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Abstract

Offline reinforcement learning, by learning from a fixed dataset, makes it possible
to learn agent behaviors without interacting with the environment. However,
depending on the quality of the offline dataset, such pre-trained agents may have
limited performance and would further need to be fine-tuned online by interacting
with the environment. During online fine-tuning, the performance of the pre-trained
agent may collapse quickly due to the sudden distribution shift from offline to online
data. While constraints enforced by offline RL methods such as a behaviour cloning
loss prevent this to an extent, these constraints also significantly slow down online
fine-tuning by forcing the agent to stay close to the behavior policy. We propose
to adaptively weigh the behavior cloning loss during online fine-tuning based on
the agent’s performance and training stability. Moreover, we use a randomized
ensemble of Q functions to further increase the sample efficiency of online fine-
tuning by performing a large number of learning updates. Experiments show that
the proposed method yields state-of-the-art offline-to-online reinforcement learning
performance on the popular D4RL benchmark.

1 Introduction

Offline or batch reinforcement learning (RL) deals with the training of RL agents from fixed datasets
generated by possibly unknown behavior policies, without any interactions with the environment. This
is important in problems like robotics, autonomous driving, and healthcare where data collection can
be expensive or dangerous. Offline RL has been challenging for model-free RL methods due to extrap-
olation error where the Q networks predict unrealistic values upon evaluations on out-of-distribution
state-action pairs (Fujimoto et al., 2019). Recent methods overcome this issue by constraining the
policy to stay close to the behavior policy that generated the offline data distribution (Fujimoto et al.,
2019; Kumar et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021), to demonstrate even better
performance than the behavior policy on several simulated and real-world tasks (Siegel et al., 2020;
Singh et al., 2020; Nair et al., 2020).

However, the performance of pre-trained policies will be limited by the quality of the offline dataset
and it is often necessary or desirable to fine-tune them by interacting with the environment. Also,
offline-to-online learning reduces the risks in online interaction as the offline pre-training results in
reasonable policies that could be tested before deployment. In practice, offline RL methods often fail
during online fine-tuning by interacting with the environment. This offline-to-online RL setting is
challenging due to: (i) the sudden distribution shift from offline data to online data. This could lead
to severe bootstrapping errors which completely distorts the pre-trained policy leading to a sudden
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performance drop from the very beginning of online fine-tuning, and (ii) constraints enforced by
offline RL methods on the policy to stay close to the behavior policy. While these constraints help in
dealing with the sudden distribution shift they significantly slow down online fine-tuning from newly
collected samples.

We propose to adaptively weigh the offline RL constraints such as behavior cloning loss during
online fine-tuning. This could prevent sudden performance collapses due to the distribution shift
while also enabling sample-efficient learning from the newly collected samples. We propose to
perform this adaptive weighing according to the agent’s performance and the training stability. We
start with TD3+BC, a simple offline RL algorithm recently proposed by Fujimoto & Gu (2021)
which combines TD3 (Fujimoto et al., 2018) with a simple behavior cloning loss, weighted by an α
hyperparameter. We adaptively weigh this α hyperparameter using a control mechanism similar to
the proportional–derivative (PD) controller. The α value is decided based on two components: the
difference between the moving average return and the target return (proportional term) as well as the
difference between the current episodic return and the moving average return (derivative term).

We demonstrate that these simple modifications lead to stable online fine-tuning after offline pre-
training on datasets of different quality. We also use a randomized ensemble of Q functions (Chen
et al., 2021) to further improve the sample-efficiency. We attain state-of-the-art online fine-tuning
performance on locomotion tasks from the popular D4RL benchmark.

2 Related Work

Offline RL. Offline RL aims to learn a policy from pre-collected fixed datasets without interacting
with the environment (Lange et al., 2012; Agarwal et al., 2020; Fujimoto et al., 2019; Kumar et al.,
2019; Nachum et al., 2019; Siegel et al., 2020; Levine et al., 2020; Peng et al., 2019). Off-policy RL
algorithms allow for reuse of off-policy data (Konda & Tsitsiklis, 2000; Degris et al., 2012; Haarnoja
et al., 2018; Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018; Mnih et al., 2015) but
they typically fail when trained offline on a fixed dataset, even if it’s collected by a policy trained
using the same algorithm (Fujimoto et al., 2019; Kumar et al., 2019). In actor-critic methods, this is
due to extrapolation error of the critic network on out-of-distribution state-action pairs Levine et al.
(2020). Offline RL methods deal with this by constraining the policy to stay close to the behavioral
policy that collected the offline dataset. BRAC (Wu et al., 2019) achieves this by minimizing the
Kullback-Leibler divergence between the behavior policy and the learned policy. BEAR (Kumar
et al., 2019) minimizes the MMD distance between the two policies. TD3+BC (Fujimoto & Gu,
2021) proposes a simple yet efficient offline RL algorithm by adding an additional behavior cloning
loss to the actor update. Another class of offline RL methods learns conservative Q functions, which
prevents the policy network from exploiting out-of-distribution actions and forces them to stay close
to the behavior policy. CQL (Kumar et al., 2020) changes the critic objective to also minimize the Q
function on unseen actions. Fisher-BRC (Kostrikov et al., 2021) achieves conservative Q learning
by constraining the gradient of the Q function on unseen data. Model-based offline RL methods
(Yu et al., 2020; Kidambi et al., 2020) train policies based on the data generated by ensembles of
dynamics models learned from offline data, while constraining the policy to stay within samples
where the dynamics model is certain. In this paper, we focus on offline-to-online RL with the goal of
stable and sample-efficient online fine-tuning from policies pre-trained on offline datasets of different
quality.

Offline pre-training in RL. Pre-training has been vastly investigated in the machine learning commu-
nity from computer vision (Sharif Razavian et al., 2014; Donahue et al., 2014; Yosinski et al., 2014) to
natural language processing (Devlin et al., 2018; Turian et al., 2010). Offline pre-training in RL could
enable deployment of RL methods in domains where data collection can be expensive or dangerous.
(Silver et al., 2016; Gupta et al., 2019; Rajeswaran et al., 2017) pre-train the policy network with
imitation learning to speed up RL. QT-opt (Kalashnikov et al., 2018) studies vision-based object
manipulation using a diverse and large dataset collected by seven robots over several months and
fine-tune the policy with 27K samples of online data. However, these methods pre-train using diverse,
large, or expert datasets and it is also important to investigate the possibility of pre-training from
offline datasets of different quality. Yang & Nachum (2021); Ajay et al. (2020) use offline pre-training
to accelerate downstream tasks. AWAC (Nair et al., 2020) and Balanced Replay Lee et al. (2021) are
recent works that also focus on offline-to-online RL from datasets of different quality. AWAC updates
the policy network such that it is constrained during offline training while not too conservative during

2



fine-tuning. Balanced Replay trains an additional neural network to prioritize samples in order to
effectively use new data as well as near-on-policy samples in the offline dataset. We compare with
AWAC and Balanced Replay to attain state-of-the-art offline-to-online RL performance on the popular
D4RL benchmark.

Ensembles in RL. Ensemble methods are widely used for better performance in RL (Faußer &
Schwenker, 2015; Osband et al., 2016; Chua et al., 2018; Janner et al., 2019). In model-based RL,
PETS (Chua et al., 2018) and MBPO (Janner et al., 2019) use probabilistic ensembles to effectively
model the dynamics of the environment. In model-free RL, ensembles of Q functions have been
shown to improve performance (Anschel et al., 2017; Lan et al., 2020). REDQ (Chen et al., 2021)
learns a randomized ensemble of Q functions to achieve similar sample efficiency as model-based
methods without learning a dynamic model. We utilize REDQ in this work for improved sample-
efficiency during online fine-tuning. Specific to offline RL, REM (Agarwal et al., 2020) uses random
convex combinations of multiple Q-value estimates to calculate the Q targets for effective offline RL
on Atari games. MOPO (Yu et al., 2020) uses probabilistic ensembles from PETS to learn policies
from offline data using uncertainty estimates based on model disagreement. MBOP (Argenson &
Dulac-Arnold, 2020) uses ensembles of dynamic models, Q functions, and policy networks to get
better performance on locomotion tasks. Balanced Replay (Lee et al., 2021) uses ensembles of
pessimistic Q functions to mitigate instability caused by distribution shift in offline-to-online RL.
While ensembling of Q functions has been studied by several prior works (Lan et al., 2020; Chen
et al., 2021), we combine it with behavioral cloning loss for the purpose of robust and sample-efficient
offline-to-online RL.

Adaptive balancing of multiple objectives in RL. Ball et al. (2020) train policies using learned
dynamics models with the objective of visiting states that most likely lead to subsequent improvement
in the dynamics model, using active online learning. They adaptively weigh the maximization of
cumulative rewards and minimization of model uncertainty using an online learning mechanism based
on exponential weights algorithm. In this paper, we focus on offline-to-online RL using model-free
methods and propose to adaptively weigh the maximization of cumulative rewards and a behavioral
cloning loss. Exploration of other online learning algorithms such as exponential weights algorithm
is a line of future work.

3 Background

3.1 Reinforcement Learning

Reinforcement learning (RL) deals with sequential decision making to maximize cumulative rewards.
RL problems are often formalized as Markov decision processes (MDPs). An MDP consists of a set
of states S , a set of actionsA, a transition dynamics st+1 ∼ p(·|st,at) that represents the probability
of transitioning to a state st+1 by taking action at in state st at timestep t, a scalar reward function
rt = R(st,at), and a discount factor γ ∈ [0, 1].

A policy function π of an RL agent is a mapping from states to actions and defines the behavior of
the agent. The value function Vπ(s) of a policy π is defined as the expected cumulative rewards
from state s: V π(s) = E[

∑∞
t=0 γ

tR(st,at)|s0 = s], where the expectation is taken over state
transitions st+1 ∼ p(·|st,at) and policy function at ∼ π(st). Similarly, the state-action value
function Qπ(s,a) is defined as the expected cumulative rewards after taking action a in state s:
Qπ(s,a) = E[

∑∞
t=0 γ

tR(st,at)|s0 = s,a0 = a]. The goal of RL is to learn an optimal policy
function πθ with parameters θ, that maximizes the expected cumulative rewards:

πθ = arg max
θ

Es∼S

[
V πθ (s)

]
= arg max

θ
Es∼S

[
Qπθ (s, πθ(s))

]
.

We use the TD3 algorithm for reinforcement learning (Fujimoto et al., 2018). TD3 is an actor-critic
method that alternatingly trains: (i) the critic network Qφ to estimate the Qπθ (s,a) values of the
policy network πθ, and (ii) the policy network to produce actions that maximize the Q function:
∇θQφ(s, πθ(s)).

3



3.2 Offline Pre-training

Offline reinforcement learning or batch reinforcement learning assumes that the agent is not able to
interact with the environment but is given a fixed dataset D of (s,a, r, s′) tuples to learn from. The
data is assumed to be collected by an unknown behavioural policy (or a collection of policies).

The problem with using actor-critic methods for offline RL is extrapolation error due to the evaluation
of the critic network on the next state and next action values Q(s′,a′) to compute the temporal
difference error. Here the next action a′ is sampled from the policy network a′ ∼ πθ(s

′) and this
could lead to out-of-distribution evaluations of the critic network. This is problematic as erroneous
predictions of the critic on unfamiliar actions could be propagated to other critic predictions due to
bootstrapping in temporal difference learning. This will also lead to the policy network preferring
actions with unrealistic value predictions. This problem can be overcome either by constraining
the policy network to stay close to the data distribution (Fujimoto & Gu, 2021) or by enforcing
conservative estimates of the critic network on out-of-distribution samples (Kumar et al., 2020).

Fujimoto & Gu (2021) propose TD3+BC, a simple offline RL algorithm that regularizes policy
learning in TD3 with a behavior cloning loss that constraints the policy actions to stay close to the
actions in the offline dataset D. This is achieved by adding a behavior cloning term to the policy loss:

πθ = arg max
θ

E(s,a)∼D

[
Q̄(s, πθ(s))− α(πθ(s)− a)2

]
(1)

where α is a weighing hyperparameter and

Q̄(s, πθ(s)) =
Q(s, πθ(s))

1
N

∑
si,ai

Q(si,ai)

normalizes the Q values which help in balancing both losses. The sum in the denominator is taken
over a mini-batch and the gradients do not flow through the critic term in the denominator.

4 Online Fine-tuning

RL agents trained from offline data tend to have limited performance and would further need to be
fine-tuned online by interacting with the environment. During online fine-tuning, the performance of
the pre-trained agent may collapse quickly due to the sudden distribution shift from offline data to
online data. Keeping the constrain used in offline pre-training, such as in Equation 1, could mitigate
the collapse. However, this will force the policy to stay close to the behavior policy (used to collect
the dataset), thus leads to slow improvement. In this section, we describe the two components of our
online-tuning algorithm that enables stable and sample-efficient online fine-tuning.

4.1 Adaptive Weighing of Behavior Cloning Loss

The most straightforward way to fine-tune the pre-trained policy is by just removing the constrains
used in offline pre-training. For example, Balanced Replay (Lee et al., 2021) uses CQL (Kumar
et al., 2020) during offline pre-training and uses SAC (Haarnoja et al., 2018) in fine-tuning. However,
this strategy often leads to a performance collapse at the beginning of fine-tuning, as shown in
Fig. 1 (with α = 0) and the TD3-ft in Fig. 2. In the TD3+BC algorithm we consider in this paper,
an α hyperparameter is used to balance the RL objective and the behaviour cloning term which
constrains the policy to stay close to the behavior policy (see Equation 1). We use αoffline and αonline
to distinguish the α hyperparameter value used during offline and online training respectively. By
default, we use αoffline = 0.4 in all our experiments. We use αonline = 0.4 for TD3+BC and we
observe that this prevents sudden performance drops at the initial steps of online fine-tuning, at the
cost of very slow learning due to the strong behavior cloning constraint. On the other hand, setting
αonline = 0 leads to sample-efficient learning on some tasks at the cost of complete instability in other
tasks. This is due to the sudden distribution shift causing the policy network to change significantly.

In Fig. 1, we present the influence of αonline on the TD3+BC during fine-tuning by trying different
values of αonline from [0.0, 0.1, 0.3]. We can clearly see that using the behavior cloning loss with
proper αonline enables stable fine-tuning. However, the value of αonline depends on the quality of the
offline dataset and has significant influence of the fine-tuning performance. For example, αonline = 0
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Figure 1: Results of online fine-tuning on the D4RL benchmark using TD3+BC with different αonline
hyperparameters. We plot the mean and standard deviation across 3 runs. Using the behavior cloning
loss with proper αonline enables the stable fine-tuning. But the optimal value of αonline differs between
datasets.

fits well on the Hopper-Random task while causes immediate collapse on Hopper-Medium and
Hopper-Medium-Expert tasks.

In our experiments, we found that when the offline dataset has narrow distribution or when the policy
has already converged to a desired performance (comparable to the expert), it is usually beneficial to
maintain a higher αonline. When the data distribution is broader or when we still need to improve the
agent by a large margin, a smaller αonline works better. During experiments, we can not find a single
αonline that is suitable for all tasks and its value needs to be tuned carefully per tasks, which makes
this method hard to be used in practice.

To solve this problem, we propose to adapt the weight of the behavior cloning loss according to
two factors: (i) the difference between the moving average return and the target return, and (ii) the
difference between the current episodic return and the moving average return. We adaptively change
the αonline hyperparameter as:

∆(αonline) = KP · (Ravg −Rtarget) +KD ·max(0, Ravg −Rcurrent) (2)
where we constrain αonline between 0 and 0.4 (the value used during offline pre-training). Rcurrent and
Ravg are normalized following the return normalization procedure used in D4RL. Rtarget is the target
episodic return, which we set as 1.05 (corresponding to the expert policy) for all tasks. KP controls
how fast we decrease the αonline according to current performance and KD determines how fast we
increase the αonline when the performance drops. Intuitively, when the agent’s performance reaches
the target episodic return, we try to maintain it during fine-tuning. But when the agent’s performance
is low, we decrease the αonline to allow the agent improving further. The second term increases the
αonline when performance drops during training to mitigate performance collapse. Equation 2 allows
for adaptive weighing of the behavior cloning loss throughout online fine-tuning. This learning
algorithm can automatically adjust the constraint enforced by the behavior cloning loss.

After offline pre-training the replay buffer is filled with offline samples and during online fine-tuning,
they are slowly replaced by online samples. Uniformly sampling mini-batches from this replay buffer
for online fine-tuning is inefficient as it is dominated by offline samples. After offline learning we
simply remove 95% of random offline samples from the replay buffer to deal with this problem. Our
results show that the data down-sampling allows efficient usage of novel data without destroying the
training.

4.2 Randomized Ensembles of Critic Networks

We propose to use an ensemble of Q functions to better deal with the distribution shift from offline
pre-training and to improve the sample-efficiency of online fine-tuning. We use the Randomized
Ensembled Double Q-learning (REDQ) method proposed by Chen et al. (2021) to learn an ensemble
of critic networks.

The critic network is trained to satisfy the Bellman equation: Qπ(s,a) = r + γQπ(s′, πθ(s
′)).

REDQ maintains an ensemble of N critic networks and randomly samples M networks for each
critic update. Given a mini-batch B of B transitions (s,a, r, s′), all critic networks in the ensemble
are updated towards the same target:

∇φi
1

|B|
∑

(s,a,r,s′)∈B

(
Qφi(s,a)− r − γ min

i∈M
Qφi(s

′,a′)
)2

(3)
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Algorithm 1 Offline-to-online RL with adaptive behaviour cloning and ensembles of critic networks
Initialize REDQ agent with critic parameters φ1, . . . , φN and policy parameters θ
Initialize target parameters θ′ ← θ and φ′i ← φi, for i = 1, . . . , N
Initialize replay bufferR with offline data D
for k = 0 to K do

Sample mini-batch B of B transitions (s,a, r, s′) fromR
Update critic parameters φ1, . . . , φN using Equation 3
Update actor parameters θ using Equation 4 with α = αoffline
Update target networks θ′ ← τθ + (1− τ)θ′ and φ′i ← τφi + (1− τ)φ′i

end for

Randomly remove 95% of offline samples fromR
Initialize αonline = αoffline
Initialize Rcurrent and Rlast to store the return of current and previous episodes
Initialize environment for online fine-tuning
for every training episode do

for t = 0 to T do
Act with exploration noise at ∼ πθ(st) +N (0, σexpl)
Observe next state st+1 and reward rt
Add (st,at, rt, st+1) toR
for g = 0 to G do

Sample mini-batch B of B transitions (s,a, r, s′) fromR
Update critic parameters φ1, . . . , φN using Equation 3
Update actor parameters θ using Equation 4 with α = αonline
Update target networks θ′ ← τθ + (1− τ)θ′ and φ′i ← τφi + (1− τ)φ′i

end for
end for
Set Rlast = Rcurrent and Rcurrent =

∑T
t=0 rt

Adapt αonline based on Rlast and Rcurrent using Equation 2
end for

whereM is a random subset of M critic networks and a′ = clip(πθ(st+1) + ε, alow, ahigh). Here ε
is Gaussian exploration noise with standard deviation σpolicy and [alow, ahigh] is the action range.

REDQ updates the policy network to maximize the average predictions of the critic networks:

∇θ
1

|B|
∑
s∈B

1

N

N∑
i=1

Qφi(s, πθ(s)).

We combine this REDQ policy update with a behaviour cloning loss (like in Equation 1) for robust
learning (Fujimoto & Gu, 2021):

∇θ
1

|B|
∑

(s,a)∈B

1

N

N∑
i=1

Q̄φi(s, πθ(s))− α(πθ(s)− a)2. (4)

We show that this simple modification of ensembling the critic networks (which can be run in parallel)
improves offline-to-online learning. We call this algorithm REDQ+AdaptiveBC. Our algorithm is
outlined as Algorithm 1.

5 Experiments

5.1 Online Fine-tuning on D4RL Benchmark

The goal of our experiments is to evaluate the stability and sample-efficiency of the proposed
algorithm on online fine-tuning after offline pre-training on datasets of different quality. We evaluate
our algorithm on online fine-tuning after offline pre-training on the D4RL benchmark (Fu et al., 2020).
D4RL includes three locomotion environments (halfcheetah, hopper, and walker) implemented in the
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Figure 2: Results of online fine-tuning on the D4RL benchmark. We plot the mean and standard
deviation across 5 runs. Our REDQ+AdaptiveBC method attains performance competitive to the
state-of-the-art. Our method is able to consistently improve the pre-trained agent during fine-tuning
without suffering from dramatic performance collapse at the beginning of training.

MuJoCo simulator (Todorov et al., 2012), wrapped in OpenAI Gym API (Brockman et al., 2016).
D4RL provides five different offline datasets for each task: Random, Medium, Medium-Replay,
Medium-Expert, and Expert. The Random datasets are collected by random policies, Medium datasets
are collected by an early-stopped soft actor-critic (SAC) (Haarnoja et al., 2018) agent with medium-
level performance, Medium-Replay datasets consist of all samples in the replay buffer after training a
medium-level agent, Medium-Expert datasets are mixed with expert demonstrations and sub-optimal
demonstrations from a medium-level agent, and Expert datasets are expert demonstrations. The
“expert" in these datasets is a fully trained soft-actor critic agent. We ignore the Expert datasets in this
paper as offline RL algorithms already achieve expert-level performance on these tasks and there is
little to no benefit in online fine-tuning.

In Figure 2, we compare our REDQ+AdaptiveBC algorithm with two state-of-the-art offline-to-online
RL algorithms (AWAC and Balanced Replay) and two baseline methods (TD3-ft and REDQ):

• Advantage Weighted Actor-Critic (AWAC) (Nair et al., 2020) is an actor-critic method
for offline-to-online RL that implicitly constraints the policy network to stay close to
the behavior policy. We produce the results for AWAC using code taken from https:
//github.com/ikostrikov/jaxrl.

• Balanced Replay (Lee et al., 2021) is an offline-to-online RL method that prioritizes near-on-
policy samples from the replay buffer. This method also uses an ensemble of Q functions to
prevent overestimation of Q values in the initial stages of online fine-tuning. We reproduced
the results for this method using our own implementation. For a fair comparison, we base
our implementation on TD3+BC (instead of CQL originally used by Lee et al. (2021)) while
ensuring that we are able to reproduce the original results.

• TD3-ft is the standard TD3 algorithm (Fujimoto et al., 2018) that was pre-trained offline
using TD3+BC (Fujimoto & Gu, 2021).

• REDQ (scratch) (Chen et al., 2021) is an RL method trained from scratch, without any
access to the offline data. This baseline emphasizes the importance of offline pre-training
and online fine-tuning. We base our REDQ implementation on TD3 (instead of SAC used
by Chen et al. (2021)) for compatibility with TD3+BC.
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Figure 3: Comparison of online fine-tuning performance of REDQ agent with and without adaptive
behavioal cloning term. We plot the mean and standard deviation across 3 runs. Our method
successfully avoid the performance collapse during fine-tuning.

All methods (except AWAC) are implemented on top of TD3 and are run from the same codebase
for a fair comparison. For simplicity, we do not perform any state normalization like in the original
TD3+BC implementation (Fujimoto & Gu, 2021).

During offline pre-training, all algorithms are pre-trained on the offline dataset for one million
gradient steps. After pre-training, we fine-tune the agents for 250,000 time steps by interacting
with the environment. We evaluate the agent every 5000 time steps and each evaluation consists of
10 episodes. We attain performance competitive to the state-of-the-art in this benchmark with our
method stably improving the performance during online fine-tuning.

Our method consistently improves the pre-trained policy and outperforms or matches other methods
on all tasks, among different environments and different datasets. More importantly, our method does
not collapse dramatically on all three Medium-Expert tasks. We significantly outperform REDQ on
all tasks, which demonstrates that we considerably benefit from offline pre-training. TD3-ft is able to
improve from online fine-tuning but suffers from significant performance drops due to the sudden
distribution shift and the learning progress is slow due to the replay buffer being dominated by offline
samples.

Both Balanced Replay and our method (REDQ+AdaptiveBC) use an ensemble of 10 Q networks,
but in different ways. Balanced Replay maintains a pair of five ensemble networks, average the
predictions across each of the five networks and then takes the minimum of the averages as the final
prediction. In our method, we simply consider the average of all 10 networks as the prediction but
randomly sample a pair of Q networks to compute the critic targets (Equation 3). We show that this
simple modification enables stable and sample-efficient online fine-tuning without the need for any
complex sampling scheme from the replay buffer.

Similar to prior works (Fujimoto & Gu, 2021), we use feed-forward networks with two hidden layers
as actor and critic networks for all the methods. We use a batch size of 256 to train the network
for all methods, except for AWAC where we use a larger batch size of 1024 (Nair et al., 2020).
During offline learning, we use αoffline = 0.4 for all tasks, except Walker-Random where we use
αoffline = 100 since the dataset has a very narrow distribution. We list all the hyperparameters used in
our experiments in Table 1 in the Appendix.

5.2 Experiments on Dexterous Manipulation Tasks

To demonstrate that our proposed method can be used to solve more challenging tasks, we test it
on four dexterous manipulation tasks (Rajeswaran et al., 2017) in the D4RL benchmark: Hammer,
Pen, Relocate, and Door. In this section, we evaluate our algorithm on the Expert dataset of the four
tasks, each composed of one million expert data from a fine-tuned RL policy. We first tune TD3_BC
for offline pre-training on these tasks. We increase the αoffline from 0.4 to 8, and correspondingly
increase the initial αonline, Kp, Kd by the same factor of 20. The online fine-tuning performance of
our method with and without the adaptive behavior cloning term is shown in Figure 3. We observe
that the performance of the REDQ agent immediately collapses but the proposed adaptive behavior
cloning method is able to successfully prevent this.
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Figure 4: Comparison of results with automatically tuned αonline and carefully picked results. It
shows that our proposed method can effectively find the suitable αonline for all tasks.

5.3 Algorithmic Investigations

Adaptive Weighing of αonline: To evaluate whether the proposed method can correctly select a
good αonline for stable online fine-tuning, in Figure 4, we compare the results obtained with the
automatically tuned αonline with manually tuned results. To manually tune the αonline, for each domain
and each dataset, we do a grid search on αonline over [0.0, 0.1, 0.2, 0.3] and pick the best αonline
separately for each task.

We can see that with manually tuned αonline, our method consistently outperformances or matches
other methods in Figure 2. Our results with automatically tuned αonline are slightly worse than
manually tuned results on HalfCheetah-Random and Hopper-Medium-Replay tasks. However, our
method successfully find the similar αonline on Halfcheetah tasks as we manually selected after
roughly 10-15 episodes. On the rest tasks, our automatically tuned results are competitive to the
carefully picked results but saving lots of labor and computational resources.

Offline Dataset Downsampling: Balanced Replay (Lee et al., 2021) trains a neural network to
estimate the priority of samples from offline data and online data. In their methods, three replay
buffer need to be maintained: offline dataset (0.1-2M samples), online dataset (0.25M samples) and a
prioritized replay buffer (0.35M-2.25M samples) (Schaul et al., 2015), making it memory consuming
(0.7M-4.5M samples). Our method simply dowsamples the offline dataset by 95%, thus, our method
only maintains one replay buffer to store online data but is prefilled with 0.05M offline data points,
roughly saves 65%− 95% memory. However, our results show that dataset downsampling combined
with the adaptive behavioral cloning term is enough to avoid performance collapse and consistently
improve the pre-trained policy.

We compare two different downsampling methods, random sampling and prioritized sampling, as
well as different downsampling ratios, shown in Figure 5. To achieve prioritized sampling, we simply
retain trajectories with higher episodic returns. Our results show that a proper downsampling ratio is
important to achieve good performance. Retaining all offline data hurts the performance, even for the
Medium-Expert dataset. Dataset downsampling is even important when the data quality of the offline
data is not good enough, such as when the dataset is collected by a random policy since it allows the
agent to effectively sample the novel data encountered during fine-tuning. Unlike the downsampling
ratio, different sampling methods do not influence much in our experiments.
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Figure 5: Comparison of different sampling methods and different downsampling ratios. We plot
the mean and standard deviation across 3 runs. Downsampling enables effective usage of novel data
encountered during fine-tuning.
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Figure 6: Comparison of usages of ensembles on the hopper domain. We plot the mean and standard
deviation across 3 runs. Randomized ensembled double Q-Learning stabilizes the training, but it is
not necessary to avoid performance collapse during fine-tuning.

Usage of Ensembles In our experiments, we use ensembles to represent the critic network. In
Figure 6, we compare the online fine-tuning performance with and without ensembles. We also
compare two different ways of using an ensemble: (i) taking a minimum across all the Q networks
in the ensemble (Minimum), and (ii) taking a minimum across a random pair of Q networks in the
ensemble (REDQ). Our results show that using ensembles is not necessary to avoid performance
collapse, however, it stabilizes training in most cases. We observe that calculating the target Q values
with randomly sampled Q predictions in REDQ is crucial when using an ensemble.

6 Conclusion

We consider the problem of offline-to-online RL where an agent is first pre-trained on offline
data (collected by a possibly unknown behavior policy) and the agent is then fine-tuned online
by interacting with the environment. This is desirable as pre-trained agents may have limited
performance depending on the quality of the offline dataset. Offline-to-online RL is challenging due
to the sudden distribution shift from offline data to online data, and also the constraints enforced by
offline RL algorithms (such as a behavior cloning loss) during pre-training. In this paper, we propose
a simple mechanism to adaptively weight a behavior cloning loss during online fine-tuning, based
on agent performance and training stability. We demonstrate that a randomized ensemble further
helps to deal with these challenges to enable sample-efficient online fine-tuning performance. We
attain performance competitive to the state-of-the-art online fine-tuning methods on locomotion and
dexterous manipulation tasks in the popular D4RL benchmark.
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Table 1: Hyperparameters used in our experiments

Hyperparameter Value

TD3

Optimizer Adam
Learning rate 3e-4
Batch size 256
Target update rate 5e-3
Policy noise std 0.1
Policy noise clip 0.5
Policy update frequency 2

Architecture
Hidden layers 2
Hidden units 256
Activation function ReLU

REDQ
Number of networks N 10
Randomly sampled networks M 2
Number of updates G 10

Offline BC αoffline 0.4

Adaptive BC Kp 3e-5
Kd 1e-4
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Figure 7: Selection of hyperparameters Kp and Kd via grid search. We select the Kp based on the
Hopper-Random task and select the Kd based on Hopper-Medium-Replay and Hopper-Medium-
Expert tasks. We plot the mean and standard deviation across 3 runs.

A Hyperparameters

All the hyperparameters and network architectures used in experiments are listed in Table 1.

B Selection of Kp and Kd

This section shows how to select hyperparameters Kp and Kd. In order to decide the value of Kp,
based on the Hopper-Random task, we first fix the Kd = 0, then use grid search from 1e − 5 to
5e − 5. As shown in Figure 7, lower Kp causes the lower policy improvement since the αonline
decreases slowly. However, high Kp may cause the αonline decrease quickly in other tasks, so we
choose Kp = 3e− 5 in our experiments. In order to decide the Kd, based on hopper-medium-replay
and hopper-medium-expert tasks, we first fix Kp = 3e− 5 (selected from the last step), and then do
grid search over [5e-5, 1e-4, 1.5e-4, 2e-4, w.5e-4]. The results show that our method is robust with
respect to Kd, but Kd = 5e− 5 has worse performance on the Hopper-Medium-Expert experiment,
so we choose Kd = 1e− 4.

C Dependency of the Target Return

In order to change the αonline, we assume the prior knowledge of the target return, obtained by the
expert SAC agent. This is a reasonable assumption in some applications, however, in some real world
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Figure 8: Comparison of two different ways to set the target return: i) the episodic return obtained
by the expert SAC agent; ii) the product of the product of the maximal per-step reward and the
maximal episode length rmax ∗ T . Two ways have similar performance in most cases, except
the Hopper-Medium-Expert task, where using rmax ∗ T as the target return is slightly unstable at
beginning.

application, the target return of one task is usually unknown. Instead, assuming the knowledge of
maximal per-step reward is more proper. As shown in Figure 8, we compare two different ways
to set the target return: i) the episodic return obtained by the expert SAC agent; ii) the product of
the maximal per-step reward and the maximal episode length rmax ∗ T . The second method, setting
the target return as rmax ∗ T , only depends on mild prior knowledge of the task, and usually has a
higher Rtarget value. Two methods have the similar performance on most tasks. The second method
has better performance on the Hopper-Medium-Replay task. However, using expert SAC agent’s
performance as the target return has more stable performance on the Hopper-Medium-Expert task.
This is caused by the quicker decrease of the αoffline, since according to Equation 2, the ∆(αonline)
is proportionate to Ravg −Rtarget. It should be noticed that we haven’t tune the Kp and Kd in this
experiments. So it is potential to obtain more stable results on Hopper-Medium-Expert tasks will
tuned hyperparameters.
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