Modern Hopfield Networks for Sample-Efficient
Return Decomposition from Demonstrations

Michael Widrich* Markus Hofmarcher*

ELLIS Unit Linz and LIT AI Lab ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning Institute for Machine Learning
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria

Vihang Patil Angela Bitto-Nemling
ELLIS Unit Linz and LIT AI Lab ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning Institute for Machine Learning
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria
Sepp Hochreiter'*

TELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning
Johannes Kepler University Linz, Austria
*Institute of Advanced Research in Artificial Intelligence (IARAI)

Abstract

Delayed rewards, which are separated from their causative actions by irrelevant
actions, hamper learning in reinforcement learning (RL). Especially real world
problems often contain such delayed and sparse rewards. Recently, return decom-
position for delayed rewards (RUDDER) employed pattern recognition to remove
or reduce delay in rewards, which dramatically simplifies the learning task of the
underlying RL method. RUDDER was realized using a long short-term memory
(LSTM). The LSTM was trained to identify important state-action pair patterns,
responsible for the return. Reward was then redistributed to these important state-
action pairs. However, training the LSTM is often difficult and requires a large
number of episodes. This can be especially problematic in real-world and offline
RL settings with limited numbers of episodes. In this work, we replace the LSTM
with the recently proposed continuous modern Hopfield networks (MHN) and
introduce Hopfield-RUDDER. MHN are powerful trainable associative memories
with large storage capacity. They require only few training samples and excel at
identifying and recognizing patterns. We use this property of MHN to identify
important state-action pairs that are associated with low or high return episodes
and directly redistribute reward to them. However, in partially observable envi-
ronments, Hopfield-RUDDER requires additional information about the history
of state-action pairs. Therefore, we evaluate several methods for compressing
history and introduce reset-max history, a lightweight history compression using
the max-operator in combination with a reset gate. We experimentally show that
Hopfield-RUDDER is able to outperform LSTM-based RUDDER on various 1D
environments with small numbers of episodes. Finally, we show in preliminary
experiments that Hopfield-RUDDER scales to highly complex environments with
the Minecraft ObtainDiamond task from the MineRL NeurIPS challenge.

* Authors contributed equally

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021

Introduction

Recent advances in reinforcement learning (RL) have resulted in impressive models that are capable
of surpassing humans in games [30, 18, 27]. However, RL is still waiting for its breakthrough in
real world applications, which are often characterized by delayed and sparse rewards [7]. Delayed
rewards are given later than their causative action, separated by irrelevant state-action pairs [28]. This
delay hampers and slows down learning [2, 21, 17]. Recently, [2] propose return decomposition for
delayed rewards (RUDDER) to use pattern recognition to detect the causative actions, which can
be used to remove or alleviate these delays. As a consequence, RUDDER dramatically simplifies
and speeds up learning of the underlying RL algorithms. RUDDER can be realized in different ways,
including a long short-term memory (LSTM) [10] in [2] or sequence alignment in [19].

But these realizations of RUDDER come with drawbacks. LSTMs require a large number of samples,
while sequence alignment is difficult to scale to large state-action spaces. Thus, there is a need for
scalable and sample efficient realization of RUDDER, especially in settings with limited numbers of
episodes, such as in real world applications and offline RL.

A key idea of RUDDER is to identify important patterns in the state-action sequence. This is a task
that associative memories, such as the recently introduced continuous modern Hopfield networks
(MHN) [23], excel at. In this work, we introduce Hopfield-RUDDER, a realization of RUDDER
based on MHN to identify important state-action pairs. We show that Hopfield-RUDDER is scalable
and can reduce the reward delay even with a small number of samples.

In related work, adapted Transformer [29] architectures, which share characteristics of MHN, for
RL have been proposed. In [6], RL is reformulated as a conditional sequence modelling task for
offline RL that can be learned by a Decision Transformer. [14] uses a linear Transformer [15] as an
outer-product-based fast-weight programmer [24, 25]. However, in contrast to Hopfield-RUDDER,
these approaches require large amounts of data, as they are based on Transformer architectures.
Furthermore, Hopfield-RUDDER can speed up any learning algorithm that relies on a delayed reward
signal.

Our main contributions are: We (i) introduce modern Hopfield networks for return decomposition
for delayed rewards (Hopfield-RUDDER), (ii) propose and compare different methods, such as
reset-max history, for history compression for Hopfield-RUDDER in POMDP environments, (iii)
show that Hopfield-RUDDER outperforms LSTM-based RUDDER on 1D environments with small
numbers of samples, and (iv) perform preliminary experiments in the MineRL Minecraft environment
indicating that Hopfield-RUDDER scales to large and complex environments.

Review

We define our setting as a finite Markov decision process (MDP) or a finite partially observable Markov
decision process (POMDP) to be a 4-tuple of (S, A, R, p) of finite sets 8 with states s (random variable
S; at time t), A with actions a (random variable A; at time t), R with rewards r (random variable R;
at time ¢), and state-reward transition distribution p(Si+1 = S¢41, Riv1 = ¢ | St = 8¢, A = ay).
The return of a sequence of length 7" at time ¢ = {1,...,7T} is defined as g; = Zfz_g Tiik-

RUDDER. Complex tasks are often hierarchically composed of sub-tasks. Hence, the Q-function of
an optimal policy often resembles a step function [2]. Such steps indicate patterns like achievements,
failures, accomplished sub-tasks, or changes of the environment. RUDDER reduces the delay in
the rewards by identifying these patterns and moving (redistributing) the rewards to the causative
state-action patterns. [2] propose an LSTM as realization of RUDDER. The LSTM predicts the return
at the end of an episode as early as possible. These predictions g are then used to redistribute the
reward: 7y = gy — Gy_1-

The redistributed reward serves as reward for a subsequent learning method and can be used to
optimize a policy. However, training an LSTM network requires a large amount of episodes, which
are often difficult or expensive to obtain.

Modern Hopfield networks. Hopfield networks are energy-based, binary associative memories,

which popularized artificial neural networks in the 1980s [1 1, 12]. Associative memory networks have
been designed to store and retrieve samples. Their storage capacity can be considerably increased by
polynomial terms in the energy function [5, 20, 3, 8, 1, 13, 4, 16]. In contrast to these binary memory

(/;\' = softmax < /B Mstate (UT)T

I = softmax (D B}E
-

Mestored (YT)

) G
: Returns of
-) time steps of

observed

Associated returns episodes

for time steps of ,ﬁ Mhotate h‘ ,jmstoredhl
new episode

- E =
Time steps of
new episode

Figure 1: Illustration of modern Hopfield networks for return decomposition in Hopfield-RUDDER.
The associative memory of modern Hopfield networks associates 2 time steps (raw state patterns)
U of a new episode with 7 time steps (stored patterns) Y of previously observed episodes and their
corresponding observed returns GG. Thereby, the state patterns U are associated with estimated
returns G. U and Y are transformed via mzqte and mzoreq before association, respectively, and
can include information about previous state-action pairs, such as via reset-max history. Dotted
rectangles show a single raw and transformed stored pattern with its observed return.

Stored time steps of
observed episodes

networks, we use continuous associative memory networks with very high storage capacity. These
modern Hopfield networks for deep learning architectures have an energy function with continuous
states and can retrieve samples with only one update [23, 22]. Modern Hopfield Networks have
already been successfully applied to immune repertoire classification [3 1] and chemical reaction
prediction [26]. There they serve as powerful associative memories with large memory capacity and
excel at pattern-recognition as they associate inputs with similar patterns in their memory.

Hopfield-RUDDER

The application of MHN for RUDDER naturally follows from the idea of identifying patterns:
Patterns, e.g. state-action pairs, of observed episodes with known returns are stored in the memory of
the MHN. A new pattern can then be used to query this memory for similar patterns and their returns.
This yields an estimated return of the new pattern, which can be used to redistribute the rewards.

Fig. 1 illustrates this in detail: The MHN associates N stored patterns Y = {y;}_, from previously
observed episodes and their corresponding observed returns G' = {g; }¥., with M new state patterns
U = {u;},. As such, it directly associates the unknown state patterns U with estimated returns

G-= {g:}M . B is a hyper-parameter controlling the temperature of the softmax function.

The raw state patterns U and stored patterns Y may be transformed by functions mstqte and mstored,
for example with linear mappings or multiple hidden layers, as in [23, 31].

This results in a return decomposition function) in the form of

G =4(Y,G,U;B) = softmax (/3 Matate (UT)" Matorea (YT)) G. ey

The redistributed reward r; at time ¢ can then be obtained by computing the differences of the
estimated return values as

Tt :@\t _@\t—b (2
For state patterns u; and w;_; at times ¢ and ¢ — 1 this results in
Tt = ’l/}(YvGaut;ﬁ) _1/)(Y7G7Ut71;ﬁ), (3)

where Y contains a representation of the stored state-action pairs {(s;, ai)}il\il with their known
corresponding returns G and u; represents a state-action pair (s, a;) without known return.

In the simplest case, a raw state pattern u or stored pattern y is a vector containing the observation s
and action a, at time ¢ in an episode. The estimated return for a single state pattern u; at time ¢ in

this case is g; = ¥(Y, G, s, ay; B) with the redistributed reward r; computed from state patterns
w—rand ug asry = g — Ge—1 = Y(Y, G, 51,045 8) — P(Y, G, 51, a-1; B).

History compression and reset-max history. Assume a key event at time ¢1, e.g. the collection
of a key, that can result in a reward at time t9, e.g. the opening of a chest. In a POMDP, this key
event might only be observable at ¢; but not at ¢, e.g. the observation space contains no information
whether a key has been collected already. Assume further that observation s; and action a; are used
as state or stored pattern: The association of the pattern at to with a return, which depends on whether
a key was collected at ¢, may severely suffer from the missing information.

To address this problem, the state and stored patterns can be augmented by the history of the previous
state-action pairs. However, retaining the complete history of a state-action pair and including it in
the state and stored patterns would not be feasible for environments with large observation spaces or
long episode sequences.

As the purpose of this history is to enable the detection and storage of key events, we propose a fast
and light-weight history compression method: the reset-max history. Assuming a vector v°; € R¥*1
with K features that contains a representation of the state-action pair (s, a;) at time ¢t = {1,...,T},
the reset-max history features v, € R7*1 with J features, and the final state or stored pattern
v, € RUTE)IX1 s computed as follows:

vy = [’Uht;vot]) 'Uht = . 1ma()§ 1) (voi) : freset (’Uh/tfla'vot) (4)
i=1,...,(t—

with v" initialized with —oo and
freset (vhtflavot) =0 (W [’Uhtfﬁvot])) %)

where [;] is the operator for vertical concatenation, the max operator is used to store the previously
observed maximum feature values, and the reset gate f,se: utilizes the sigmoid activation function o
and learned weight matrix W € R”*(/+K) o reset the stored maximum feature values. Notably, this
changes the return decomposition function 1 for a state pattern u; to be dependent on all previous

and current state-action pairs {(s;, ai)}lf:l in the episode: g; = V(Y , G, s1,... ¢, 01,..+; 8, W).

Experiments

In this section, we first compare different history compression methods on multiple 1D toy environ-
ments. Subsequently, we compare the performance of Hopfield-RUDDER to the originally proposed
LSTM-RUDDER. Finally, we visually analyse the reward redistribution of Hopfield-RUDDER
on the difficult and complex task of collecting a diamond in the MineRL Minecraft environment.
We note that all experiments are performed in an offline fashion, using random policies or human
demonstrations.

1D key-chest environment. We designed 16 different versions of a 1D environment, the /D key-
chest environment, in order to evaluate the performance of Hopfield-RUDDER, different history
compression methods, and to compare Hopfield-RUDDER to LSTM-RUDDER. We use a reward
redistribution score rr_score, which is based on the known optimal policy, for this evaluation and
comparison. For more details see App. Al.

Environment details. The 1D key-chest environment is illustrated in Fig. 2. The agent starts at
position s in the middle. At each position it can move either one position to the right or to the
left, except for the left-most and right-most position, where further movement to the left and right,
respectively, is ignored. If the agent visits position %, it collects 1 key. If the agent visits position s, it
loses all collected keys with a probability of p;. If the agent visits position ¢ while holding n keys, it
will receive 1 reward at the end of the episode. All episodes have the same fixed length. A reward of
0 or 1 is given at the end of each episode, depending on whether the chest was opened or not.

We evaluate the performance of RUDDER on different versions of this environment with p; = {0,0.5}
and ny = {1, 3}. We consider fully observable MDP and partially observable POMDP versions of
the environment. Furthermore, we add n,,q = {0, nobs } features that contain random values {0, 1}
to the observation space, where n;s is the number of features of the original observation space. In
total, we created 16 different versions of this environment (see Tab. 1 and App. Al).

To redistribute reward in this environment successfully, RUDDER has to identify that position k
needs to be visited ny, times before visiting position c¢. Furthermore, RUDDER has to identify that
the key-collection process has to be restarted if the keys are lost at s.

- >
v & 69
k s c

Figure 2: Illustration of 1D key-chest environment with special states k, s, ¢, and 9 states in total.

Reward redistribution score By design, the optimal of the two available actions at any state s
in the 1D key-chest environment is known. In particular, at each state s; at time ¢ in an episode,
the agent can either take a left or right action a; € {ay, a,.}, which can be a correct, incorrect, or
irrelevant action. We use this knowledge to compute a score rr_score for the quality of the reward

redistribution ¢ (:) for an episode with time ¢ = {1,...,T} as follows:
1 I
rr_score = 0.5+ T ; scr({(si,ai)}z;i ,St), (6)

where scr(:) assigns a score {—1,0, 1} for the redistributed reward r; at each time ¢.

In detail, action left a; is correct if ¢*(s¢, a;) > ¢*(s¢, a,-). Action right a,. is correct if ¢* (s, a,.) >
q*(s¢, a;). An action is irrelevant if ¢*(s¢, a;) == ¢*(st, a,). Here, ¢*(s¢, a) is the Q-function of
the optimal policy 7*.

The redistributed reward r; = 1)(:) is correct if r; for the correct action is higher than for the incorrect
action. If the redistributed reward is correct, scr(:) assigns a score of 1, if it is incorrect a score of -1.
If the action is irrelevant, the reward redistribution receives a score of 0.

Experimental setup. We sample a large test set of 1,000 episodes and small training sets of
{8, 16,32, 64,128,256, 512} episodes, using a random agent. Half of the episodes have a return of 0
and 1 in each set, with fixed sequence lengths between 32 and 148 times per episode (see App. Al).

Reset-max history outperforms other history compression methods. We first analyze the per-
formance of Hopfield-RUDDER, where the training set is used as stored patterns. For this, we
evaluate Hopfield-RUDDER without history information and with 5 different versions of history
compression: (i) feature-wise max-pooling, (ii) feature-wise sum-pooling, (iii) fully-connected
LSTM (LSTMY), (iv) sparsely-connected LSTM (LSTMs), and (v) reset-max history, as detailed
in App. A1.2. Furthermore, we evaluate each setting with a linear mapping mstate = Mstored and
without any mapping. As shown in Tab. 1 and A2, reset-max history consistently outperforms all
other Hopfield-RUDDER versions, except for one POMDP setting and two MDP settings, in which it
is the runner-up method.

Hopfield-RUDDER with reset-max history consistently outperforms LSTM-RUDDER. Sub-
sequently, we analyze the performance of LSTM-RUDDER with reset-max history and without
history information. As shown in Tab. 1, Hopfield-RUDDER with reset-max history consistently
outperforms all LSTM-RUDDER versions on all environment versions.

More details on results, history compression methods, and training can be found in App. Al.

Minecraft. In order to show that Hopfield-RUDDER can scale to complex problems, we perform
preliminary experiments within the challenging MineRL Minecraft environment [9]. Specifically, we
use Hopfield-RUDDER to redistribute rewards for the task ObtainDiamond. As the high complexity
of ObtainDiamond makes random exploration unfeasible, [9] provide the Minecraft environment
with demonstrations of human players solving this task. Players and agents are randomly placed in a

Hopfield-RUDDER LSTM-RUDDER

History: reset-max LSTMf LSTMs max sum none reset-max none
Mapping: linear none linear none linear none linear none linear none linear none none none none none
Learning rate: le-3 - le—=3 - le-3 - le—3 - le—3 - 1le—3 - le—41le—31le—41le—3

Environment specs
Nk Pl Mrnd
POMDP 1 0% 0 93.08 8242 7223 70.37 76.94 66.79 91.85 89.96 78.72 41.36 58.30 58.61 6527 72.85 57.25 74.32
+4.87 +8.80 +7.12 +£6.40 +6.65 £10.29 +540 +5.74 +7.41 +6.09 +3.24 +3.85 +6.69 +597 +4.41 +593
POMDP 1 0% ng.s 87.66 81.37 66.17 61.51 7531 62.36 87.90 84.31 7691 41.92 56.90 57.54 62.23 73.37 53.84 68.23
+543 +4.88 +5.17 +5.60 +£7.56 +6.42 +6.74 +523 +£6.67 +4.15 +3.59 +2.35 +8.37 +4.04 +5.03 +7.34
POMDP 1 50% O 7541 73.57 58.22 58.75 62.77 59.93 62.85 65.52 52.80 49.28 54.83 55.99 60.21 55.25 48.85 52.11
+10.33 +£13.01 +£7.55 £7.72 +9.41 +11.43 £7.57 £7.03 +6.61 +£2.10 +6.01 £5.66 +4.60 +843 =+£7.76 +7.52
POMDP 1 50% ns 69.19 66.19 54.87 5498 56.33 5433 61.47 60.13 53.07 48.90 54.43 54.64 51.34 51.80 48.79 50.14
+7.95 +5.52 +4.37 +3.84 £500 +6.34 +6.31 +3.84 £3.50 +1.36 +4.01 +3.43 +6.32 501 +2.59 +4.34
POMDP 3 0% 0 80.91 74.06 66.61 64.94 76.06 73.80 77.02 77.59 68.16 45.17 54.88 55.31 59.50 66.62 55.37 63.68
+7.74 +843 £8.17 +6.98 +844 £13.78 +8.81 +6.17 £12.70 £5.25 +4.03 +4.08 +5.75 +7.37 +6.15 +9.36
POMDP 3 0% ngs 77.96 74.07 6342 61.90 73.32 68.99 7530 75.06 66.61 45.56 54.56 54.41 53.34 65.84 51.84 58.34
+595 +4.84 +4.95 +4.01 +6.65 £8.06 +6.29 +4.19 £10.50 £3.73 +3.33 +3.42 +6.20 +7.19 +7.31 +6.18
POMDP 3 50% 0 7430 69.60 56.17 58.38 59.50 62.42 57.42 60.44 54.61 55.36 54.84 56.58 52.78 52.80 47.96 49.51
+10.68 +£11.35 +£7.57 £8.99 £11.27 £13.61 £7.22 £5.95 +4.72 +£1.59 +7.44 +6.88 +£2.72 +£7.65 +9.88 +6.34
POMDP 3 50% nq,s 67.30 63.82 53.07 53.06 55.86 54.81 55.79 55.46 55.05 55.55 53.92 53.39 52.64 50.51 46.40 49.93
+8.50 +6.76 +4.72 +3.48 +£584 £843 +570 +3.25 £2.70 +0.81 +4.82 +3.99 +5.68 +4.72 +3.47 +491

Table 1: Comparison of different Hopfield-RUDDER and LSTM-RUDDER versions w.r.t. reward
redistribution score rr_score on different versions of the 1D key-chest environment. Results show
the mean rr_score over all training set sizes and a 10-fold cross-validation (CV). Error bars show
mean standard deviation of 10-fold CV over all training set sizes. Hopfield-RUDDER with reset-max
history consistently outperforms all LSTM-RUDDER versions. For MDP versions see Tab. A2.

procedurally generated 3D environment without any items in their possession. The objective is to
gather resources and build the tools required to obtain a diamond.

For ObtainDiamond, auxiliary reward is given the first time the player obtains an item, even if
multiple copies of this item are required. For example, agents have to gather multiple logs in order
to build all necessary tools but receive reward only for the first log they acquire. However, we omit
these auxiliary rewards and only use episodic return by giving a return of 1 for demonstrations that
obtain a diamond and a return of O for those that do not manage to obtain it.

In order to show that Hopfield-RUDDER is able to redistribute reward to relevant state-action pairs in
ObtainDiamond, we train a simple Hopfield-RUDDER model using the reset-max history history
compression. We only use the sequence of inventory states and associated actions as input to Hopfield-
RUDDER. Following [19], we use 10 successful and 10 unsuccessful demonstration episodes as
training set. The state-action pairs from these 20 episodes are used as stored patterns Y. We use the
obfuscated version of the environment and demonstrations, therefore the observations s and actions a
are the hidden representation of an unknown auto encoder (for further details see App. A2.3). We use
a neural network with 2 hidden layers and ReL.U activation as mapping functions mgiqte = Mstored-

Training Hopfield-RUDDER does not require massive compute resources. On the contrary, training a
model for 100 episodes takes only minutes on an Nvidia A40 GPU. A small hyper-parameter search
showed that the model is not overly sensitive to hyper-parameter changes and most models produce a
similar reward redistribution.

Fig. 3 shows the redistribution for a demonstration episode, which was not used for training the
model. We use the non-obfuscated inventory states for visualization. It visually seems that Hopfield-
RUDDRER is able to redistribute the reward to important state-action pairs. Furthermore, Hopfield-
RUDDER appears to not redistribute rewards to irrelevant state-action pairs, resulting in a reward
redistribution with little noise.

1.00- —— Redistributed Reward

Reward Redistribution
o

0 531 1062 1593 2124 186 3717 4248 4779 5310 5841 6372 6903 7434 7965

- —— Redistributed Reward
25 00—
52
$E
35
L -R]
g
&

3125 {131 3137 3143 3149 3155 3161 3167 3173 | 3179

131 3137 3143 3149 3155 3161 3167 3173 3179
Timesteps

Figure 3: Top: example of redistributed reward of a successful demonstration using only the
inventory and actions. Red vertical lines indicate the auxiliary reward an agent would receive from the
environment, however the reward redistribution is trained only with reward at episode end. The reward
redistribution seems to identify relevant state-action pairs. Bottom left: Magnified region showing
acquisition of planks through crafting. First, logs are used up, resulting in negative redistributed
reward followed by an increase in planks, which increases the reward prediction. Bottom right:
Time steps showing the crafting of stone pickaxe and furnace. Both items require stone and show a
similar behavior as crafting planks. Predicted reward decreases when the inventory state for base
component decreases and increases when the crafted item appears in the inventory.

Conclusion

We have introduced Hopfield-RUDDER, a novel realization of RUDDER. Hopfield-RUDDER
replaces the LSTM in the original LSTM-RUDDER with a powerful trainable auto-associative
memory, the modern Hopfield network. In contrast to LSTM-RUDDER, Hopfield-RUDDER can be
trained on a drastically lower number of samples, such as often the case in offline RL settings.

Acknowledgments and Disclosure of Funding

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the Federal
State Upper Austria. IARALI is supported by Here Technologies. We thank the projects AI-MOTION
(LIT-2018-6-YOU-212), DeepToxGen (LIT-2017-3-YOU-003), AI-SNN (LIT-2018-6-YOU-214),
DeepFlood (LIT-2019-8-YOU-213), Medical Cognitive Computing Center (MC3), INCONTROL-RL
(FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), DL for GranularFlow (FFG-871302),
AIRI FG 9-N (FWF-36284, FWF-36235), ELISE (H2020-ICT-2019-3 ID: 951847), AIDD (MSCA-
ITN-2020 ID: 956832). We thank Janssen Pharmaceutica (MaDeSMart, HBC.2018.2287), Audi.JKU
Deep Learning Center, TGW LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL
Gesellschaft mbH, Anyline GmbH, Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB
Biopharma SRL, Merck Healthcare KGaA, Verbund AG, Software Competence Center Hagenberg
GmbH, TUV Austria, and the NVIDIA Corporation.

References

[1] L. F. Abbott and Y. Arian. Storage capacity of generalized networks. Phys. Rev. A, 36:5091-
5094, 1987.

[2] J. A. Arjona-Medina*, M. Gillhofer*, M. Widrich*, T. Unterthiner, J. Brandstetter, and
S. Hochreiter. RUDDER: Return decomposition for delayed rewards. In Advances in Neural
Information Processing Systems, pages 13544—13555, 2019.

[3] P.Baldi and S. S. Venkatesh. Number of stable points for spin-glasses and neural networks of
higher orders. Phys. Rev. Lett., 58:913-916, 1987.

[4] B. Caputo and H. Niemann. Storage capacity of kernel associative memories. In Proceedings
of the International Conference on Artificial Neural Networks (ICANN), page 51-56, Berlin,
Heidelberg, 2002. Springer-Verlag.

[5] H. H. Chen, Y. C. Lee, G. Z. Sun, H. Y. Lee, T. Maxwell, and C. Lee Giles. High order
correlation model for associative memory. AIP Conference Proceedings, 151(1):86-99, 1986.

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

[7] E. Dulac-Arnold, D. J. Mankowitz, and T. Hester. Challenges of real-world reinforcement
learning. CoRR, abs/1904.12901, 2019.

[8] E. Gardner. Multiconnected neural network models. Journal of Physics A, 20(11):3453-3464,
1987.

[9] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. P. Mohanty, D. P.
Liebana, R. Salakhutdinov, N. Topin, M. Veloso, and P. Wang. The MineRL competition on
sample efficient reinforcement learning using human priors. arXiv, 2019.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735—
1780, 1997.

[11] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554-2558, 1982.

[12] J.J. Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092,
1984.

[13] D. Horn and M. Usher. Capacities of multiconnected memory models. J. Phys. France,
49(3):389-395, 1988.

[14] K. Irie, I. Schlag, R. Csordés, and J. Schmidhuber. Going beyond linear transformers with
recurrent fast weight programmers. arXiv preprint arXiv:2106.06295, 2021.

[15] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast Autoregres-
sive Transformers with Linear Attention. In Proceedings of the 37th International Conference
on Machine Learning, pages 5156-5165. PMLR, 2020.

[16] D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, pages 1172—1180. Curran Associates, Inc., 2016.

[17] J. Luoma, S. Ruutu, A. W. King, and H. Tikkanen. Time delays, competitive interdependence,
and firm performance. Strategic Management Journal, 38(3):506-525, 2017.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, , and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[19] V.P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-
Medina, and S. Hochreiter. Align-rudder: Learning from few demonstrations by reward
redistribution. CoRR, abs/2009.14108, 2020.

[20] D. Psaltis and H. P. Cheol. Nonlinear discriminant functions and associative memories. AIP
Conference Proceedings, 151(1):370-375, 1986.

[21] H. Rahmandad, N. Repenning, and J. Sterman. Effects of feedback delay on learning. System
Dynamics Review, 25(4):309-338, 2009.

[22] H. Ramsauer, B. Schifl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlovié,
G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter.
Hopfield networks is all you need. ArXiv, 2008.02217, 2020.

[23] H. Ramsauer, B. Schifl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlovié,
G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, and S. Hochreiter.
Hopfield networks is all you need. In 9th International Conference on Learning Representations
(ICLR), 2021.

[24] J. Schmidhuber. Learning To Control Fast-Weight Memories: An Alternative To Dynamic
Recurrent Networks, 1991.

[25] J. Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic
Recurrent Networks. Neural Computation, 4(1):131-139, 1992.

[26] P. Seidl, P. Renz, N. Dyubankova, P. Neves, J. Verhoeven, J. K. Wegner, S. Hochreiter, and
G. Klambauer. Modern hopfield networks for few- and zero-shot reaction prediction. ArXiv,
2104.03279, 2021.

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, 1. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

[28] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5998—6008. Curran Associates, Inc., 2017.

[30] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Kiittler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaftney, S. Petersen, K. Simonyan, T. Schaul,
H. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing. Starcraft II: A new challenge for reinforcement learning.
ArXiv, 2017.

[31] M. Widrich, B. Schifl, M. Pavlovi¢, H. Ramsauer, L. Gruber, M. Holzleitner, J. Brandstetter,
G. K. Sandve, V. Greiff, S. Hochreiter, and G. Klambauer. Modern Hopfield networks and
attention for immune repertoire classification. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 18832—18845. Curran Associates, Inc., 2020.

Appendix

Al 1D key-chestenvironment 10
Al.l1 MDP and POMDP observation space 10
A1.2 History compressionmethods 10
A1.3 Trainingdetails L e 11
Al.4 Detailed results and ablation study for history versions 11
A1.5 Detailed results for comparison of Hopfield-RUDDER and LSTM-RUDDER. . . 14
A1.6 Detailed results for comparison of all methods. 14

A2 Minecraft Environment Lo 16
A2.1 Trainingdetails e 16
A2.2 Additional reward redistribution plots oL 16
A2.3 Observation and action representation 16

A3 GloSSary . . . o e e e e e e 17

Al 1D key-chest environment

In this section we provide details on the specifications, the setup, and the results on the 1D key-chest
environment described in the paper. The 16 environment versions and their settings are listed in
Tab. Al.

Parameters Environment versions
observations POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP
nk 1 1 1 1 3 3 3 3
I 0% 0% 50% 50% 0% 0% 50% 50%
Nyrnd 0 Nobs 0 Nobs 0 Nobs 0 Nobs
time steps 32 32 99 99 48 48 148 148
Parameters Environment versions
observations MDP MDP MDP MDP MDP MDP MDP MDP
ng 1 1 1 1 3 3 3 3
[0% 0% 50% 50% 0% 0% 50% 50%
Nrnd 0 Nobs 0 Nobs 0 Nobs 0 Tobs
time steps 32 32 99 99 48 48 148 148

Table Al: Specifications of the 16 versions of the 1D key-chest environment, as illustrated in Fig. 2.
Number of time steps per episode are fixed and chosen such that a random agent generates 35%(+2%)
episodes with a return of 1. Reward {0, 1} is given only at the end of an episode. Training and test
sets were sampled until 50% of episodes with 0 and 1 return were obtained. n,,4 is the number of
random features with values {0, 1} that are concatenated to the observation space, where nps is the
number of features of the original observation space.

Al.l1 MDP and POMDP observation space

For the fully observable MDP versions of the environment, the observation space includes information
about the position, time step, number of currently held keys, if the agent is on position k or c, if the
agent visited ¢ while holding ny keys, and, in case p; > 0, if the current keys are being lost on s.

In the POMDP versions, the observation space only contains information if the agent is on position k
or ¢ and, in case p; > 0, if the current keys are being lost on s.

Furthermore, we add 7., = {0, nops } features that contain random values {0, 1} to the observation
space, where n.ps is the number of features of the original observation space. All features are binary,
except for the position and time step feature,

Al.2 History compression methods

We evaluated 5 methods for history compression. Following the notation in the paper, they are:

(i) feature-wise max-pooling: v, = [v"y;v%] ; " = max;_y 1) (v%),

(ii) feature-wise sum-pooling: v; = [v/;;v%] ; o = e, (1) (V%)

10

(iii) fully-connected LSTM (LSTMf): v, = [v";;v%] ; o = LSTMf;y 1) (v%),
with a layer of J fully-connected LSTM blocks,

(iv) sparsely-connected LSTM (LSTMs): v, = [v";;v%] ; o = LSTMs;y —1) (v%),
with a layer of J sparsely-connected LSTM blocks, where output gate, input gate, and the recurrent
connections of the cell input are disabled, and

(v) reset-max history, as described in the main paper,

where J is the number of observation features.

A1l.3 Training details

Training of all Hopfield-RUDDER, history methods, and LSTM-RUDDER versions was performed
in PyTorch [34] using the Adam optimizer [33] for 10, 000 updates. Weights of the linear mappings
are shared such that mgiqte == Mstoreq- FOr training of Hopfield-RUDDER, a mini-batch of 4
random samples from the training set is used as state patterns and the rest of the training set is used
as stored patterns for each weight update. For LSTM-RUDDER, mini-batches of 4 random samples
from the training set are used for each weight update.

For Hopfield-RUDDER, first the history features are computed from the observations. Then, if a
linear mapping for Hopfield-RUDDER is used, the state and stored patterns are mapped to 16 features
via a single linear layer before the association with the known episode returns is performed. The bias
weights for the LSTM-based history versions and the reset-max history were initialized with random
values from a normal distribution with a mean of 5.

For LSTM-RUDDER, we chose a number of 16 LSTM blocks in the network, followed by a single
output layer to create the reward prediction at every time step of the episode. The LSTM loss
combines the losses L, + 0.1 (L. + L.), as described by [2], formula A275. Loss L, was omitted,
as there are no intermediate rewards given in the episodes.

Al.4 Detailed results and ablation study for history versions

In the following Fig. Al and A2, we show the detailed results for the different history versions.

11

i False mult key: Fase drop_keys: Fase noise: Faise m: False mult_key: Flse crop keys: Fase noise: True. l: False mult key: Fale drop keys: True noise: False Key: Faise drop,keys: True noise: True.

£ H H H
foo fos foe
H £ H £
H H H H
i i i i
Tor Io. Tor Tor
H H H H
N . o] S S
"HopfeldRUDDER reset-manx Lineariapping_0.001: 69.19% { 7.95%).
e
e o R N e T e Tt e e e Ty T
[I [JEI
. it g 1, e e T . o i T . it pae ity e s . st ot g i i T
§ § H
{ H {
3 ¥ K
Fou Yo i
. O e e S D e,
et o 5

JoplRUDDERese ax_UnearMapig 0001 7430% (1068%)

~— HOphelRUDDER max_Linearapping 0001 57.42% 7.22%) ~— HopfieldRUDDER_max_LinesrMapping_0.001. 55.79% (5.70%)

HOMIGRUODER s Unesapsoa 0001 6316% (1270% HopEGRUODER Sum Lneaisping 0001 8661% (1050%) 7 HaplaRUDOER sum Lnearapping 0001 54 1% (47251 fIRUDDER sum Lncarkaopng D01 55.09% 1 270%1

7 Eg B £ ED 3 ED B Fo Ea] o 0 £ o ED 7 Eg B o Fo ED
e o o eodes T numberof raning epsods umber of g coodes
» i True mult key: False crop_keys: Flse noise: Faise » i True multi key: False crop_keys: Flse noise: True. N mep: True multkey: False drop_keys: mp: True mult_key: False drop_keys: True noise: True

£ H H H
3 g H H
H H H H
B HY Foo Foa
H H H £
Hope4RUODER N NcHapsing0.001: 76.86%(5.27%) HopleGRUGOER Hone Neopping 0001 5 54% (23551 X) HoptedRUODER None NoMaping 0001 5464%(3.43%)
0] = ovteumocs ene e 501 93264 (5999 HopfeGRUOER e Lincarkappin. 0001 56.90% (3.59%) 2] HoPIaRUGOE one Lneaapson 0003 6587% (11819 0 oo e i 0t 140 4014)
FpaldRUDDER restmas MoMapsing, 0001 8.60% (.26%) i Mg 0001 9157% (480% esemax Notlapig o
mcLnestopins 0 001 87 65% (3 4441
aBoI 0001, $431% (523%
Fna 0001 350% (87581
Marping 0001 3193% (4175) 1 s
rearapging 003 7085% (38051 reatapping 0001 7654% 676% esrapping 0001 5285% (473%) Hoptanunon
s fsiin e umber o aning e numberftraning apsds ramberof g e
N mdp: True mulkey: True drop mep: Trve mult key: Tre drop e K mp: True mulkey: True o keys: mp: True mults key: True drop keys: True noise: True

TR o o o100

2 haanUDDER o et G001 5.08% 185)
7 HoplalRUDOER_sum_LinearMapping 0001 65 8% (66251 7 FopaRu00c s Lnsariapping 001 6621% 995% HOpleIAUDOER_sum_Lnoarbapping 0001 55 72% (33751 2 HopladRUDDER_Sum_Lincarkapgg D001, 34995 (293%)
e of g aodes - S—— [A—— - rumber of i cosodes

Figure Al: Comparison of Hopfield-RUDDER max-pooling, sum-pooling, and reset-max history
w.r.t. reward redistribution score rr_score on different versions of the 1D key-chest environment.
Results shown are the mean rr_score over 10-fold cross-validation with their corresponding standard
deviations for various training set sizes.

12

[Sp—"

01 5903% (1143%0
0 0001 6277% (941501

000 5435% (634%

namberof g e

mp: False mult key: True drop.

7 Eg o o %

i True mult key: False crop_keys: Flse noise: Faise

pping 0001 85.60% |

apeing 001 85.44% (52%

mp: True mult_key: False drop_keys: True noise: True

o00r 31.97% (8981
ing 0001 8765% (3.48%)

o 0001 6891% (99151

190001 65.35% (14.40%)
pring 0001 7213% (108451

rowar edstrotion score

001 7196 (590%

0001 8231% (604%)

numberof i cpsodes

Figure A2: Comparison of Hopfield-RUDDER LSTM-based history and reset-max history w.r.t.
reward redistribution score rr_score on different versions of the 1D key-chest environment. Results
shown are the mean rr_score over 10-fold cross-validation with their corresponding standard

deviations for various training set sizes.

13

A1l.5 Detailed results for comparison of Hopfield-RUDDER and LSTM-RUDDER.

In the following Fig. A3, we show the detailed results for comparison of Hopfield-RUDDER with
reset-max history versus the different versions of LSTM-RUDDER.

mlp: False mult key: False drop. Faise Key: Fase drop_keys: Fale noise: True mlp: False mult_key: Fase drop keys: True noise: Faise Key: Faise drop_keys: True noise: True.

otspping 0.00L: 7357% {13018
pina 0001 7541% (1033%) e

001, 43855 (1 76%)
s 00001 6021% (416081
0 5211% 7.52%

Maping 0001 55 254 (8.43%)

oo
B3, 0001. 7205% (59781 otagpig 0001 7337% 140451

g cpsodes umberof vaing asodes o apsides
mp: Fase mult key: Trve drop. dp: False mult key: True drop keys: False noise: True N mp: Fase mult_key: Trve drop keys:

7 o

number of g coodes
N mp: Trve multkey: Folse drop_keys: mdp: True mult_key: Folse drop_keys: True noise: True

o0 0001 8137% (48951
Ping 0001 87 65% (5,401

namberof g opodes

melp: True mult key: True drop keys: True noise: Tre

numberof g epacdes mber o aning e
m: True mulkey: True drop keys: False noie: Fase mp: True mult key: True drop e

aon. 7376 (590 - oaBpIg_0.001 65.86% 750%

T £ R o & P T By B £ & E T W R £ £ B B o
numberof g cpsodes umoerof vanng epsoses numberof ranng epsods umber of g cosodes

Figure A3: Comparison of Hopfield-RUDDER with reset-max history and LSTM-RUDDER versions
w.r.t. reward redistribution score rr_score on different versions of the 1D key-chest environment.
Results shown are the mean rr_score over 10-fold cross-validation with their corresponding standard
deviations for various training set sizes.

A1.6 Detailed results for comparison of all methods.

In the following Tab. A2, we show the detailed results for comparison of all Hopfield-RUDDER and
LSTM-RUDDER versions.

14

Hopfield-RUDDER LSTM-RUDDER

History: reset-max LSTMf LSTMr max sum none reset-max none
Mapping: linear none linear none linear none linear none linear none linear none none none none none
Learning rate: le-3 - 1le-3 - 1le—-3 - le-3 - le—3 - 1le—3 - le—4le—3le—41le—3

Environment specs
Nk P Mend
POMDP 1 0% 0 93.08 8242 7223 7037 76.94 66.79 9185 89.96 78.72 41.36 5830 58.61 6527 72.85 57.25 74.32
+4.87 £880 £7.12 £6.40 £6.65 £10.29 £540 =£574 +£7.41 £6.09 £324 +£385 =£6.69 £597 £441 £593
POMDP 1 0% ngs 87.66 81.37 66.17 61.51 7531 6236 87.90 8431 7691 4192 56.90 57.54 62.23 73.37 53.84 68.23
+5.43 +4.88 +£5.17 £5.60 +7.56 +6.42 +6.74 +523 +6.67 +£4.15 +3.59 +£2.35 +837 +4.04 £503 +£7.34
POMDP 1 50% O 75.41 73.57 5822 5875 6277 59.93 62.85 65.52 52.80 49.28 54.83 5599 60.21 55.25 48.85 52.11
+10.33 £13.01 +£7.55 £7.72 +9.41 +£11.43 +£7.57 +7.03 =£6.61 +2.10 +6.01 £5.66 +4.60 +843 +7.76 +7.52
POMDP 1 50% nops 69.19 66.19 54.87 54.98 56.33 54.33 6147 60.13 53.07 4890 54.43 54.64 51.34 51.80 48.79 50.14
+7.95 £552 +437 £3.84 £500 +£634 +631 £3.84 +£3.50 £1.36 +4.01 +£343 £632 £501 £2.59 +4.34
POMDP 3 0% 0 8091 74.06 66.61 64.94 76.06 73.80 77.02 77.59 68.16 45.17 54.88 5531 59.50 66.62 55.37 63.68
+7.74 £843 £8.17 £698 £8.44 +13.78 +8.81 =£6.17 £12.70 £525 +4.03 +4.08 £575 =£7.37 =£6.15 =£9.36
POMDP 3 0% ngs 77.96 74.07 63.42 61.90 73.32 68.99 7530 75.06 66.61 4556 54.56 54.41 53.34 65.84 51.84 5834
+595 +4.84 +495 +4.01 +6.65 £8.06 +£629 +4.19 +10.50 £3.73 £3.33 +£342 +620 +7.19 +7.31 +6.18
POMDP 3 50% 0 7430 69.60 56.17 5838 59.50 6242 57.42 60.44 54.61 55.36 54.84 56.58 52.78 52.80 47.96 49.51
+10.68 £11.35 £7.57 £899 £11.27 £13.61 £7.22 +595 £4.72 £1.59 +744 +£6.88 +£2.72 +7.65 +9.88 +6.34
POMDP 3 50% nops 67.30 63.82 53.07 53.06 55.86 54.81 5579 55.46 55.05 55.55 53.92 53.39 52.64 50.51 46.40 49.93
+8.50 £6.76 +4.72 +£3.48 £5.84 £843 +£570 £325 +£2.70 £0.81 +4.82 +£399 £568 £4.72 £347 £491
MDP 1 0% O 89.44 88.60 77.73 76.41 7889 8491 87.66 81.16 78.82 44.24 93.26 76.86 85.93 78.05 85.60 76.40
+5.82 +826 +5.82 £584 +5.69 £502 +6.54 +6.77 +£5.80 £3.20 +599 +£5.27 £7.22 £573 £7.15 £5.05
MDP 1 0% mnos 87.65 81.37 6593 61.25 7526 6236 87.90 84.31 76.54 41.93 56.90 57.54 62.22 73.69 53.83 68.75
+544 +488 £5.19 £558 £7.53 +£642 +6.75 £523 +£6.76 +£4.17 £3.59 +£235 £841 +497 £506 =£6.12
MDP 1 50% 0 7213 6535 69.51 63.93 68.64 6891 69.66 63.76 52.85 50.54 65.87 65.00 52.66 49.83 52.83 68.71
+10.84 £14.40 +£6.26 £17.19 +8.56 £9.91 +10.97 £14.87 +£4.73 +1.18 £11.81 £18.80 +3.79 +591 +8.05 +8.16
MDP 1 50% ngs 69.19 66.19 5478 5545 56.54 54.89 61.46 60.13 53.07 48.90 54.43 54.64 51.45 52.61 48.87 4945
+7.95 £552 £3.97 £3.90 £552 £7.57 +631 £3.84 +£3.29 £1.36 +4.01 +£343 £620 £5.19 £2.56 =£3.77
MDP 3 0% O 8251 72.04 69.03 61.31 73.15 73.89 73.49 6339 6548 4588 81.88 59.86 75.24 73.76 52.23 70.02
+6.04 +10.38 +£6.97 +8.24 +5.15 £7.68 +840 +£822 +6.62 +1.64 +£491 +7.76 £578 +590 +7.14 +£591
MDP 3 0% mnos 77.96 7407 63.92 61.79 7326 68.99 7530 75.06 66.21 4556 54.56 5441 53.45 6586 51.99 59.04
+593 +£4.84 £5.19 +4.57 £6.72 £8.06 +6.28 +4.19 £9.85 £3.73 £333 £342 +£6.07 £7.50 £7.30 £6.80
MDP 3 50% 0 6537 63.16 59.55 57.84 61.01 61.38 63.17 54.37 5572 5526 61.50 59.32 52.04 50.35 35.11 53.06
+10.26 £10.79 £6.84 £13.09 +8.53 £9.41 *11.37 £13.30 £3.37 £0.99 £12.09 £14.96 +3.86 +4.55 +5.12 +9.62
MDP 3 50% nops 67.30 63.82 52.96 53.01 5580 54.17 5579 5546 5499 55.55 53.92 5339 53.09 50.99 46.49 49.79
+8.50 +6.76 +5.08 +£3.70 +5.71 £9.02 +5.70 +3.25 +2.93 +£0.81 +4.82 +£3.99 £575 +4.50 £3.37 +4.74

Table A2: Comparison of different Hopfield-RUDDER and LSTM-RUDDER versions w.r.t. reward
redistribution score r7_score on different versions of the 1D key-chest environment. Results shown
are the mean rr_score over all training set sizes and a 10-fold cross-validation. Error bars show
mean standard deviation of 10-fold cross-validation over all training set sizes. Hopfield-RUDDER
with reset-max history consistently outperforms all other Hopfield-RUDDER and LSTM-RUDDER
versions.

15

A2 Minecraft Environment

In this section we provide details on the MineRL Minecraft environment, demonstrations, training
setup and additional results.

A2.1 Training details

Training of Hopfield-RUDDER was performed in PyTorch [34] using the Adam optimizer [33]. In
contrast to the 1D-environment we trained the model only for 100 updates. Weights of the linear
mappings are shared such that mgs¢qte == Mstoreq. FOr training of Hopfield-RUDDER, a mini-batch
of 8 random samples from the training set is used as state patterns and the rest of the training set is
used as stored patterns for each weight update.

In addition to the history compression we augment the observations with observation deltas, where
we compute the delta of observation s; and s;_1 and concatenate the result with the original obser-
vation. Furthermore, to reduce training time and GPU memory requirements we store only unique
observations in stored patterns Y.

Then, the history features are computed from the augmented observations, including actions, and the
state and stored patterns are mapped to 128 features via a small neural network with 2 fully connected
hidden layers with ReL.U activation.

A2.2 Additional reward redistribution plots

In A4, we show additional examples for reward redistribution using Hopfield-RUDDER on the
MineRL ObtainDiamond demonstrations. These demonstrations have not been used for training
the reward redistribution model. The red vertical lines show the auxiliary sparse rewards, provided
by the environment. Note that for training Hopfield-RUDDER, we only use episodic reward of 1
for successful demonstrations and 0 for unsuccessful demonstrations, without using the auxiliary
rewards. As indicated by the auxiliary rewards, the reward redistribution (in blue) is able to identify
sections in the episodes which are important for obtaining the diamond.

A2.3 Observation and action representation

In order to avoid hand-crafted solutions the authors of the MineRL benchmark introduced an ob-
fuscated version of the environment and the demonstrations. In this version the inventory state and
actions are encoded using an Auto Encoder. Both observations and actions are 64 dimensional vectors.
The decoder of this model is not released and therefore models must learn only based on the encoded
states and predict the encoded actions. We also use only the obfuscated inventory state and actions
for training the Hopfield-RUDDER model. However, we use the non-obfuscated inventory states for
visualizing and inspecting the reward redistribution.

16

]
—— Redistributed Reward

o o »
> @ o

Reward Redistribution
°
s

°
o

T Al \ | |

|
s o
N o

|
°
=

0 517 1034 1551 2068 2585 3102 3619 4136 4653 5170 5687 6204 6721 7238 7755

Timesteps
1.00 - —— Redistributed Reward
075+
5
S 050-
E]
2
ﬁ 0.25 I ‘ L
k=1
3
£ 500 o Jd | .
° T T | |
H
3 -0.25
-4
-0.50
-0.75
4 823 164 2469 3202 4115 4938 5761 6584 7407 8230 9053 9876 10699 11522
Timesteps
I]
100 —— Redistributed Reward
075+
c
S 050+
5
2
£ 025
3
o« L 1] 1}]
o 00 - }
:
3 -0.25-
<
~0.50
-0.75
0 504 1008 1512 2016 2520 3024 3528 4032 4536 5040 5544 6048 6552 7056 7560

Timesteps

Figure A4: Reward redistribution of three demonstrations for the MineRL ObtainDiamond task.
Blue: redistributed reward Red: sparse reward obtainable in the environment. For training we only
use episodic reward of 1 for successful episodes and 0 for unsuccessful episodes.

A3 Glossary

.Number of features of history representation v".
.Number of features of state-action pair representation v°.
.Return values of episodes.

.Raw state patterns (before optional mapping).

.Trainable weights of reset gate freset-

.Raw stored patterns (before optional mapping).

.Raw state pattern (before optional mapping).

L EXIQQRS

.Representation of the history as vector.

.Representation of the state-action pair as vector.

S

.Raw stored or state pattern as concatenation [v°; v"].
.Raw stored pattern (before optional mapping).
Inverse temperature of softmax function.

.Return decomposition function.

.Sigmoid function.

.Estimated return values of episodes.

@y I ™R e

.Estimated return value of an episode.

aActiontomove 1 position to the left in 1D key-chest environment.

17

Ar e e e Action to move 1 position to the right in 1D key-chest environment.

a .o a is the action at time ¢.

freset « o o ..o Reset gate function for resetting the history o™,

7 Return value of an episode.

Mstate « « « « « « « . Optional transformation function of raw U.

Mstored - « « « « « « - Optional transformation function of raw Y.

Nk o e e e e e Number of keys required to open chest in 1D key-chest environment.
Nobs = « « « o o0 . . Number of features of observation space in 1D key-chest environment.
Npnd o o o e e e e Number of random features in 1D key-chest environment.
Diov oo e e e e Probability of losing all keys in 1D key-chest environment.
rr_score Scoring function for reward redistribution for episode.
T 7 1S the reward at time ¢.

ser ... Scoring function for reward redistribution for time step.
S s is the environment state at time ¢.

C o Chest position of 1D key-chest environment.
k..o Key position of 1D key-chest environment.

S e Mid position of 1D key-chest environment.
Hopfield-RUDDER . . .Novel RUDDER using MHN for return decomposition.
LSTM Long short-term memory.

LSTM-RUDDEROriginal RUDDER using LSTM for return decomposition.
LSTMf Fully-connected LSTM.

LSTMs Sparsely-connected LSTM.

MHN Continuous modern Hopfield network.

RUDDER Return decomposition for delayed rewards.

Appendix References

[32] J. A. Arjona-Medina*, M. Gillhofer*, M. Widrich*, T. Unterthiner, J. Brandstetter, and
S. Hochreiter. RUDDER: Return decomposition for delayed rewards. In Advances in Neural
Information Processing Systems, pages 13544—13555, 2019.

[33] D.P. Kingma and J. Ba. Adam: a method for stochastic optimization. ArXiv, 2014.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024-8035, 2019.

18

	1D key-chest environment
	MDP and POMDP observation space
	History compression methods
	Training details
	Detailed results and ablation study for history versions
	Detailed results for comparison of Hopfield-RUDDER and LSTM-RUDDER.
	Detailed results for comparison of all methods.

	Minecraft Environment
	Training details
	Additional reward redistribution plots
	Observation and action representation

	Glossary

