with
mean and std. dev. computed over 5 seeds. Details about the search parameters for each method,
including details about the best configurations can be found in Appendix A.3.

Results. Table 1 shows the results of comparing SloTTAr to both baselines on all three environments.
On the fully observable Craft tasks, it can be seen how SLoTTAr outperforms both CompILE
and OMPN. Similarly, on the partially observable settings in Craft, it can be seen how SloTTAr
outperforms CompILE, although this time it performs worse compared to OMPN. We speculate how
the strong hierarchical inductive bias in OMPN gives it an edge in this setting, which closely reflects
the hierarchical sub-task structure in Craft. Indeed, when we only consider OMPN configurations
having two levels of memory (OMPN-2) it can be observed how the difference in alignment accuracy
to the best performing configuration reduces1. Finally, on the harder DoorKey-8x8 partially observable
environment, it can observed how SloTTAr significantly outperforms both CompILE and OMPN in
terms of both metrics. These results demonstrate the strengths of our approach and suggest that a
fully parallel approach to computing sub-routine boundary points is highly beneficial.

Another added advantage of using a parallel architecture is the potential gain in computational
complexity. Table 2 reports the number of tokens processed per-second during training (forward and
backward passes) and at testing time (forward pass) for each model. It can be seen how SloTTAr
is about 7x faster compared to CompILE and about 30x faster compared to the OMPN model,
suggesting that it also may scale better to more sophisticated environments. Reducing the memory
depth in case of OMPN only yields a marginal improvement.

5 Conclusion

We have proposed a novel approach to learning action segments belonging to modular sub-routines
(suitable as ‘options’ [42]) in a purely unsupervised fashion. Our approach draws insight from prior
literature on learning about visual objects [26] and Transformers [44] to improve over existing purely
sequential approaches. It was shown how SloTTAr outperforms CompILE and OMPN in terms
of recovering ground-truth sub-routine segments and provides a massive speed-up by leveraging
parallel computation over the time axis. To that extent we demonstrated how general principles of
similarity-based grouping used to segment visual inputs are also relevant for grouping other input
modalities, suggesting many additional avenues for future research.

1The best configuration for OMPN in Table 1 was obtained when using 3 levels of hierarchy depth (Table 9).
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A Experimental Details

A.1 Datasets

Craft The craft environment was initially introduced and re-implemented as a gym environment
[2, 27]. Demonstration data is collected from the rollouts of the heuristic bots [27]. We use rollouts
from each of the 3 tasks MakeAxe, MakeBed and MakeShears for both the fully observable and
partial observable versions of these environments [27] to report the results in Table 1. We use 10 000
trajectories for training and another separate 1000 trajectories each for creating validation and test
splits. These are used for hyperparameter tuning and reporting evaluation metrics respectively.

MiniGrid We use the DoorKey-8x8 environment from MiniGrid [6] as an additional dataset. This
environment uses procedural generation for each episode ensuring more variability in the action
sequences that make up a sub-routine in comparison to Craft. We collect demonstration data by
training an A2C agent [30] on this environment until the policy receives an episodic return of ≥ 0.9,
which is close to optimal. We use 10 000 rollouts collected from this “expert” A2C agent [30] as the
training set and 1000 rollouts each for the validation and test splits used to tune hyperparameters and
report evaluation metrics respectively.

Ground-truth segment generation For the Craft environment, the ‘USE’ action serves as a delim-
iter that marks the end of sub-routines. In DoorKey-8x8 environment, the ‘PICKUP’ and ‘TOGGLE’
actions serve as delimiters. We extract the ground-truth boundaries of sub-routines using the indices
of these action tokens in the sequences as markers. Ground-truth sub-routine indices for every
sequence are in ascending order from left-to-right where delimiting points are specified using the
heuristics described above. Table 3 shows the ground-truth sub-routines for each of the environments.

Table 3: Ground-truth sub-routines for Craft [27] (fully & partially observable) and Doorkey-8x8
environment from MiniGrid [6].

MakeAxe get wood, make at workbench, get iron, make at toolshed
MakeBed get wood, make at toolshed, get grass, make at workbench
MakeShears get wood, make at workbench, get iron, make at workbench
DoorKey-8x8 pickup key, open door, go to green goal

A.2 Evaluation Metrics

Evaluation metrics used to quantitatively measure the segmentation performance of models are the
alignment accuracy of sub-routine prediction and F1 score of boundary index prediction and is
consistent with prior work [27, 23].

Alignment Accuracy The expression to compute alignment accuracy is shown below:

Align Acc. =
1

L ∗N

L∑
l

N∑
n

1(ŝnl = snl )

where L is the sequence length (possibly different for each sequence), N is the number of sequences,
ŝl is the predicted sub-routine and sl is the ground-truth sub-routine of action al in the nth sequence.

F1 Score The F1 score on predicted boundary indices is computed as shown below:

F1 score =
2× precision× recall

precision + recall
where precision is computed as,

precision =
# matches of boundary predictions with ground-truth

total # boundary predictions
and recall is computed as,

recall =
# ground-truth matches with predictions

total # ground-truth boundaries
Please refer to the Appendix D.1. in prior work [23] for further details.
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Algorithm 3 Original Slot Attention update [26].
Inputs: inputs ∈ RL×Din, slots where slot_k ∼ N (µ, diag(σ)) ∈ RDslots ∀k ∈ K
Params: Linear projections for attention: key, query, value; GRU; MLP; LayerNorm x2

1: for t = 0, 1, ..., T do
2: slots_prev = slots
3: slots = LayerNorm(slots)
4: attn = Softmax( 1√

Dslots
key(inputs)· query(slots)T, axis=‘slots’) . norm.

5: updates := WeightedMean(weights=attn, values=value(inputs)) .
re-normalizing attn values over L

6: slots = GRU(state=slots_prev, inputs=updates) . GRU update (per-slot)
7: slots += MLP(LayerNorm(slots)) . residual update (per-slot)
8: end for
9: return slots

A.3 Architecture and Training Details

Input Processing The Embedding layer used (Section 2) maps action tokens al toDenc dimensions
(denoted by hidden size in Table 4 and Table 5). The Linear layer used (Section 2) maps observations
ol toDenc dimensions. TheseDenc dimensional action and observation features are then concatenated
and processed by a 1-layer MLP with Denc units and ReLU activation to learn a joint action-
observation embedding space.

Encoder The Linear layers used in self-attention have Denc units in the TransformerEnc block.
The pointwise feedforward network used in the TransformerEnc uses 2x the number of units
as hidden size. We add the standard sinusoidal positional encoding psin [44] to the joint action-
observation features zao. Further, we use a Linear layer to generate the learned positional encoding
plearn that is added to the outputs h from the TransformerEnc module. The final and sweep
configuration(s) for each of these hyperparameters are shown in Table 4 and Table 5 respectively. The
overall TransformerEnc block uses the same architectural template as the Transformer Encoder
[44].

Slot Attention The slot attention module uses Linear layers with Dslots units to generate keys
and values. The recurrent update function is implemented using a GRU [7] (see also earlier work [12])
withDslots units (denoted by slot size in Table 5 and Table 4). The MLP network used for the residual
update is implemented using a 2-layer network with Dslots units and ReLU and Linear activation for
the hidden layer and output layers respectively. Futher, the initial query vector for slot_k is sampled
from a Gaussian distribution with learnable mean µk and standard-deviation σk.

For reference Algorithm 3 describes the original Slot Attention update [26].

Decoder The decoder architecture adapts the spatial broadcast decoder [45] in a suitable manner to
decode all slots into their corresponding action segments. We broadcast the slot representations along
the sequence length L and pass the observations ol as inputs at each timestep to the Decoder. The
Decoder module has the exact same architecture as the Transformer Encoder with the exception that
an additional output Linear layer of A+ 1 (where A is the size of action space) dimensions is used
to decode the slot representations into predicted action logits and the end position logits. Segment
masks are computed given end position logits as shown in Algorithm 2. Then we composite segment
masks and predicted action logits to generate the full predicted action sequence.

We perform a random search of 200 hyperparameter configurations from all possible configurations
in the hyperparameter sweeps shown in Table 4 on 3 seeds. We train our model for 50 epochs on
Craft (fully-observable) and 100 epochs for both the Craft (partially-observable) and DoorKey-8x8
environments. We observed that our models start overfitting on the training set beyond this point.
Then, we picked the best performing configuration(s) for each of the 3 environments for our model
based on the evaluation metrics on the validation set and run them again on 5 seeds to report final
scores (shown in Table 1).

The final configurations used for our model are shown in Table 5.
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Table 4: Hyperparameter sweep configurations for SloTTAr for Craft [27] (fully & partially observ-
able) and Doorkey-8x8 environment from MiniGrid [6].

SloTTAr Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size [64, 128, 256] [64, 128, 256] [64, 128, 256]
hidden size [32, 64, 128] [32, 64, 128] [32, 64, 128]
number of heads [4, 8, 16] [4, 8, 16] [4, 8, 16]
slot size [32, 64, 128] [32, 64, 128] [32, 64, 128]
slot std_dev [1.0, 2.0] [1.0, 2.0] [1.0, 2.0]
number of iterations [1, 2] [1, 2] [1, 2]
learning rate [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3] [2.5e-4, 5e-4 1e-3]

Table 5: Final hyperparameter configurations for SloTTAr for Craft [27] (fully & partially observable)
and Doorkey-8x8 environment from MiniGrid [6].

SloTTAr Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size 128 128 128
hidden size 64 128 64
number of heads 8 16 16
number of layers 1 1 1
slot size 64 64 64
slot std_dev 1.0 2.0 1.0
number of iterations 1 1 1
number of slots 4 4 3
optimizer Adam Adam Adam
learning rate 0.0005 0.00025 0.00025

A.4 Baseline Models and Training Details

We developed our re-implementations of CompILE 2 and OMPN 3 by adapting the authors’ imple-
mentations available on GitHub. We perform a random search of 200 hyperparameter configurations
from all possible configurations in the hyperparameter sweeps shown in Table 7 and Table 8 for each
of the 3 environments and both baseline models (CompILE and OMPN) with 3 seeds. Then, we
picked the best performing configuration(s) based on their evaluation metrics on the validation set
from this sweep. We run these best performing configuration(s) on 5 seeds to obtain all results shown
in Table 1. We train CompILE and OMPN models for 30 and 20 epochs respectively as we observed
that these models start overfitting on the training set beyond this point. We checkpoint models during
the course of training based on their evaluation metric scores on the validation set. We use the best
checkpoints to report the final scores shown in Table 1 for all the baseline models.

The final configurations used for the baseline models on the 3 environments are shown in Table 6 and
Table 9.

2https://github.com/tkipf/compile
3https://github.com/Ordered-Memory-RL/ompn_craft
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Table 6: Final hyperparameter configurations for CompILE for Craft [27] (fully & partially observ-
able) and DoorKey-8x8 environment from MiniGrid [6].

CompILE Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size 128 128 64
beta_b 0.1 0.1 0.001
beta_z 0.1 0.1 0.001
prior rate 3 3 2
hidden size 128 128 128
latent dist. “gaussian” “gaussian” “gaussian”
latent size 128 128 128
number of segments 4 4 3
optimizer Adam Adam Adam
learning rate 0.00025 0.00025 0.00025

Table 7: Hyperparameter sweep configurations for CompILE for Craft [27] (fully & partially observ-
able) and Doorkey-8x8 environment from MiniGrid [6].

CompILE Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size [64, 128, 256] [64, 128, 256] [64, 128, 256]
beta_b = beta_z [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1]
hidden size [64, 128] [64, 128] [64, 128]
latent dist. [“gaussian”, “concrete”] [“gaussian”, “concrete”] [“gaussian”, “concrete”]
latent size [64, 128] [64, 128] [64, 128]
learning rate [5e-5, 2.5e-4 1e-3] [5e-5, 2.5e-4 1e-3] [5e-5, 2.5e-4 1e-3]
prior rate [2, 3, 4] [2, 3, 4] [2, 3, 4]

Table 8: Hyperparameter sweep configurations for OMPN for Craft [27] (fully & partially observable)
and Doorkey-8x8 environment from MiniGrid [6].

OMPN Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size [64, 128, 256] [64, 128, 256] [64, 128, 256]
hidden size [64, 128] [64, 128] [64, 128]
learning rate [2e-4, 5e-4 1e-3] [2e-4, 5e-4 1e-3] [2e-4, 5e-4 1e-3]
number of slots [2, 3] [2, 3] [2, 3]
max. gradient norm [0.5, 1.0, 2.0] [0.5, 1.0, 2.0] [0.5, 1.0, 2.0]

Table 9: Final hyperparameter configurations for OMPN for Craft [27] (fully & partially observable)
and Doorkey-8x8 environment from MiniGrid [6].

OMPN Craft (fully) Craft (partial) MiniGrid (DoorKey-8x8)

batch size 128 128 128
hidden size 128 128 128
number of slots 3 3 3
number of segments 4 4 3
max. gradient norm 0.5 0.5 1.0
optimizer Adam Adam Adam
learning rate 0.0002 0.0002 0.0002
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