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Abstract

Large-scale Web-based services present opportunities for improving UI policies
based on observed user interactions. We address challenges of learning such
policies through model-free offline Reinforcement Learning (RL) with off-policy
training on logged data. Deployed in a production system for user authentication
in a major social network, it significantly improves long-term objectives. We
articulate practical challenges, compare several ML techniques, provide insights
on training and evaluation of offline RL models, and discuss generalizations.

1 Introduction

For Web-based services with numerous customers, such as social networks, UI decisions impact
top-line metrics, such as user engagement, costs and revenues. Supervised Learning methods have
shown promising results [24, 4] on optimizing such decisions, but they mainly focus on immediate
metrics such as the click-through rate [12] and conversion rate [16]. However, long-term cumulative
objectives make it challenging to label each decision for training.

As an illustration, consider online user authentication for a Web-based service, routinely performed
many times per day/month. When a user mistypes or forgets her password, the service can loop
back to the login prompt or offer another login channel, authorization code via SMS (Short Message
Service), etc. The scale of the social network makes monetary cost significant. Some users get their
password right on the second try or look it up but others give up, and this is reflected in daily/monthly
user engagement. Deciding when to authenticate requires real-time personalization with consideration
for long-term cost and engagement metrics (daily/monthly active users and monetary cost).

Reinforcement Learning (RL) [21] seeks an optimal policy to maximize a long-term reward, and
thus helps drive real-time personalized decisions [22]. In RL research, it is common to assume
access to direct online interactions with the environment for the RL agent. Here, the RL agent’s
environment is an individual online user, and the personalized serving procedure is modeled via
sequential agent-environment interactions. To this end, training RL agents online may undermine
user experience and/or incur large costs.

In this work, we use Offline RL to improve personalized authentication for a Web-based service. We
avoid the pitfalls of online trial-and-error by training on prior logged experiences through off-policy
learning. After having given careful consideration to the non-sequential formulation of the problem
with Supervised Learning, we formalize the problem as a Markov decision process (MDP) [18],
where the RL agent learns a personalized policy, i.e., when to send an authentication message to the
user after a failed login attempt. The training process optimizes long-term user engagement and the
service’s authentication costs. We avoid making decisions based on a majority of action sequences,
as in our application monetary costs are incurred by a minority of sequences. To ensure effective
offline training, we use several training heuristics, then evaluate performance of the learned candidate
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policies via an unbiased off-policy estimator. The best learned policy is chosen, and the ε-greedy
version of it with a non-zero exploration level for future training purposes, is evaluated in online
A/B tests [7] on live data. In addition to comparisons to Supervised Learning, we share insights into
modeling and offline training, and detail online evaluation to help practitioners train Reinforcement
Learning agents on logged data.

2 Offline Reinforcement Learning

A common deep learning variant of Q-learning [26] called DQN [14] utilizes a replay buffer of
the form D = {(st, at, st+1, rt+1)} for storing the agent’s interaction and alternates between data
collection and gradient steps with respect to the Temporal Difference loss function Li(θi) at training
iteration i:

Li(θi) = Est,at∼D
[
(yi −Q(st, at; θi))

2
]

(1)

yi = Est+1∼D

[
r(st, at) + γmax

a
Q(st+1, a; θ−i ))

]
are evaluated through a target network with

parameters θ−i . This learning procedure is termed off-policy, as yi is computed without knowing the
policy that generates the experiences in the replay buffer D.

Offline RL relies on off-policy learning that uses state-action transitions batch-sampled from the
training set Dπβ . Although off-policy learning algorithms can be directly used offline, in the regular
RL setting the online regime helps the agent refine its Q(st, at; θ) estimates, whereas in offline RL,
the lack of exploration limits agent’s learning [9] due to distributional shift phenomena.

State distributional shift [9] affects offline RL algorithms during the agent’s exposure on the real-
world environment (deployment phase), as the agent’s learned policy π∗ can diverge from the behavior
policy πβ . The latter could invoke unreasonable actions in out-of-distribution/unseen states.

Action distributional shift [27] affects off-policy learning algorithms during the training process as
well, as the accuracy of the regression in Equation 1 depends on the estimate of the Q-function for
actions that may be outside of the distribution of actions that the Q-function was ever trained.

In this work, a randomized behavioral policy πβ that enables high coverage of the state-action
space, is used for a short period of time for the collection of the training set Dπβ . KL-divergence is
utilized for distributional stability during training (Section 6.1). The latter constitute our two essential
ways for mitigating distributional shift. To guide our design decisions for the application, we firstly
introduce a simplified, intuitive problem environment. We use this environment to illustrate important
insights on distributional shift in Offline RL, and the impact of behavioral policy’s exploration on the
quality of trained models.

3 Application: User Authentication

User authentication starts a typical Web-based session; failures can delay successful login. Due to
forgotten passwords, such failures are common when different passwords are used for each Web-based
service. The authentication UI may respond to failures by offering password recovery (Action A1)
or by prompting another login attempt (Action A2), see Figure 1. Password recovery verifies the
user’s identity by sending a code to a pre-registered mobile phone or another user-owned device.
Common options include One-Time Password (OTP) sent via SMS and email, and Time-based
One-Time Password (TOTP) authentication [11].

Such authentication is considered safe unless the user’s device is compromised or the phone number
is hijacked [20].1 In our application, we authenticate via OTP.

The decision mechanism that chooses between available actions may affect long-term objectives,
e.g., user engagement (daily/monthly active users). Action A1 typically succeeds and improves user
engagement but incurs OTP costs, whereas single or multiple invokes of Action A2 may succeed at
some point, and without such costs, while and if it fails again, Action A1 can still be preferred over
Action A2 at any time. Thus, the decision mechanism should be optimized toward tradeoffs of user

1Such authentication can also support two-factor authentication (2FA) [1, 19].
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Figure 1: User authentication UI.

engagement and cost. The described user authentication could be appropriately formalized either as a
sequential or non-sequential setting.

The former corresponds to the setting of a regular contextual bandit problem [13], where online
learning may be critical to balance user engagement and OTP costs. Section 6.2 explores the non-
sequential option with a reward predictor in the form of Supervised Learning, which is trained offline
and drives the decision mechanism.

4 Problem formalization

Consider the motivational example of the user-authentication application with two possible actions at
a time. Figure 2(a) illustrates possible system actions from the initial failed-login state and subsequent
states, as well as implied state transitions, which depend entirely on the actions chosen by the system.
The sequence can continue upon a future login failure, as successful login and/or day(s) without failed
login attempts do not interrupt the sequence. Each sequence stops as per a defined time-out window
(7days). This self-contained state-reward model can capture the most basic sequential preferences but
lacks user personalization, which is key to our work.

A user can be characterized by a number of personalized features, and the semantics of them are
not important for our motivational example. For each user we represent the initial state s0 (the first
failed login attempt) with a state vector drew from a multivariate Gaussian distribution with mean
and covariance selected randomly per user. Subsequent user states st with t = 1, . . . that correspond
to future failed login attempts are generated randomly and as part of state transitions. Specifically, a
base (user) feature vector is drawn from a multivariate Gaussian that is defined per user, per discrete
time step t, and per action at that was prompted by the authentication UI on user state st−1. This
base vector and the vector representing user state st−1 are then aggregated to construct the vector for
the next user state st. The user engagement and corresponding action costs on each user transition
are represented by a single normalized scalar value-reward rt+1. The latter is drawn from a normal
distribution with randomly selected mean and variance, defined per user, per time step, per action.
The simulated environment is used as a testbed in Section 5.

(a) State transitions indexed by depth (sub-
scripts) and actions (superscripts).

(b) Rewards are set daily per user, to the last action.

Figure 2
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(a) State features are projected to two princi-
pal components via PCA. The blue pointset is
cloned.

(b) Average cumulative rewards over tra-
jectories of different length.

Figure 3: Exploration diversity impacts state coverage and training. Between Actions A1 and A2,
the former is chosen with probability P(A1). The greatest state coverage, and best results are observed
for balanced exploration P(A1)=0.5.

4.1 Our practical state model and rewards

The problem formalization we use in practice differs from the motivational example in the following
two aspects.

User personalized features include real-time (contextual), and historical features. For example,
on-device real-time features capture the app platform, local time of day, day of the week, login
time, time since last login, etc. Historical features highlight the impact of the decision mechanism
on the sequential depth of the problem e.g., password recoveries sent in the past, the number of
authentication attempts over 30 days and their outcomes, how many times each of Action A1 and
Action A2 were used. In principle, a user’s MDP sequence can have an infinite horizon as they
interact with our agent (beyond a successful login), but in practice we collect data in limited time
windows. Hence, all sequences are cut into pieces up to seven days.

Rewards are formulated to help optimize long-term objectives that are affected by the authentication
decision mechanism, i.e., user engagement and monetary cost. In our Web-based service, user
engagement is reported and expressed as a binary value that determines if the user was active during
the day. Monetary cost represents the amount of money spent on password recovery after failed login
attempts, including Action A1 and password recovery options invoked by users when they give up
on mainline UI. Different personalized policies of the authentication UI affect user engagement and
monetary cost, e.g., sequences of Action A2 may postpone a successful login while avoiding OTP
costs. Our goal is to help users login and thus improve user engagement, while reducing costs. Hence,
we formulate the reward as a linear combination of user engagement (UE) and monetary cost (Cost):

r = wu ·UE− wc · Cost, where wu, wc ∈ R (2)

Varying the weights helps explore the Pareto curve of multi-objective tradeoffs for the application. We
assign rewards to the last action on each day (Figure 2(b)) because system metrics for user engagement
are tallied at the end of each day. For example, on a given day, a nonzero user engagement reward is
assigned to a user who was exposed to the authentication UI and logged in successfully. Many users
recall or recover their password quickly, thus most action sequences are short and/or without OTP
costs. Costs can only be improved for longer sequences, a small fraction of all the sequences.

5 Applying Reinforcement Learning

The impact of the exploration level of behavioral policies in offline RL is illustrated in Figure 3 that
is produced for the motivational example from Section 4. Here we compare behavioral exploration
policies defined by the complementary probabilities of Actions A1 and A2. We train an offline RL
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model (DQN) on the induced trajectories for each behavioral policy. We observe in our simulation
that balanced exploration with equal probabilities provide better state coverage. In the Figure 3(a),
we project state vectors from the feature space onto two principal components via PCA. The yellow
(70:30) and red (90:10) point clouds are narrower than the blue (50:50) point cloud.

Figure 3(b) shows that exploration diversity in the behavioral policy helps train a better model, as
we can expect higher perceived returns (cumulative rewards) for the RL model trained offline with
balanced exploration. Such evaluation is performed on users not seen in the training dataset and by
using the trained RL model as a decision mechanism that drives the state transitions. The impact of
behavioral policies’ exploration is related to the distributional shift phenomenon discussed in Section
2. The higher the state coverage in the training dataset, the less significant the state distributional
shift during evaluation and action distributional shift during training for an Offline RL model.

Modeling forward sequential depth (i.e., the future impact of current actions) is difficult for supervised
learning (SL). Modeling backward sequential depth (the impact of past actions) is somewhat easier,
using additional features that summarize past states and actions.

5.1 RL decision models

Given the large state space in our application, we use DQN and perform offline training on the static
dataset Dπβ Our implementation (Section 6) makes it easy to try more sophisticated RL models. We
have tried several improvements to DQN (such as DDQN, Dueling DQN) and concluded that DQN
does not leave much room for improvement despite being simpler. However, more techniques that
parameterize both the policy and the Q-function are generally worth trying. Whether or not this
improves long-term objectives is unclear a priori, and we therefore implement a recent technique in
this category.

Critic-Regularized Regression (CRR) [25] is an off-policy method that discourages sampling low-
quality actions from the training dataset. As it is typical for actor-critic algorithms, CRR parameterizes
both the policy and the Q-function [8]. It additionally transforms Q-values in the objective with a
monotonically increasing function, such as exp(·), to emphasize higher Q-values. This way, during
policy update, π more often samples high-quality actions within the training distribution. The critic
is trained using distributional Q-learning [25, 2]. The distributional representation of the returns
translates well into stochastic behavioral policies.

5.2 Preparing data for training

Each row of our training data includes user features, actual system actions, and rewards. Motivated
by the impact of the exploration level of behavioral policies in Offline RL (Section 5) we choose
equal probabilities for Actions A1 and A2. Thus, upon a failed login attempt, an action is chosen at
random, and another handler starts extracting and computing user features simultaneously. The two
asynchronous events are tagged with the same unique ID and joined by a stream processing system
for logging in the training table. The user engagement metric and the sum of OTP fees are computed
by the end of the day. These rewards are joined with the training table based on an anonymized user
ID column, where rewards are attributed to the last login failure event of the day (see Figure 2(b)).
We logged data using the described exploratory behavioral policy for a time period of three weeks.

Following the standard Markov Decision Process (MDP) framework, RL models are trained on
consecutive pairs of state/action tuples that correspond to state transitions in user sequences (Figure
2(a)). We use the open-source applied RL platform ReAgent (Horizon) [3] to prepare logged time
series data.

6 Empirical evaluation

To evaluate ML techniques from Section 5, we first assess the quality of the RL models trained offline,
and tune their hyperparameters based on offline metrics. The best seen RL model is deployed online
on live data, and compared to a baseline SL production system.
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(a) Temporal Difference loss with respect to learning
epochs for the DQN RL model (Section 5.1)

(b) Action distributions for Actions A1, A2 over
learning epochs for the DQN RL model (Section 5.1)

Figure 4: Off-policy learning

6.1 Offline training and evaluation for RL

To support decision models from Section 5.1, we train our DQN model using the ReAgent (Horizon)
platform [3] and its default NN architecture. Equation 2 is used for the reward function.

Offline RL training minimizes Temporal Difference (TD) loss (Equation 1) over the provided static
dataset of transitions (Section 5.2). Figure 4(a) shows how loss values for the DQN RL model
(Section 5.1) change over training epochs that consist of mini-batches (iterations).

To avoid overfitting, we split the static dataset of transitions into a training and test set, then compare
the average Q-values of the same Actions A1, A2 between the training and test sets, and keep the
differences below 10%. To check for distributional shifts (Section 2) and poor training, we focus on
training quality metrics.

• The TD Ratio addresses a pitfall in using raw TD loss (Equation 1), that is sensitive to the
magnitude of Q-values. A poor model will exhibit low TD values when Q-values are low.
Instead, we evaluate TD

min{Q̄A1,Q̄A2}
, where Q̄A1, Q̄A2 are the average Q-values of Actions

A1, A2 over the training dataset.

• Distributional stability during training is vital to effective learning. The action distribution
of the trained offline RL model should not shift too far from the behavioral policy, which
we measure as the KL-divergence [5]. The action distribution of our DQN model in Figure
4(b) stabilizes over training. The change of the action distribution over a time window (25
training iterations) is a good proxy for the distributional stability for offline RL models.

Offline evaluation avoids the dangers of poorly trained policies in production. Counterfactual Policy
Evaluation (CPE) with respect to perceived accumulated reward is the essential tier of our offline
evaluation methodology. CPE is performed offline and off-policy because it uses a static dataset of
transitions (test set), logged by the behavioral policy πβ . Additionally, CPE is performed on the
same policy that is deployed online, which adds ε-greedy exploration to learned offline policy to
enable improved future offline training. CPE offers the safety of offline ranking of RL models before
testing them in production. Off-policy evaluation can be based on ordinary importance sampling [17],
but at a risk of high variance which grows exponentially with state transitions. Advanced methods
[23] provide controlled bias-variance tradeoffs by utilizing additional information, e.g., the learned
Q-function. In our case, relatively short MDP sequences help using the sequential doubly robust
estimator [6] to produce unbiased performance estimates for policies trained offline.

Hyperparameter optimization for Offline RL is challenging [15], as there is no access to the
environment. Here, it is performed toward the described metrics on a validation set from the static
dataset Dπβ and the best seen models are evaluated online. Our DQN model (Figures 4(a) and 4(b))
exhibited the best results in offline evaluation, was deployed online and evaluated vs. SL baseline
production system (Section 6.2).

6.2 Empirical comparisons

Our baseline using supervised learning (SL) is a prior production model with a tree-based meta-
learner that estimates the Conditional Average Treatment Effects [10], and by considering the same
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Table 1: SL and RL policies are compared online to fixed policies that always perform Action A1
or Action A2. RL provides the most attractive tradeoffs, shown in bold.

USER ENGAGEMENT OTP COST
POLICY DAILY MONTHLY

A2 - - -
A1 +1.49% ± 0.273% +2.81% ± 0.279% +120% ± 4.16%
SL +1.35% ± 0.212% +2.58% ± 0.116% +81.1% ± 3.13%
RL +1.50% ± 0.213% +2.55% ± 0.183% +70.3% ± 2.96%

Table 2: Action distributions (% of Action A1) for behavioral policies trained with SL and RL by
user cohort.

SL RL

ALL USERS 55.88% 22.75%
SINGLE-LOGIN USERS 60.16% 36.41%
MULTIPLE-LOGIN USERS 49.40% 11.19%

user personalized features as the RL model (Section 4.1). The model acts as a reward predictor for
Actions A1, A2, and unlike the RL model, it addresses the user authentication problem under a
non-sequential setting. The treatment effects are represented by a linear combination of the rewards
defined in Equation 2. The meta-learner decomposes the decision process into two steps by first
estimating the conditional reward expectations, U = E[UE | at, s = st], C = E[Cost | at, s = st],
where at ∈ A. U and C are computed using Gradient Boosted Decision Trees whose parameters,
including learning rate, tree depth and tree leaves, are swept in a large range to minimize mean
squared errors. Then the learner takes the differences between the estimates and chooses the action
that gives the highest reward:

at = arg max
at∈A

E[rt|at, s = st] (3)

After deriving rt via Equation 2, the final action is given by

at = arg max
at∈A

(wu · U − wc · C) (4)

The reward weights wu and wc are chosen through online experiments to ensure compelling multiob-
jective tradeoffs.

Online evaluation is performed using 30 days’ data. Table 1 demonstrates the first round of results
at a 95% confidence level, where our RL model is trained on randomized data as per Section 5.2. The
RL model is compared to fixed policies (some action repeated always) and a prior production model
based on SL. Overall, the RL model greatly reduces OTP costs vs SL, with minimal impact on daily
and monthly user engagement. We estimate Return On Investment (ROI) by dividing total cost by
total monthly engagement. RL outperforms SL by 5.93%± 0.782%. To collect data for recurrent
training, we deploy our RL agent by extending the deterministic policy to an ε-greedy policy with
ε = 0.1.

Table 3: Cost per state (10−2) for multiple-login users. Engagement Sequence 11 represents being
active in two consecutive states, while 00 being inactive in both states.

ENGAGEMENT SEQUENCE SL RL % COST REDUCTION

11 0.178 0.141 20.8%
01 0.675 0.543 19.6%
00 1.44 1.30 9.72%
10 0.511 0.402 21.3 %
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Table 4: Recurrent training results compared with the initial RL agent trained on randomized data
(the "Rand" policy issues Action A1 and Action A2 with equal probability).

USER ENGAGEMENT OTP COST
POLICY DAILY MONTHLY

DQN +0.002% ±0.106% +0.058%±0.084% -0.17% ±0.44%
CRR +0.116% ±0.240% +0.107%±0.140% +1.27% ±2.87%
RAND -0.336% ±0.266% -0.693%±0.162% +3.78% ±3.29%

When ML is applied to practical problems, it commonly optimizes surrogate objectives. In our case,
one such metric counts notification disavow events (NDEs) for password reset, where a user turns off
notifications, perhaps because there were too many. Comparing to SL, we observe that RL reduces
NDEs by 50%. To this end, Table 2 shows that the RL agent trades off Action A1 for Action A2
and thus reduces authentication messages, while maintaining neutral engagement metrics. We also
group users into cohorts, as multiple-login users are more likely to enter their password correctly
without help from our authentication messages. From Table 2, we see that both RL and SL make
use of this user attribute but RL exploits it more efficiently. We also augment SL data into MDP
sequences to calculate the average cost per state (total cost of a sequence divided by its length).
Focusing on sequences with under 3 steps (95% of all the sequences), we found that RL and SL
imply very similar costs per state for single-login users (within 3%). But for multiple-login users RL
reduces cost by 20% on sequences that have at least one successful engagement, as reported in Table
3. We permute the engagement result per state on MDP sequences of length 2 and use binary 0 and 1
to represent user activeness of that state.

Recurrent training and stability evaluation. When user behaviors shift over time, ML models
must be refreshed using the most recent data (recurrent training). The initial RL model trained on
randomized data shows sizable improvements. However, continued collection of randomized data is
risky in terms of direct costs and user experience. The "Rand" policy (Section 5) in Table 4 suggests
that its deployment limits the benefits of RL models. Thus, we refresh the model using behavioral
data collected from our RL agent, and through offline training (Section 6.1) with particular attention
in the KL-divergence between the initial and refreshed RL models’ learned policies. Additionally, to
check if recurrent training stabilizes in the long term compared with the initial RL model, we perform
a second round of online evaluation to study recurrent training using RL behavioral data and model
stability in the long term.

We train a DQN and a CRR model (Section 5.1) with the same parameters and rewards as the initial
RL model, but collect their training data via policies from the deployed RL agent. Results summarized
in Table 4 use the same settings as before (a 95% confidence level, one-month’s testing window,
and an ε-greedy policy on DQN and CRR with 10% exploration rate). Both recurrent DQN and
CRR give neutral results compared with the initial RL model, which indicates stable performance in
recurrent training. Comparing the CRR model to the initial RL model by daily user engagement for a
one-month testing window, we see consistent performance with no metric loss.

7 Conclusions

In this work we show how to apply reinforcement learning (RL) to personalize user authentication in
a Web-based system and compare RL to a competing SL approach. Working with industry data, using
offline RL avoids releasing poorly trained agents in production. However, this approach requires
careful extraction and augmentation of training data to ensure that off-policy learning does not
succumb to distributional shift. In practice, RL is often susceptible to high variance and high bias at
several of its stages, especially when operating on large-scale live data. Fortunately, our method is
sufficiently robust for production deployment using the ReAgent (Horizon) platform [3]. Starting from
state modeling and data collection, we articulate obstacles and milestones toward model training and
demonstrate practical improvement in end-to-end system-level metrics at a large-scale deployment
at Meta. During development, we use a simplified problem environment to test intuition without
sensitive data.
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