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Abstract

We study offline reinforcement learning (RL) in the presence of safety requirements:
from a dataset collected a priori and without direct access to the true environment,
learn an optimal policy that is guaranteed to respect the safety constraints. We
address this problem by modeling the safety requirement as an unknown cost
function of states and actions, whose expected value with respect to the policy must
fall below a certain threshold. We then present an algorithm in the context of finite-
horizon Markov decision processes (MDPs), termed Safe-DPVI that performs in a
doubly pessimistic manner when 1) it constructs a conservative set of safe policies;
and 2) when it selects a good policy from that conservative set. Without assuming
the sufficient coverage of the dataset or any structure for the underlying MDPs, we
establish a data-dependent upper bound on the suboptimality gap of the safe policy
Safe-DPVI returns. We then specialize our results to linear MDPs with appropriate
assumptions on dataset being well-explored. Both data-dependent and specialized
bounds nearly match that of state-of-the-art unsafe offline RL algorithms, with
an additional multiplicative factor

∑H
h=1 αh
H , where αh characterizes the safety

constraint at time-step h. We further present numerical simulations that corroborate
our theoretical findings.

1 Introduction

Offline/Batch reinforcement learning (RL) as a method that uses previously collected datasets in many
real-world decision-making applications where obtaining new experiences is costly has received
significant attention Lange et al. (2012). For example, the outcome of a treatment in clinical trials
can be evaluated only after several years and thus, a bad decision can cause long-term damages. The
main focus of offline RL has been on two directions: 1) offline policy evaluation, which aims at
estimating value functions of a target policy, and 2) offline policy optimization, which aims to find
an optimal policy that maximizes the expected cumulative reward. A key challenge in offline RL
is to address the issue of insufficient coverage in the dataset Wang et al. (2020) due to the lack of
exploration in data collecting process. There has been a surge of research activities investigating
appropriate conditions on the data collecting process to guarantee an efficient and successful learning
either in policy evaluation or policy optimization regions. For example, see Duan et al. (2020); Yang
et al. (2020); Zhang et al. (2020); Yin and Wang (2020); Yin et al. (2021).

Most of the existing offline RL methods in the more challenging category of offline policy optimization
find a policy that under certain coverage assumptions perform well or at least as well as the behavior
policy based on which the available dataset has been collected Lange et al. (2012); Fujimoto et al.
(2019); Kumar et al. (2019); Yu et al. (2020); Rafailov et al. (2020); Jin et al. (2020b); Kumar et al.
(2020). However, the learned policy in the above-mentioned works explores all possible actions,
while freely exploring all actions may be harmful in many real-world systems where playing even one
unsafe action may lead to catastrophic results. Safety in RL has become increasingly important in
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recent years. Yet, many of existing solutions fail to strictly avoid choosing unsafe policies, which may
lead to catastrophic results in safety-critical systems. Thus, safety in offline RL has become a serious
issue that has remained unexplored and restricted the applicability of offline RL algorithms to many
risk-sensitive real-world systems. For example, in a self-driving car, it is critical to only explore those
policies that avoid crash and damage to the car, people and property. Switching cost limitations in
medical applications Bai et al. (2019) and legal restrictions in financial managements Abe et al. (2010)
are other examples of safety-critical applications. All the aforementioned safety-critical environments
introduce the new challenge of balancing the goal of reward maximization with the restriction of
playing safe actions and studying the influence of safety constraints in the sample complexity of
finding an optimal safe policy.

In this paper, we focus on a strong notion of safety requirement which is modeled as an unknown
cost function of states and actions, whose expected value with respect to the learned policy must fall
below a certain threshold at each time-step an action is played with high probability. We then propose
a Safe Doubly Pessimistic Value Iteration (Safe-DPVI) algorithm that performs pessimistically when
1) it constructs a conservative set of safe policies; and 2) when it selects a good policy from that
conservative set in the value iteration step. Without assuming the sufficient coverage of the dataset or
any structure for the underlying Markov decision processes (MDPs), we establish a data-dependent
upper bound on the suboptimality gap of the safe policy Safe-DPVI returns. We then specialize our
results to linear MDPs with appropriate assumptions on dataset being well-explored. We prove that
both data-dependent and specialized upper bounds are order-wise comparable to those of their unsafe
counter-parts.

Notation. We start by introducing a set of notations that are used throughout the paper. We use
lower-case letters for scalars, lower-case bold letters for vectors, and upper-case bold letters for
matrices. The Euclidean-norm of x is denoted by‖x‖2. We denote the transpose of any column
vector x by x>. For any vectors x and y, we use 〈x,y〉 to denote their inner product. Let A be a
positive definite d× d matrix and ν ∈ Rd. The weighted 2-norm of ν with respect to A is defined
by‖ν‖A =

√
ν>Aν. We denote the minimum and maximum eigenvalue of A by λmin(A) and

λmax(A). For positive integer n, [n] denotes the {1, 2, . . . , n}. For a real number α, we denote by
α+ the maximum of α and zero.

1.1 Problem Statement

In this section, we first introduce the standard episodic Markov decision process (MDP) which is
augmented by an extra safety/cost function and describe the data collecting process based on a
behavior policy in the underlying MDP. Then, we introduce safety constraint which must be satisfied
at all time-steps that actions are played with high probability. Finally, we introduce the performance
metric.

Episodic Markov decision process. We consider an episodic Markov decision process (MDP)
denoted by M = (S,A, H,P, R, C), where S is the state set, A is the action set, H is the length
of each episode (horizon), P = {Ph}Hh=1 are the transition probabilities, R = {Rh}Hh=1 are the
reward functions, and C = {Ch}Hh=1 are the safety/cost functions, where Rh : S × A → [0, 1]
and Ch : S × A → [0, 1]. For each time-step h ∈ [H], Ph(s′|s, a) denotes the probability of
transitioning to state s′ upon playing action a at state s. At each time-step h ∈ [H], the agent
observes the state sh, plays an action ah ∈ A, and observes the next state sh+1 ∼ Ph(.|sh, ah), a
reward rh := Rh(sh, ah) + ηh, and a cost ch := Ch(sh, ah) + εh, where ηh and εh are random
additive noise. We consider a learning problem, where S and A are known, while the transition
probabilities Ph, rewards Rh and costs Ch are unknown to the agent and must be learned from a
given dataset D. The dataset D :=

{
skh, a

k
h, r

k
h, c

k
h

}H,K
h,k=1

is collected from K i.i.d. trajectories under
a behavior policy denoted as π̄.

Safety Constraint. We assume that the underlying system is safety-critical and the environment
is subject to a side constraint that restricts the choice of policies. A policy π := {πh}Hh=1, where
πh : S → ∆A maps S to distributions over A, is called safe if

Ea∼πh(.|s)
[
Ch(s, a)

]
≤ τ, ∀(s, h) ∈ S × [H] (1)

2



with high probability. We accordingly define the unknown set of safe policies by Πsafe :={
π : πh(.|s) ∈ Γsafe

h (s), ∀(s, h) ∈ S × [H]
}

, where

Γsafe
h (s) :=

{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
Ch(s, a)

]
≤ τ

}
. (2)

Thus, after observing state sh at time-step h ∈ [H], the agent’s choice of policy must belong to
Γsafe
h (sh) with high probability. As a motivating example, consider a self-driving car. On the one

hand, the agent (car) is rewarded for getting from point one to point two as fast as possible. On the
other hand, the driving behavior must be constrained to respect traffic safety standards.

Performance Metric. We define the state-action and state value function Qπh : S × A → R and
V πh : S → R for a policy π at time-step h ∈ [H] by

Qπh(s, a) := E

 H∑
h′=h+1

rh′ (sh′ , ah′)

∣∣∣∣∣∣ sh = s, ah = a, π

 ,
V πh (s) := E

 H∑
h′=h

rh′ (sh′ , ah′)

∣∣∣∣∣∣ sh = s, π

 ,
where the expectation is over the environment and the randomness of policy π. To simplify the nota-
tion, for any function f , we denote [Phf ](s, a) := Es′∼Ph(.|s,a)f(s′) and [Bhf ](s, a) := Rh(s, a) +
[Phf ](s, a). Let π∗ be the optimal safe policy such that V π∗h (s) := V ∗h (s) = supπ∈Πsafe V πh (s) for
all (s, h) ∈ S × [H]. Thus, for all (s, a, h) ∈ S ×A× [H], the Bellman equations for the optimal
safe policy and an arbitrary policy π ∈ Πsafe are:

Q∗h(s, a) = [BhV ∗h+1](s, a), V ∗h (s) = max
θ(.|s)∈Γsafe

h (s)
Ea∼θ(.|s)

[
Q∗h(s, a)

]
(3)

Qπh(s, a) = [BhV πh+1](s, a), V πh (s) = Ea∼πh(.|s)
[
Qπh(s, a)

]
, (4)

where V πH+1(s) = V ∗H+1(s) = 0. Our goal is to learn a safe policy that maximizes the cumulative
expected reward given the collected dataset D. To this end, we define the following suboptimality
gap of a safe policy π given by the initial state s1 = s as

∆(π; s) := V ∗1 (s)− V π1 (s). (5)

1.2 Related Works

Safety in Online RL: In online setting, the problem of Safe RL formulated with Constrained
Markov Decision Process (CMDP) is studied in Efroni et al. (2020); Turchetta et al. (2020); Garcelon
et al. (2020); Zheng and Ratliff (2020); Ding et al. (2020a); Qiu et al. (2020); Ding et al. (2020b);
Xu et al. (2020); Kalagarla et al. (2020); Liu et al. (2021). In the above-mentioned papers, the goal
is to find the optimal policy in an online manner that maximizes the reward value function V πr (s)
(expected total reward) over the safe policies that satisfy V πc (s) ≤ b, where V πc (s) is the cumulative
expected cost over an entire episode with duration H and b is a threshold. This safety requirement is
defined over an entire episode, and consequently is less strict than the safety requirement considered
in this paper, which must be satisfied at each time-step an action is played.

Safety in Offline RL: The notion of safety has been used in several existing offline RL works.
However, they fundamentally differ from the definition of safety considered in our paper. For example,
safety in Laroche et al. (2019); Thomas et al. (2015); Ghavamzadeh et al. (2016) means the algorithm
returns a policy with performance at least as good as that of behavior/baseline policy, based on which
the dataset has been collected. In another line of work, Srinivasan et al. (2020); Thananjeyan et al.
(2021) empirically study safety-constrained RL problem and propose algorithms that consist of two
distinct offline and online phases and aim to find a an optimal policy for which the expected value of
the number of unsafe states visits is less than some threshold ε ∈ (0, 1) in the context of discounted
MDPs with discount factor γ. In the offline phase, they estimate the safe set of policies form an
available dataset, and then in the online phase, they seek to find the best policy based on the estimated
safe set of policies.
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Algorithm 1: Safe Doubly Pessimistic Value Iteration

Input: Dataset D =
{
skh, a

k
h, r

k
h, c

k
h

}H,K
h,k=1

1 Initialization: V̂H+1(s) = 0, ∀s ∈ S
2 for time-steps h = H, . . . , 1 do
3 Compute [B̂hV̂h+1](s, a), B′h(s, a) and Γ̂h(s), ∀(s, a) ∈ S ×A. // as defined in

Section 3.1 for underlying linear MDP.
4

5 Set Q̂h(s, a) =
{

[B̂hV̂h+1](s, a)−B′h(s, a)
}+

, ∀(s, a) ∈ S ×A.

6 Set π̂h(.|s) = arg maxθ(.|s)∈Γ̂h(s) Ea∼θ(.|s)
[
Q̂h(s, a)

]
, ∀s ∈ S.

7 Set V̄h(s) = Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, ∀s ∈ S.

8 Set V̂h(s) = min
{
V̄h(s), H

}
, ∀s ∈ S.

Output: π̂ = {π̂h}Hh=1

Per time-step vs Per Episode Safety Constraints: The definition of safety constraints studied
in all the above-stated papers is a special case of the notion of safety considered in our paper. For
example, if C(s, a) and τ in (1) are set to be the probability of transitioning to an unsafe state by
playing action a at state s and ε(1−γ) would recover the safety constraint in Thananjeyan et al. (2021)
for infinite-horizon discounted MDPs. Furthermore, in all the online safe papers, having τ = b/H in
the definition of safety constraint considered in our paper in (1) would recover V πc (s) ≤ b. Therefore,
the safety requirement considered in our paper is much stricter than those in the existing literature,
and naturally covers a wider range of applications.

2 Safe-DPVI: A General Framework for Safe Offline Policy Optimization

In this section, we formally present Safe Doubly Pessimistic Value Iteration (Safe-DPVI), summarized
in Algorithm 1, that employs the dataset and returns a safe policy π̂. We then introduce two
uncertainty quantifiers based on which, we are able to control ∆(π̂; s) and state our main results on
the suboptimality gap’s bound in Theorem 1.

First, we introduce the following assumption, which is necessary to ensure that the safety constraint
in (1) is satisfied from the very first time-step.
Assumption 1 (Non-empty safe sets). There exists a known safe policy π0 with known costs τh(s) :=
Ea∼π0

h(.|s)
[
Ch(s, a)

]
< τ . Thus, the sets Γsafe

h (s) are non-empty, as π0
h(s) ∈ Γsafe

h (s).

This assumption is rather standard and has been widely used in the literature of safe online RL Amani
et al. (2021); Liu et al. (2021) and safe bandits Amani et al. (2019); Pacchiano et al. (2021). This
assumption is also realistic in many practical examples, where the known safe policy could be the
one suggested by the current strategy of the company or a very cost-neutral policy that does not
necessarily have high reward but its cost is far from the threshold. Note that the known safe policy
π0 is not necessarily the same as the behavior policy π̄. If the behavior policy π̄ is also safe, we can
simply treat it as the known safe policy, i.e., π̄ = π0. In Appendix C, we show that it is possible to
relax the assumption of knowing the costs of the safe policy τh(s) and when π0 = π̄, this relaxation
naturally goes through.

2.1 Overview

From a high-level point of view, based on dataset D, Safe-DPVI constructs estimated cost functions
Ĉh : S × A → R, Q-functions Q̂h : S × A → R, value functions V̂h : S → R, and Bellman
operator B̂h such that [B̂hV̂h+1](s, a) approximates [BhV̂h+1](s, a). Note that the algorithm only
relies on construction of [B̂hV̂h+1](s, a) not B̂h itself. The algorithm constructs an estimated set
of safe policies Π̂ based on estimated cost functions Ĉh. To see how this happens, we first define
the following δ-safety uncertainty quantifier and δ-bellman uncertainty quantifier for δ ∈ (0, 1)
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that quantify the uncertainty arising from approximating the cost function C and [BhV̂h+1](s, a),
respectively.
Definition 1 (Uncertainty quantifiers). For a fixed δ ∈ (0, 1), we call B = {Bh}Hh=1, where

Bh : S ×A → R, a δ-safety uncertainty quantifier if P
(∣∣∣Ch(s, a)− Ĉh(s, a)

∣∣∣ ≤ Bh(s, a),

∀(s, a, h) ∈ S ×A× [H]
)
≥ 1 − δ. We also call B′ = {B′h}Hh=1, where B′h : S × A → R, a

δ-bellman uncertainty quantifier if P
(∣∣∣[B̂hV̂h+1](s, a)− [BhV̂h+1](s, a)

∣∣∣ ≤ B′h(s, a),

∀(s, a, h) ∈ S ×A× [H]
)
≥ 1− δ.

Thus, if the agent can compute a δ-safety uncertainty quantifier B based on the dataset
D and uch(s, a) = Ch(s, a) + Bh(s, a), then, a natural approximation for Πsafe is Π̂ :={
π : πh(.|s) ∈ Γ̂h(s), ∀(s, h) ∈ S × [H]

}
, where

Γ̂h(s) := π0
h(s) ∪

{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
uch(s, a)

]
≤ τ

}
. (6)

Thus, Safe-DPVI constructs Γ̂h(s) pessimistically as it relies on uch(s, a), which is an upper confi-
dence bound on Ch(s, a). Note that Γ̂h(s) is not empty as it includes π0

h(s).

Next time Safe-DPVI applies pessimism is when it computes Q̂h by incorporating δ-bellman uncer-
tainty quantifier B′ into the value iteration step as follows

Q̂h(s, a) =
{

[B̂hV̂h+1](s, a)−B′h(s, a)
}+

. (7)

After the construction of Γ̂h and Q̂h, the algorithm is ready to return the safe policy π̂ = {π̂h}Hh=1,

where π̂h(.|s) = arg maxθ(.|s)∈Γ̂h(s) Ea∼θ(.|s)
[
Q̂h(s, a)

]
, as its output. In the following theorem,

we characterize the safeness and suboptimality gap of Safe-DPVI.
Theorem 1. Fix δ ∈ (0, 0.5). Let B and B′ be δ-safety uncertainty quantifier and δ-bellman
uncertainty quantifier, respectively, π̂ be the output of Algorithm 1, αh = 2 + 2H

τ−maxs∈S τh(s) and
B̄h(s, a) := max

{
Bh(s, a), B′h(s, a)

}
. Then, under Assumption 1, with probability at least 1− 2δ,

it holds that:

1. π̂ is safe;

2. ∆(π̂; s) ≤ max
{∑H

h=1 αhE
[
B̄h(sh, ah)|s1 = s, π∗

]
,
∑H
h=1 αhE

[
B̄h(sh, ah)|s1 = s, π0

]}
.

While point 1 is directly proven from the definition of δ-safety uncertainty quantifier B in Definition
1, respectively, the proof of point 2 is more intricate and challenging. The complete proof is given in
Appendix A.3. In the following section, we give a proof sketch.

Before that, we comment on the suboptimality gap of Algorithm 1 and how it compares to that of
its unsafe counterpart in Jin et al. (2020b). The bound on PEVI’s suboptimality gap in Jin et al.
(2020b) is 2

∑H
h=1 E

[
B′h(sh, ah)|s1 = s, π∗

]
. We observe that our bound is comparable with that of

PEVI with the following differences: 1) Instead of B′h, our bound includes αhB̄h to account for the
uncertainty regarding the additional unknown safety constraints we have to deal with in our setting;
2) Moreover, we take the maximum of the expected value of the uncertainty of trajectories induced
by both the optimal safe policy π∗ and the known safe policy π0, which once again highlights the
role of the known safe policy in Safe-DPVI’s performance.

2.2 Proof Sketch of Theorem 1

For the proof of point 1, recall the definition of Γ̂h(s) in (6). Since B is a δ-safety uncertainty
quantifier, for all (s, a, h) ∈ S ×A× [H], uch(s, a) is an upper bound on Ch(s, a) with probability
at least 1 − δ. Thus, one of the following two cases occurs: 1) π̂h(.|s) = π0

h(.|s), which implies

that Ea∼π̂h(.|s)
[
Ch(s, a)

]
= τh(s) < τ ; 2) π̂h(.|s) ∈

{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
uch(s, a)

]
≤ τ

}
,
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which implies that with probability at least 1 − δ, it holds that Ea∼π̂h(.|s)
[
Ch(s, a)

]
≤

Ea∼π̂h(.|s)
[
uch(s, a)

]
≤ τ . This concludes point 1 of Theorem 1.

For the proof of point 2, we employ the definitions of uncertainty quantifiers in Definition 1. First,
consider a meta-algorithm that employs the dataset to construct an estimated Q-function Q̂h : S ×
A → R and an estimated value function V̂h : S → R. We let ιh(s, a) := [BhV̂h+1](s, a)− Q̂h(s, a)
be the model evaluation error. In the following lemma, we decompose the upper bound of the
suboptimality gap of a policy π̂ into two key terms.

Lemma 1 (Suboptimality Gap’s Upper Bound Decomposition). Let π̂ be a policy such that V̂h(s) =

min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
for all (s, h) ∈ S × [H]. Then, it holds that

∆(π̂; s) ≤ V ∗1 (s)− V̂1(s)︸ ︷︷ ︸
Term I

+

H∑
h=1

E
[
−ιh(sh, ah)

∣∣∣s1 = s, π̂

]
︸ ︷︷ ︸

Term II

.

Note that ∆(π̂; s) = V ∗1 (s)− V̂1(s) + V̂1(s)− V π̂1 (s). Thus, the proof is complete once we show
V̂1(s)− V π̂1 (s) ≤ Term II. We report the complete proof in Appendix A.1.

Now, recall that ιh(s, a) := [BhV̂h+1](s, a)− Q̂h(s, a). Thus, ιh and π̂ are correlated as they both
depend on the dataset D and thus, the expectation in Term II can be rather large. The definition of
δ-bellman uncertainty quantifier B′ and the pessimism in computation of Q̂h(s, a) helps us eliminate
Term II. Note that if [B̂hV̂h+1](s, a)−B′h(s, a) < 0, then Q̂h(s, a) = 0 and therefore −ιh(s, a) =

−[BhV̂h+1](s, a) ≤ 0 as V̂h(s) ≥ 0 for all (s, h) ∈ S × [H]. Now, suppose [B̂hV̂h+1](s, a) −
B′h(s, a) ≥ 0. Since B′ is a δ-bellman uncertainty quantifier, we have

−ιh(s, a) = Q̂h(s, a)− [BhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−B′h(s, a)− [BhV̂h+1](s, a)

≤ 0.

This concludes that for all (s, a, h) ∈ S × A × [H], with probability at least 1 − δ, it holds that

−ιh(s, a) ≤ 0, and therefore Term II =
∑H
h=1 E

[
−ιh(sh, ah)

∣∣∣s1 = s, π̂

]
≤ 0.

Our main technical contribution towards bounding ∆(π̂; s) is given in the following lemma that is
used to prove the more challenging point 2 of Theorem 1.

Lemma 2. Fix δ ∈ (0, 0.5). Let B and B′ be δ-safety uncertainty quantifier and δ-bellman
uncertainty quantifier, respectively. Also, let B̄h(s, a) = max

{
Bh(s, a), B′h(s, a)

}
and

Fh(s) := max


H∑

h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗

]
,

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π0

] .

Then, under Assumption 1 and provided that αh = 2 + 2H
τ−maxs∈S τh(s) , with probability at least

1− 2δ, it holds that

V ∗h (s)− V̂h(s) ≤ Fh(s), ∀(s, h) ∈ S × [H]. (8)

In safe off-policy optimization, the safe set Πsafe is not known. Therefore, at each time-step, the
agent’s policy must be chosen from a conservative inner approximation of Πsafe. Intuitively, the
better this approximation is, the more likely that the output policy of Safe-DPVI leads to small
suboptimality gap, ideally of the same order as that of PEVI proposed by Jin et al. (2020b) in the
classical offline RL setting.
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In order to better highlight the challenging part of our analysis compared to classi-
cal setting without safety constraint, we observe that for all (s, h) ∈ S × [H], with
probability at least 1 − δ, it holds that V ∗h (s) − V̂h(s) ≤ Term i + Term ii, where

Term i = min

{
Ea∼π∗h(.|s)

[
Q̂h(s, a)

]
, H

}
− min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
and Term ii =

Ea∼π∗h(.|s)

[
2B′h(s, a)−

[
Ph
(
V̂h+1 − V ∗h+1

)]
(s, a)

]
.

A key difference in the analysis of Safe-DPVI compared to the classical offline RL without safety
constraint is that π∗h(.|sh) may not lie within the estimated safe set Γ̂h(sh), which makes controlling
Term i and Term ii more delicate. This complication lies at the heart of the new formulation with
additional safety constraints. When safety constraints are absent, classical pessimistic offline RL
algorithms such as PEVI in Jin et al. (2020b) guarantee that Term i is non-positive and by induction
it can be shown that Term ii≤ 2

∑H
h′=h E

[
B′h′(sh′ , ah′)|sh = s, π∗

]
. Unfortunately, this is not the

case here as π∗h(.|sh) does not necessarily belong to Γ̂h(sh), thus Term i can be positive, which also
affects the bound on Term ii. This extra positive term in the suboptimality gap is the price paid by
Safe-DPVI for choosing safe policies at each time-step h ∈ [H]. The proof of Lemma 2 is given in
Appendix A.2.

Employing the results in Lemmas 1 and 2, and under the setting of Theorem 1, we are now ready to
bound the suboptimality gap ∆(π̂; s) by F1(s), which concludes the proof of point 2 of Theorem 1.

3 Safe-DPVI: Linear MDP

In this section, we specialize Safe-DPVI and its theoretical guarantees to the case where the underlying
MDP is linear Bradtke and Barto (1996); Yang and Wang (2019); Jin et al. (2020a). We further
determine sufficient conditions that allow us to derive finite sample complexity for Safe-DPVI with
an underlying linear MDP.
Definition 2 (Linear MDP ). M = (S,A, H,P, R, C) is a linear MDP with feature map φ : S×A →
Rd, if for any h ∈ [H], there exist d unknown measures µ∗h := [µ∗h

(1), . . . , µ∗h
(d)]> over S, and

unknown vectors θ∗h, ζ
∗
h ∈ Rd such that Ph(.|s, a) =

〈
µ∗h(.),φ(s, a)

〉
, Rh(s, a) =

〈
θ∗h,φ(s, a)

〉
,

and Ch(s, a) =
〈
ζ∗h,φ(s, a)

〉
.

3.1 Overview

We introduce the quantities that Safe-DPVI constructs based on the dataset D when the underlying
MDP is linear. Recall that Γ̂h(s) in (6) depends on Ĉh(s, a), an approximation of Ch(s, a), and
Bh(s, a). In particular, Safe-DPVI constructs

Ĉh(s, a) =
〈
ζ̂h,φ(s, a)

〉
, (9)

where ζ̂h := arg minν∈Rd
∑K
k=1

(〈
ν,φ(skh, a

k
h)
〉
− ckh

)2

+ λ‖ν‖22 is the least square estimator of

ζ∗h with regularization parameter λ > 1 and has the closed form

ζ̂h := Λ−1
h

 K∑
k=1

φ(skh, a
k
h). ckh

 , (10)

where Λh = λI +
∑K
k=1 φ(skh, a

k
h)φ(skh, a

k
h)>. Moreover, Safe-DPVI computes

[B̂hV̂h+1](s, a) =
〈
ŵh,φ(s, a)

〉
, Bh(s, a) = β

∥∥φ(s, a)
∥∥

Λ−1
h

, B′h(s, a) = β′
∥∥φ(s, a)

∥∥
Λ−1
h

,

(11)
where ŵh is the minimizer of the empirical mean squared Bellman error (MSBE), with closed form

ŵh := Λ−1
h

 K∑
k=1

φ(skh, a
k
h).
[
rkh + V̂h+1(skh+1)

] , (12)

and β, β′ > 0 are scaling parameters that will be defined shortly in Theorem 2.
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3.2 Theoretical guarantees

Now, we specialize our results in Theorem 1 to the case of linear MDP and provide a sample
complexity for Safe-DPVI when the underlying MDP is linear and certain conditions hold. First,
we make the remaining necessary assumptions under which our proposed algorithm operates and
achieves small suboptimality gap.
Assumption 2 (Subgaussian Noise). For all (h, k) ∈ [H] × [K], ηkh and εkh are zero-mean σ-
subGaussian random variables.
Assumption 3 (Boundedness). Without loss of generality,

∥∥φ(s, a)
∥∥

2
≤ 1 for all (s, a) ∈ S × A,

and max
(∥∥µ∗h(S)

∥∥
2
,
∥∥θ∗h∥∥2

,
∥∥ζ∗h∥∥2

)
≤
√
d for all h ∈ [H].

Assumption 4 (Well-Explored Dataset). There exists an absolute constant c̄ > 0 such that
λmin(Σh) ≥ c̄, ∀h ∈ [H], where Σh = Eπ̄

[
φ(sh, ah)φ(sh, ah)>

]
and Eπ̄ is the expectation

taken with respect to the trajectory induced by behavior policy π̄.

Assumptions 2 and 3 are standard in linear MDP and bandit literature Jin et al. (2020a); Pacchiano
et al. (2021); Amani et al. (2019). Assumption 4 is necessary to ensure that the data collecting process
has sufficiently explored A and S. This assumption is standard in the literature of offline policy
optimization/evaluation; e.g., see Jin et al. (2020b); Duan et al. (2020).

Given these assumptions, we are now ready to present the formal theoretical guarantees of Safe-DPVI,
with underlying linear MDP defined in Definition 2, in the following theorem.
Theorem 2 (Suboptimality gap of Safe-DPVI: Linear MDP). Let the underlying MDP of Safe-
DPVI be a linear MDP as stated in Definition 2, π̂ be the output of Safe-DPVI and αh = 2 +

2H
τ−maxs∈S τh(s) . Under Assumptions 1, 2, 3, and 4, if we set β = σ

√
d log

(
2+ 2T

λ

δ

)
+
√
λd, β′ =

cdH
√

log(dTδ ) for an absolute constant c > 0, β̄ = max{β, β′}, then for any fixed δ ∈ (0, 1/3), for

all s ∈ S, with probaility at least 1− 3δ, π̂ ∈ Πsafe and it holds that

∆(π̂; s) ≤
√

2β̄
∑H
h=1 αh√

2λ+ c̄K
(13)

We observe that under similar wide-coverage assumption (Assumption 4), Safe-DPVI with underlying
linear MDP achieves an upper bound on suboptimality gap of the safe policy π̂, which is nearly of
the same order as that of state-of-the-art unsafe algorithm PEVI in Jin et al. (2020b). The complete
proof is reported in the Appendix B. In the following section, we give a sketch of the proof.

3.3 Proof sketch of Theorem 2

We make use of Theorem 1, which is stated for general MDPs, to prove Theorem 2 in two steps:
1) We first state Lemma 3, in which we specify B and B′ such that they are δ-safety uncertainty
quantifier and δ-bellman uncertainty quantifier as in Definition 1 for the corresponding to the linear
MDP in Definition 2; 2) Next, we lower bound λmin(Λh) for each h ∈ [H] in Lemma 4, which is
followed by a high probability upper bound on B̄h(s, a) for all (s, a, h) ∈ S ×A× [H].
Lemma 3 (Theorem 2 in Abbasi-Yadkori et al. (2011) and Lemma 5.2 in Jin et al. (2020b)). Let
the underlying MDP of Safe-DPVI be a linear MDP as in Definition 2. Under Assumptions 2
and 3, if we set Bh(s, a) = β

∥∥φ(s, a)
∥∥

Λ−1
h

and B′h(s, a) = β′
∥∥φ(s, a)

∥∥
Λ−1
h

, where β =

σ

√
d log

(
2+ 2K

λ

δ

)
+
√
λd and β′ = cdH

√
log(dKδ ) for an absolute constant c > 0, then B and B′

are δ-safety uncertainty quantifier and δ-bellman uncertainty quantifier as in Definition 1.
Lemma 4. Let δ ∈ (0, 1) and Assumption 4 holds. If K ≥ 8

c̄ log(dHδ ), then

P
(
λmin(Λh) ≥ λ+ c̄K

2 , ∀h ∈ [H]
)
≥ 1− δ.

See Appendix B.1 for the proof. As a direct conclusion of Lemma 4, we upper bound B̄h(s, a)
for all (s, a, h) ∈ S × A × [H]. In particular, Assumption 3 and Lemma 4 imply that for all
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Figure 1: Performance of Safe-DPVI with an underlying linear MDP on Inverted Pendulum. The
shaded regions show standard deviation around the average over 100 realizations.

(s, a, h) ∈ S ×A× [H] with probability at least 1− δ, it holds that∥∥φ(s, a)
∥∥

Λ−1
h

≤
∥∥φ(s, a)

∥∥
2

√
λmax

(
Λ−1
h

)
=
∥∥φ(s, a)

∥∥
2

√
1

λmin (Λh)
≤
√

2

2λ+ c̄K
.

Now that we have established B and B′, and therefore B̄ as defined in Theorem 1, and obtained an
upper bound on

∥∥φ(s, a)
∥∥

Λ−1
h

under Assumption 4, for when the underlying MDP of Safe-DPVI is
linear, we are able to exploit the results stated in Theorem 1 to establish the final bound on ∆(π̂; s)
while π̂ ∈ Πsafe with high probability in Theorem 2.

4 Experiments

In this section, we present numerical simulations to complement and confirm our theoretical findings.
We apply Safe-DPVI to the control of a simulated Inverted Pendulum environment from OpenAI
Gym Brockman et al. (2016). We consider a pendulum with mass m = 1, length l = 1, which is
actuated by torque u ∈ [−15, 15]. The environment’s state is described by the pendulum’s angular
position θ ∈ [−π, π] and its angular rate θ̇ ∈ [−5, 5]. The system dynamics are defined as follows

θh+1 = θh + θ̇hδh+
3g

2l
sin(θt)δh

2 +
3

ml2
uδh2,

θ̇h+1 = θ̇h +
3g

2l
sin(θh)δh+

3

ml2
uδh, (14)

where g = 9.8 is the gravity constant and δh is the simulation step and we set it to 1.

For real numbers a and b and positive integer number n, let Disc([a, b], n) be a discretized set formed
of uniformly dividing [a, b] into n intervals. We discretize the continuous state and action spaces
and consider that S = Disc([−π, π], 10) × Disc([−5, 5], 5) and A = Disc([−15, 15], 15). Thus,
|S| = 50 and |A| = 15. For any s ∈ S, let s(1) and s(2) be the corresponding pendulum’s angular
position and pendulum’s angular rate.

We consider that the transition probability P, the reward R, and the cost C do not vary during an
episode. In order to induce stochasticity and parametrize P(s′|s, a), we assumed that when a torque
a is chosen, an additive random torque affects it. In particular, we considered that P(s′|s, a) = 0.8
for s′ being the closest element of S to the next state of playing torque a at pendulum’s angular
position s(1) and pendulum’s angular rate s(2) according to system’s dynamics in (14). Moreover,
P(s′|s, a) = 0.2/4 for s′ being the closest element of S to the next state of playing torque a+ i, i ∈
{−6,−3, 3, 6} at pendulum’s angular position s(1) and pendulum’s angular rate s(2) according
to (14). We also let R(s, a) = c − s(1)2 + 0.1s(2)2 + 0.001a2 for all (s, a) ∈ S × A, where c
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is a constant that makes the rewards positive, and divided them by max(s,a)∈S×AR(s, a). This
definition for the reward function encourages learning a controller that keeps the pendulum upright.
We further defined the set of unsafe states as Sunsafe =

{
s ∈ S : s(1) /∈ [−π/3, π/3]

}
and specified

C(s, a) =
∑
s′∈Sunsafe P(s′|s, a), and τ = 0.01. Therefore a safe policy ensures that the expected

value of the probability of moving to an unsafe state is a small value (τ = 0.01). We consider an
underlying linear MDP with random feature maps φ(s, a) of dimension d = |S||A|, and episode
length H = 100.

The performance of Batch RL algorithms can vary greatly from one dataset to another. To properly
assess Safe-DPVI, we repeated the following for 100 times: 1) fixed a randomly selected safe
behavior policy, π̄, used in the data collecting process, and created datasets with size K = 1000,
K = 10000, and K = 100000, on Inverted Pendulum environment discussed above; 2) implemented
Safe-DPVI on each of these three datasets, and employed the output policies for 100 episodes with
randomly selected initial state; 3) reported the per-episode reward and success rate, number of
time-steps the pendulum was in safe states during an episode divided by the duration of each episode
H = 100, for each of the output policies. The results shown in Figure 1 depict averages over these
100 realizations, for which we have chosen δ = 0.01, σ = 0.05, λ = 1. In this figure, we have
numerically confirmed the result of Theorem 2. Figure 1a showcases that the output policy π̂ is safe
with high probability, and therefore the rate of unsafe states visits is low (success rate is high) and
Figure 1b confirms that π̂, for sufficiently large datasets that satisfy wide-coverage assumption (see
Assumption 4), performs near-optimally and better than the behavior policy π̄.

5 Conclusion

In this paper, we developed Safe-DPVI, a safe offline RL algorithm in the setting of episodic MDPs,
that performs in a pessimistic manner when 1) it constructs a conservative set of safe policies;
and 2) when it selects a good policy from that conservative set in the value iteration step. We
guaranteed that Safe-DPVI outputs a policy π̂ which is strictly safe in the sense that it respects
the safety constraint at each time-step that it suggests an action to be played with high probability.
Without assuming the sufficient coverage of the dataset or any structure for the underlying MDPs,
we first established a data-dependent upper bound on the suboptimality gap of the safe policy Safe-
DPVI returns. Then, we specialized our results to linear MDPs with appropriate assumptions on
dataset being well-explored and proved a high probability upper bound on the suboptimality gap
of π̂, i.e., ∆(π̂; s) ≤

√
2β̄

∑H
h=1 αh√

2λ+c̄K
, ∀s ∈ S, which is order-wise comparable to those of its unsafe

counter-parts. Finally, we implemented Safe-DPVI on Inverted Pendulum environment to empirically
confirm our theoretical findings. It is an exciting future direction to find sample complexity for safe
offline RL using richer function approximations with milder assumptions on realizability (that the
underlying MDP is linear) and under appropriate assumptions on the exploratoriness of the dataset
that hold in practice.
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A Analysis of Safe-DPVI

In this section, we first prove Lemma 1 and then prove the three points stated in Theorem 1.

A.1 Proof of Lemma 1

First, we summarize Lemma A.1 in Jin et al. (2020b) and Lemma 4.2 in Cai et al. (2020) in the
following lemma.
Lemma 5. Let π and π′ be two arbitrary policies and let Q be any given Q-function such that
Vh(s) = Ea∼πh(.|s)

[
Qh(s, a)

]
for all (s, h) ∈ S × [H]. Then

V1(s)− V π
′

1 (s) =

H∑
h=1

E
[
Ea∼πh(.|sh)

[
Qh(sh, a)

]
− Ea∼π′h(.|sh)

[
Qh(sh, a)

] ∣∣∣s1 = s, π′
]

+

H∑
h=1

E
[
Qh(sh, ah)− [BhVh+1](sh, ah)

∣∣∣s1 = s, π′
]
. (15)

Recall the definition of suboptimality gap ∆(π; s) in (5). We have

∆(π̂; s) = V ∗1 (s)− V̂1(s)︸ ︷︷ ︸
Term I

+V̂1(s)− V π̂1 (s). (16)

Let π = π′ = π̂. Thus, applying Lemma 5, we have

V̂1(s)− V π̂1 (s) = min

{
Ea∼π̂1(.|s)

[
Q̂1(s, a)

]
, H

}
− V π̂1 (s)

≤ Ea∼π̂1(.|s)

[
Q̂1(s, a)

]
− V π̂1 (s)

=

H∑
h=1

E
[
Q̂h(sh, ah)− [BhV̄h+1](sh, ah)

∣∣∣s1 = s, π̂

]

≤
H∑
h=1

E
[
Q̂h(sh, ah)− [BhV̂h+1](sh, ah)

∣∣∣s1 = s, π̂

]

=

H∑
h=1

E
[
−ιh(sh, ah)

∣∣∣s1 = s, π̂

]
= Term II. (17)

A.2 Proof of Lemma 2

First note that

[B̂hV̂h+1](s, a)− [BhV̂h+1](s, a) = [B̂hV̂h+1](s, a)−Rh(s, a)− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπh(s, a) +Qπh(s, a)−Rh(s, a)− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπh(s, a) +Rh(s, a) + [PhV πh+1](s, a)−Rh(s, a)− [PhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−Qπh(s, a)−
[
Ph
(
V̂h+1 − V πh+1

)]
(s, a).

(18)

Thus, if B′ is a δ-bellman uncertainty quantifier, then for any policy π and (s, a, h) ∈ S ×A× [H],
with probability at least 1− δ, it holds that∣∣∣∣∣[B̂hV̂h+1](s, a)−Qπh(s, a)−

[
Ph
(
V̂h+1 − V πh+1

)]
(s, a)

∣∣∣∣∣ ≤ B′h(s, a). (19)
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Now, we start the formal proof of the lemma. We prove this lemma by induction. First, we prove the
base case at time-step H + 1. The statement holds for H + 1 because FH+1(s) = 0 = V ∗H+1(s) =

V̂H+1(s) = 0. Now, suppose the statement holds for time-step h + 1. We prove it also holds for
time-step h. We consider the following two cases:

1) If π∗h(.|s) ∈ Γ̂h(s), we have

V̂h(s) + Fh(s) = min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗

]
≥ min

{
Ea∼π∗h(.|s)

[
Q̂h(s, a)

]
, H

}
+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗

]

≥ min

Ea∼π∗h(.|s)

[
Q∗h(s, a) +

[
Ph
(
V̂h+1 − V ∗h+1

)]
(s, a)− 2B′h(s, a)

]
, H


+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗

]
(Eqn. (19))

≥ min
{
Ea∼π∗h(.|s)

[
Q∗h(s, a) + αhB̄h(s, a)− 2Bh(s, a)

]
, H
}

(Induction assumption)

≥ min
{
Ea∼π∗h(.|s)

[
Q∗h(s, a) + (αh − 2)B̄h(s, a)

]
, H
}

= min
{
V ∗h (s), H

}
(F)

= V ∗h (s).

F is true because αh ≥ 2.

2) Now, we focus on the other case when π∗h(.|s) /∈ Γ̂h(s), which means
Ea∼π∗h(.|s)

[
uch(s, a)

]
> τ. (20)

Let π̃h(.|s) := γh(s)π∗h(.|s) + (1− γh(s))π0
h(.|s), where

γh(s) :=
{

max γ ∈ [0, 1] : γπ∗h(.|s) + (1− γ)π0
h(.|s) ∈ Γ̂h(s)

}
. (21)

Now, we show that γh(s) ≥ τ−τh(s)

τ−τh(s)+2Ea∼π∗
h
(.|s)[B̄h(s,a)]

, which eventually leads to a proper value for

αh that guarantees for all s ∈ S , with probability at least 1−2δ, it holds that V̂h(s)+Fh(s) ≥ V ∗h (s).
Definitions of γh(s) in (21) and the estimated safe set Γ̂h(s) in (6) imply that

Ea∼π̃h(.|s)
[
uch(s, a)

]
= γh(s)Ea∼π∗h(.|s)

[
uch(s, a)

]
+ (1− γh(s))Ea∼π0

h(.|s)
[
uch(s, a)

]
= γh(s)Ea∼π∗h(.|s)

[
uch(s, a)

]
+ (1− γh(s))τh(s)

≤ τ. (22)
Thus

0 < γh(s) =
τ − τh(s)

Ea∼π∗h(.|s)
[
uch(s, a)

]
− τh(s)

< 1. (23)

Recall the definition of Γsafe
h (s) in (2) and note that π∗h(.|s) ∈ Γsafe

h (s). Due to the definition δ-safety
uncertainty quantifier B, for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ, it holds that

Ea∼π∗h(.|s)
[
uch(s, a)

]
≤ Ea∼π∗h(.|s)

[
Ĉh(s, a) +Bh(s, a)

]
≤ Ea∼π∗h(.|s)

[
Ch(s, a) + 2Bh(s, a)

]
≤ τ + 2Ea∼π∗h(.|s)

[
Bh(s, a)

]
(π∗h(.|s) ∈ Γsafe

h (s))

≤ τ + 2Ea∼π∗h(.|s)
[
B̄h(s, a)

]
. (24)
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Combining (23) and (24), we conclude that

γh(s) ≥ τ − τh(s)

τ − τh(s) + 2Ea∼π∗h(.|s)
[
B̄h(s, a)

] . (25)

We have

V̂h(s) + Fh(s) = min

{
Ea∼π̂h(.|s)

[
Q̂h(s, a)

]
, H

}
+ Fh(s)

= min

{
Ea∼π̂h(.|s)

[{
[B̂hV̂h+1](s, a)−B′h(s, a)

}+
]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̃h(.|s)

[{
[B̂hV̂h+1](s, a)−B′h(s, a)

}+
]
, H

}
+ Fh(s)

≥ min

{
Ea∼π̃h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
, H

}
+ Fh(s)

= min

{
γh(s)Ea∼π∗h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+(1− γh(s))Ea∼π0

h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
, H

}
+ Fh(s)

≥ min

{
γh(s)

(
Ea∼π∗h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+ Fh(s)

)

+(1− γh(s))

(
Ea∼π0

h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+ Fh(s)

)
, H

}

≥ min

{
γh(s)

(
Ea∼π∗h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+ Fh(s)

)
, H

}
(F)

≥ min
{
γh(s)Ea∼π∗h(.|s)

[
Q∗h(s, a) + (αh − 2)B̄h(s, a)

]
, H
}
. (FF)

F is true because (1− γh(s)) ≥ 0 and

Ea∼π0
h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+ Fh(s) ≥ Ea∼π0

h(.|s)

[
Q0
h(s, a) +

[
Ph
(
V̂h+1 − V 0

h+1

)]
(s, a)− 2B′h(s, a)

]
+ Fh(s)

(Equation (19))

≥ Ea∼π0
h(.|s)

[
Q0
h(s, a) +

[
Ph
(
V̂h+1 − V 0

h+1

)]
(s, a)− 2B′h(s, a)

]

+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π0

]
(Equation (8))

≥ Ea∼π0
h(.|s)

[
Q0
h(s, a) + αhB̄h(s, a)− 2B′h(s, a)

]
(Induction assumption)

≥ Ea∼π0
h(.|s)

[
Q0
h(s, a) + (αh − 2)B̄h(s, a)

]
≥ Ea∼π0

h(.|s)

[
Q0
h(s, a)

]
(αh ≥ 2)

≥ 0.

FF is true because
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Ea∼π∗h(.|s)

[
[B̂hV̂h+1](s, a)−B′h(s, a)

]
+ Fh(s) ≥ Ea∼π∗h(.|s)

[
Q∗h(s, a) +

[
Ph
(
V̂h+1 − V ∗h+1

)]
(s, a)− 2B′h(s, a)

]
+ Fh(s)

(Equation (19))

≥ Ea∼π∗h(.|s)

[
Q∗h(s, a) +

[
Ph
(
V̂h+1 − V ∗h+1

)]
(s, a)− 2B′h(s, a)

]

+

H∑
h′=h

αh′E
[
B̄h′(sh′ , ah′)|sh = s, π∗

]
(Equation (8))

≥ Ea∼π∗h(.|s)
[
Q∗h(s, a) + αhB̄h(s, a)− 2B′h(s, a)

]
(Induction assumption)

≥ Ea∼π∗h(.|s)
[
Q∗h(s, a) + (αh − 2)B̄h(s, a)

]
.

Now, we continue from FF and observe that V̂h(s) + Fh(s) ≥ V ∗h (s) if and only if

γh(s)Ea∼π∗h(.|s)
[
Q∗h(s, a) + (αh − 2)B̄h(s, a)

]
≥ V ∗h (s)

(25)⇐⇒
(
τ − τh(s)

)
V ∗h (s) +

(
τ − τh(s)

)
Ea∼π∗h(.|s)

[
(αh − 2)B̄h(s, a)

]
τ − τh(s) + 2Ea∼π∗h(.|s)

[
B̄h(s, a)

] ≥ V ∗h (s)

⇐⇒ (αh − 2)
(
τ − τh(s)

)
Ea∼π∗h(.|s)

[
B̄h(s, a)

]
≥ 2Ea∼π∗h(.|s)

[
B̄h(s, a)

]
V ∗h (s)

H≥V ∗h (s)⇐⇒ (αh − 2)
(
τ − τh(s)

)
Ea∼π∗h(.|s)

[
B̄h(s, a)

]
≥ 2Ea∼π∗h(.|s)

[
B̄h(s, a)

]
H

⇐⇒ αh ≥ 2 +
2H

τ − τh(s)

as desired.

A.3 Proof of Theorem 1

Proof of point 1 of Theorem 1 Recall the definition of Γ̂h(s) in (6). Since B is a δ-safety
uncertainty quantifier, thus for all (s, a, h) ∈ S ×A× [H], uch(s, a) is an upper bound on Ch(s, a)
with probability at least 1− δ. Thus, one of the following two cases occurs:

1. π̂h(.|s) = π0
h(.|s), which implies that

Ea∼π̂h(.|s)
[
Ch(s, a)

]
= τh(s) < τ. (26)

2. π̂h(.|s) ∈
{
θ(.|s) ∈ ∆A : Ea∼θ(.|s)

[
uch(s, a)

]
≤ τ

}
, which implies that with probability

at least 1− δ, it holds that

Ea∼π̂h(.|s)
[
Ch(s, a)

]
≤ Ea∼π̂h(.|s)

[
uch(s, a)

]
≤ τ, (27)

This concludes point 1 of Theorem 1.

Proof of point 2 of Theorem 1 Note that if [B̂hV̂h+1](s, a) − B′h(s, a) < 0, then Q̂h(s, a) = 0

and therefore −ιh(s, a) = −[BhV̂h+1](s, a) ≤ 0. Now, suppose [B̂hV̂h+1](s, a) − B′h(s, a) ≥ 0.
Since B′ is a δ-bellman uncertainty quantifier, we have

−ιh(s, a) = Q̂h(s, a)− [BhV̂h+1](s, a)

= [B̂hV̂h+1](s, a)−B′h(s, a)− [BhV̂h+1](s, a)

≤ 0.

This concludes that for all (s, a, h) ∈ S × A × [H], with probability at least 1 − δ, it holds that
−ιh(s, a) ≤ 0, and therefore
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Term II =

H∑
h=1

E
[
−ιh(sh, ah)

∣∣∣s1 = s, π̂

]
≤ 0. (28)

Now, we are ready to use Lemma 2 and (28) to complete the proof of point 2 as follows

V ∗h (s)− V̂h(s) ≤ F1(s) = max


H∑
h=1

αhE
[
B̄h(sh, ah)|s1 = s, π∗

]
,

H∑
h=1

αhE
[
B̄h(sh, ah)|s1 = s, π0

] ,

(29)
as desired.

B Analysis of Safe-DPVI: Linear MDP

In this section, we prove the technical statements in Section 3.

B.1 Proof of Lemma 4

In order to bound the minimum eigenvalue of the Gram matrix Λh, we use the Matrix Chernoff
Inequality (Tropp, 2015, Thm. 5.1.1).
Theorem 3 (Matrix Chernoff Inequality, Tropp (2015)). Consider a finite sequence {Xk} of inde-
pendent, random, symmetric matrices in Rd×d. Assume that λmin(Xk) ≥ 0 and λmax(Xk) ≤ L for
each index k. Introduce the random matrix Y =

∑
kXk. Let µmin denote the minimum eigenvalue

of the expectation E[Y],

µmin = λmin

(
E[Y]

)
= λmin

∑
k

E[Xk]

 .

Then, for any ε ∈ (0, 1), it holds,

P
(
λmin(Y) ≤ εµmin

)
≤ d · exp

(
−(1− ε)2µmin

2L

)
.

Completing the Proof of Lemma 4. Let Xk = φ(skh, a
k
h)φ(skh, a

k
h)>, such that each Xk is a

symmetric matrix with λmin(Xk) ≥ 0 and λmax(Xk) ≤ 1 (see Assumption 3). In this notation,
Λh = λI +

∑K
k=1 Xk. In order to apply Theorem 3, we compute

µmin := λmin

 K∑
k=1

E[Xk]

 = λmin

 K∑
k=1

E[φ(skh, a
k
h)φ(skh, a

k
h)>]

 = λmin (KΣh) ≥ c̄K,

where the last inequity follows from Assumption 4. Thus, the theorem implies the following for any
ε ∈ [0, 1):

P

λmin(

K∑
k=1

Xk) ≤ εc̄K

 ≤ d · exp

(
−(1− ε)2 c̄K

2

)
. (30)

To complete the proof of the lemma, simply choose ε = 0.5 (say) and K ≥ 8
c̄ log(dHδ ) in (30). This

gives P
(
λmin(Λh) ≥ λ+ c̄K

2 , ∀h ∈ [H]
)
≥ 1− δ, as desired.

B.2 Proof of Theorem 2

A direct conclusion of Lemma 4, Assumption 3 and Lemma 4 imply that for all (s, a, h) ∈ S×A×[H]
with probability at least 1− δ, it holds that∥∥φ(s, a)

∥∥
Λ−1
h

≤
∥∥φ(s, a)

∥∥
2

√
λmax

(
Λ−1
h

)
=
∥∥φ(s, a)

∥∥
2

√
1

λmin (Λh)
≤
√

2

2λ+ c̄K
, (31)
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and thus

P

(
F ≤ β̄

√
2√

2λ+ c̄K

)
≥ 1− δ. (32)

Now that we have established B and B′ and obtained an upper bound on
∥∥φ(s, a)

∥∥
Λ−1
h

under
Assumption 4, for when the underlying MDP of Safe-DPVI is linear, we are able to exploit the results
stated in Theorem 1 to establish the final bound on ∆(π̂; s) while π̂ ∈ Πsafe with high probability in
Theorem 2 to conclude that

P

(
∆(π̂; s) ≤

√
2β̄
∑H
h=1 αh√

2λ+ c̄K
, ∀s ∈ S and π̂ ∈ Πsafe

)
≥ 1− 3δ. (33)

C Unknown τh(s)

In this section, we relax Assumption 1, and instead assume that we only have the knowledge of a safe
policy π0, and remove the assumption on the knowledge about the costs τh(s).

In this case, we compute a conservative estimation of the gap τ − τh(s) in an adaptive manner. We
show that the agent needs N samples of each tuple (s, a, Ch(s, a0(s)) + εh) in the dataset that are
collected by executing policy π0 in order to be able to construct this conservative estimators of the
gap τ − τh(s), and thereafter rely on these conservative estimates in the computation of estimated
safe set of policies (discussed shortly). We show that if 16 log(K)

(τ−τh(s))2 ≤ N ≤
64 log(K)

(τ−τh(s))2 , then the agent
is able to construct these conservative estimates.

Let k be the number of times policy π0 has been executed in the dataset, and τ̂h(s) be the empirical
mean estimator of τh(s). Then, for any δ ∈ (0, 1), we have

P
(
τh(s) ≤ τ̂h(s) +

√
2 log(1/δ)/k

)
≥ 1− δ. (34)

If we let δ = 1/K2, then we have

P
(∣∣τ̂h(s)− τh(s)

∣∣ ≤ 2
√

log(K)/k, ∀k ∈ [K]
)
≥ 1− 2/K. (35)

We start from the first sample of (s, a, Ch(s, a) + εh) and continue to update the empirical mean
τ̂h(s). Let N be the first time that τ̂h(s) + 6

√
log(K)/N ≤ τ . Thus, we have

τh(s) + 4
√

log(K)/N ≤ τ ⇒ 16 log(K)

(τ − τh(s))2
≤ N. (36)

Note that in this case 4
√

log(K)/N is a conservative estimation for τ − τh(s). Thus, we have

τh(s) + 4
√

log(K)/N ≤ τ ⇒ 16 log(K)

(τ − τh(s))2
≤ N. (37)

Now we show that it will not take much more number of this tuple than 16 log(K)
(τ−τh(s))2 that this first time

happens. Conversely, for any N ≥ 64 log(K)
(τ−τh(s))2 , we observe that

τ̂h(s) + 6
√

log(K)/N ≤ τh(s) + 8
√

log(K)/N ≤ τ. (38)

Therefore, we conclude that

16 log(K)

(τ − τh(s))2
≤ N ≤ 64 log(K)

(τ − τh(s))2
, (39)

and 4
√

log(K)/N is a conservative estimator for τ − τh(s).
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