
Benchmarking Sample Selection Strategies for
Batch Reinforcement Learning

Yuwei Fu Di Wu Benoit Boulet
McGill University

yuwei.fu@mail.mcgill.ca

Abstract

Training sample selection techniques, such as prioritized experience replay (PER),
have been recognized as of significant importance for online reinforcement learn-
ing algorithms. Efficient sample selection can help further improve the learning
efficiency and the final performance. However, the impact of sample selection
for batch reinforcement learning (RL) has not been well studied. In this work,
we investigate the application of non-uniform sampling techniques in batch RL.
In particular, we compare six variants of PER based on various heuristic priority
metrics that focus on different aspects of the offline learning setting. These metrics
include temporal-difference error, n-step return, self-imitation learning objective,
pseudo-count, uncertainty, and likelihood. Through extensive experiments on the
standard batch RL datasets, we find that non-uniform sampling is also effective in
batch RL settings. Further, there is no single metric that works in all situations.
The investigation also shows that it is insufficient to avoid the bootstrapping error
in batch reinforcement learning by only changing the sampling scheme.

1 Introduction

A key question in machine learning is to select the suitable training samples [30]. Many prior works
showed that an appropriate sample selection strategy usually significantly improves the learning
efficiency and final performance [5, 57, 15]. Similarly, sample selection also plays a crucial role in
reinforcement learning (RL) [13]. A notable example is the sample selection problem for experience
replay (ER) in off-policy RL [16], where an agent reuses stored experiences from a buffer. For
example, Prioritized Experience Replay (PER) [57], which samples high error transitions more
frequently, is widely used in different state-of-the-art (SOTA) off-policy RL algorithms [4, 26].

Batch RL, also known as offline RL, refers to the problem of learning a near-optimal policy from a
fixed offline buffer [35]. Due to the wide availability of logged data and the increasing computing
power, batch RL holds the promise for successful real-world applications [37]. Especially for the
scenarios where collecting online data is time-consuming, dangerous or unethical, i.e., robotics,
self-driving cars and medical treatments [25]. While most off-policy RL algorithms are applicable in
the offline setting, they usually suffer from the bootstrapping error [22, 33] due to out-of-distribution
(OOD) samples. Different solutions have been proposed to mitigate this problem, i.e., adding
constraints [22, 66], imitating experts [10, 69], learning dynamics models [68, 31, 3], incorporating
uncertainties [67], learning ensembles [1], or learning pessimistic value functions [34, 7, 28].

Unlike the wide application of PER in online off-policy RL, the non-uniform sampling strategy is
largely ignored in recent batch RL algorithms. Inspired by the success of PER [57] in the online setting,
one natural question to ask is that what is the counterpart of PER in batch RL? Some prior works
proposed different sample selection strategies in batch RL. For example, Optimal Sample Selection
(OSS) [54] introduced a meta-learning algorithm which selects optimal samples according to a cross
entropy search method for tree-based Fitted Q-Iteration (FQI) [14] with a known dynamics model.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021

Recently, Best-Action Imitation Learning (BAIL) [10] proposed to select high-performing samples
with a learned value function in behavior cloning. Another related line of research is to reweight
sampled transitions. For example, Advantage-Weighted Regression (AWR) [48] and Advantage-
weighted Behavior Model (ABM) [58] used reward-weighted regression [49] to learn the policy.
Further, Uncertainty Weighted Actor Critic (UWAC) [67] adopted a dropout-uncertainty estimation
method [24] and reweighted samples using the estimated uncertainties. However, it is unclear which
sample selection strategy is preferred in batch RL, thereby demanding more investigations.

In this work, we study the sample selection problem in batch RL [13]. We follow the PER framework
by assigning samples with different priorities [57]. Crudely, there are two types of metrics to evaluate
sample importance. Firstly, we can design a heuristic metric based on our prior knowledge, i.e.,
temporal-difference (TD) error. Secondly, we can use an end-to-end approach to learn a metric for
each sample, for example, we can use off-policy evaluation (OPE) methods [65, 19] to evaluate
the goodness of current policy as the metric. However, existing OPE methods usually need to
learn a model for each evaluation [36], which makes the learning-based metric approach to be
computationally expensive. Therefore, in this paper, we focus on the heuristic metric-based approach
and leave the learning-based metric approach for future work.

2 Preliminaries

2.1 Batch Reinforcement Learning

We consider the standard Markov Decision Process (MDP) [53] M = ⟨S,A, T, r, γ⟩. S and
A denote the state and action spaces. T (s′|s, a) and r(s, a) represent the dynamics and reward
function, and γ ∈ [0, 1) is the discount factor. A policy π(a|s) defines a mapping from state to
distributions over actions. The goal of an RL agent is to learn a policy π(a|s) that maximizes the
expected cumulative discounted reward J(π) := Eπ [

∑∞
t=0 γ

trt]. The performance of the policy
can be defined by the Q-function Qπ(s, a) := Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a] and value function
V π(s) := Eπ [

∑∞
t=0 γ

trt|s0 = s], where Eπ[·] is the expected result when following the policy π.
Once given the optimal Q-function Q∗(s, a) = argmaxπ Q

π(s, a), we can derive an optimal policy
as π∗(a|s) = argmaxa Q

∗(s, a) [60].

In (tabular) Q-learning, we solve for the Q∗ by iterating the Bellman Optimality Operator T ∗, defined
as T ∗Q(s, a) ← r + γmaxa′ Q(s′, a′) [6]. To solve problems with large state space, we can use
a parameterized Q-function Qθ(s, a) to approximate Q∗. In practice, we optimize the parameters
by a µ-weighted L2 projection Πµ(Q) [18], which minimizes the empirical Bellman error loss:
Πµ(Q) = minθ E(s,a,r,s′)∼µ

[
(T ∗Qθ(s, a)−Qθ(s, a))

2
]
.

Batch RL, also known as offline RL, aims to learn a near-optimal policy from a fixed dataset [35] D,
representing a series of timestep tuples (st, at, rt, st+1). Furthermore, the dataset can be collected
by agents with different policies from different control tasks, including non-RL policies, such as
human demonstrations [37]. Some early works such as Fitted Q-Iteration (FQI) [14] and Neural
Fitted Q-Iteration (NFQ) [55], which formulate the original RL problem as a sequence of supervised
regression problem, are shown to be sample efficient in solving various real-world problems [50, 12].
On the other hand, some recent studies show that current deep off-policy RL algorithms usually
fail in challenging batch RL problems due to bootstrapping error [22, 33]. That is, the OOD action
a′ might lead to unrecoverable over-estimation error through max operator in the Bellman backup.
The over-estimation problem is particularly detrimental in the offline setting where the agent has no
access to interact with the real environment to get the feedback to fix the estimation error [34].

2.2 Non-uniform Sampling with Experience Replay

Experience replay (ER) [40] has been a de facto component for modern deep RL algorithms. By
reusing previous collected experiences from the replay buffer, ER helps to reduce sample complexity
and stabilize training in off-policy RL [42, 39]. For some real-world problems where collecting
online data is expensive or time consuming, i.e., robotics or self-driving cars, the ability to learn good
policies from pre-collected data is crucial for successful real-world applications [8].

A number of works [57, 2, 41, 59, 23] show that applying different non-uniform sampling strategies
in ER can significantly improve the learning efficiency. Especially for problems where there are many

2

redundant transitions [57], or the reward signal is sparse [2]. A notable example is the Prioritized
Experience Replay (PER) [57], where the probability of sampling a certain transition (st, at, rt, st+1)
is proportional to the absolute TD error. However, it is still an open question that which priority
metric is optimal to value the importance of samples [13].

3 Related Work

3.1 Sample Selection with Experience Replay

Many prior works have sought to analyze the mechanism of experience replay, both empirically
[13, 16] and theoretically [23, 38]. Similar to our work, [13] investigated a number of proxies, i.e.,
age, TD error, and exploration noise, to decide which experience to store in the replay buffer and
how to sample from the replay buffer. Likewise, [18] used a “unit-testing” framework to study
Q-learning with function approximators and found that a sampling scheme with wider coverage
improves performance. Further, [16] conducted a systematic analysis of experience replay in Q-
learning methods and provided two insights – (1) Increasing the buffer capacity is preferable, because
it has a broader data coverage. (2) Decreasing the age of the oldest policy improves the performance,
because it contains more high-quality on-policy data. While these insights help us to understand
the mechanism of experience replay, they are less practical in the batch RL setting, where the given
offline dataset is fixed [35].

A number of variants of ER have been introduced to further improve the learning efficiency [57,
2, 44, 41, 59]. One of the most popular variants is the Prioritized Experience Replay (PER) [57],
which proposed to use the absolute TD error |δ(i)| as the priority metric and the probability p(i) of
sampling the i-th transition is:

p(i) =
pαi∑
j p

α
j

, pi = |δ(i)|+ ϵ or pi =
1

rank(i)
, (1)

where α is a hyper-parameter, ϵ is a small positive constant to avoid zero priority, priority pi is could
be the value of |δ(i)| or the inverse rank of |δ(i)|. In addition, Hindsight Experience Replay (HER)
[2] proposed to re-label visited state as goal states to overcome hard exploration problems with
sparse rewards. Competitive Experience Replay (CER) [41] later introduced an automatic exploratory
curriculum by formulating an exploration competition between two agents. On the other hand,
Remember and Forget Experience Replay (ReF-ER) [44] classified samples as “near-policy” and
“far-policy” by the importance weight ρ = π(a|s)/µ(a|s) between current policy π and the behavior
policy µ, and compute gradients only with near-policy samples. Similarly, Attentive Experience
Replay (AER) [59] selects samples according to the similarities between the transition state and
current state.

Recently, Loss-Adjusted Prioritized (LAP) experience replay [23] built the connection between the
non-uniform sampling scheme in PER and loss functions. It shows that any loss function L1 evaluated
with uniform sampling (i ∼ D1) is equivalent to another loss function L2 that is evaluated with
non-uniformly sampled data (i ∼ D2):

Ei∼D1
[∇QL1(δ(i))] = Ei∼D2

[
pD1

(i)

pD2(i)
∇QL1(δ(i))

]
= Ei∼D2

[∇QL2(δ(i)),] (2)

where δ(i) is the TD error of the i-th sample and the two loss functions follows ∇QL2(δ(i)) =
pD1

(i)

pD2
(i)∇QL1(δ(i)). Moreover, Valuable Experience Replay (VER) [38] proved that the absolute TD

error |δ(i)| is an upper-bound of different value metrics of experiences in Q-learning.

3.2 Sample Selection in Batch Reinforcement Learning

A pioneer work that applying sample selection strategy in batch RL is the Optimal Sample Selection
(OSS) method [54]. More specifically, OSS is a model-based RL (MBRL) approach [29] where a
known dynamics model is available to generate Monte Carlo rollouts for policy evaluation. Moreover,
OSS introduced a meta-learning algorithm to select optimal samples according to the cross entropy
search method [56] for tree-based Fitted Q-Iteration (FQI) [14]. Recently, Best-Action Imitation
Learning (BAIL) proposed to learn a special value function Vϕ(s), called upper envelope, that upper

3

bounds the cumulative discounted return Gi =
∑T

t=i γ
t−irt from starting from state si to the end of

the episode (max horizon T). The learned upper envelope Vϕ(S) is then used to filter high-quality
samples to train a behavior cloning policy [52].

Another related line of research is to reweight samples [63, 48, 67]. Unlike previous methods that
actively select samples from the buffer, these methods still adopt uniform sampling while assigning
different weights to each sample to compute the loss function. For example, Advantage-Weighted
Regression (AWR) [48] first formulated the RL problem as a supervised regression problem, and
then used a learned value function to train the policy π(a|s) via reward-weighted regression [49],
which assigns higher weights to samples with large advantage values. Similarly, Advantage-weighted
Behavior Model (ABM) [58] adopted reward-weighted regression in policy training to focus more on
good actions. On the other hand, Uncertainty Weighted Actor Critic (UWAC) [67] used Monte Carlo
Dropout [24] to approximate the epistemic uncertainty [11] for samples in batch RL dataset. The
goal of UWAC is to assign lower weights to samples with higher epistemic uncertainty in order to
mitigate the bootstrapping error caused by OOD state-action pairs [22, 33].

4 Methodology

4.1 Backbone Algorithms

In this work, we select TD3BC [20] and PER [57] as the backbone algorithms for benchmarking
sample selection strategies in batch RL. TD3BC is a minimalist batch RL algorithm which simply
adds a behavior cloning term to the TD3 algorithm [21]. While being simple, TD3BC achieves
comparable performance w.r.t. other SOTA batch RL algorithms [32, 34] on the standard batch RL
benchmark [17]. Moreover, TD3BC is able to run significantly faster than previous methods by
removing additional computations overheads.

In terms of the non-uniform sampling strategy, we follow the PER framework [57] in which the
probability to sample transition i is p(i) = pαi /

∑
j p

α
j , where pi is the priority of transition i and

parameter α determines how much prioritization is used. In this paper, we investigate the problem
of how the choice of priority metric matters in batch RL. We use both the proportional PER and
rank-based PER in the experiment depending on the used priority metric.

4.2 Proposed Metrics

Here, we introduce six different priority metrics that we use in the experiment (Table 1).

Table 1: Depends on if the metric changes during the training, we can devide it as dynamic or static
metic. Some metrics are more computationally expensive which require extra computation.

Metric Type Motivation Prioritization Extra computation

TD-Error Dynamic Reducing redundant samples Proportional PER -

N-step Return Static Selecting good samples Rank PER -

GSIL Dynamic Selecting good samples Proportional PER A second buffer

Pseudo-count Static Avoiding OOD samples Rank PER Hash table

Uncertainty Static Avoiding OOD samples Rank PER Probabilistic ensemble

Likelihood Static Being more on-policy Rank PER Behavior policy

TD error. We first select TD error as our primary baseline, and test how well does the naïve PER
[57] perform in batch RL setting. The priority for the i-th transition is pi = |δ(i)|+ ϵ, where |δ(i)| is
the absolute TD error and ϵ is a small positive constant to avoid zero priority. The motivation is that
samples with small absolute TD error may contain less information for our model to learn from [43].

N-step return. We then select the n-step return as the proxy to evaluate the goodness of samples. We
hypothesis that samples with higher n-step return is more likely to be high-quality samples. Unlike
Monte Carlo return which requires a full trajectory, n-step return is more practical in real-world

4

problems, where we usually only have partial trajectories without a terminal state. Given the different
reward scales across tasks, we use a rank based PER in the experiment.

Generalized SIL. Our third metric is inspired by the Self-Imitation Learning (SIL) [45], which
exploits past good experiences. In particular, SIL imitates past good experiences by optimizing
following actor-critic loss functions:

Lsil
value =

1

2
∥ [R− Vθ(s)]+ ∥

2, Lsil
policy = − log πθ(a|s) [R− Vθ(s)]+ , (3)

where R =
∑∞

t=0 γ
trt is the cumulative discounted return starting from state s after taking action a,

and [x]+ = max(0, x). The motivation of SIL is intuitive that policy πθ(a|s) should imitate action
a if it is high-performing, such that R > Vθ(s). Generalized Self-Imitation Learning (GSIL) [62]
later extends the original SIL to deterministic actor-critic setting with n-step TD-learning. We follow
GSIL to set the priority for the i-th transition to be pi =

[
RN

i −Qθ(si, ai)
]
+
+ ϵ, where RN

i is the
n-step return and ϵ is a small positive constant.

Pseudo-count. Although batch RL does not concern the exploration problem [46]. We attempt to
borrow some insights from an exploration perspective to distinguish useful samples. In particular,
we test the efficacy of Pseudo-count [47, 61] for sample selection in batch RL. We follow the
#Exploration [61] model to use locality-sensitive hashing (LSH) method, i.e., SimHash [9], to convert
continuous state s to discrete hash codes ϕ(s) = sgn(Ag(s)), where g(·) is a preprocessing function
and A is a random matrix. We use a rank-based PER and set the priority of the i-th sample to be
pi = 1/rank(Ni).

Uncertainty. In addition, we also try to use the epistemic uncertainty to evaluate the sample
importance. In the experiment, we adopt the probabilistic ensemble [11] method to evaluate sample
uncertainty. We first train an ensemble of M probabilistic dynamic models {T1, · · · , TM}, and each
dynamic model Ti(st+1|st, at) = N (µθi(st, at),Σθi(st, at)) outputs a Gaussian distribution with
diagonal covariances. For the i-th transition, we approximate its epistemic uncertainty by the standard
deviation of σi = std ({µθ1(si, ai), · · · , µθM (si, ai)}). We use a rank-based PER to assign higher
priority to samples with smaller uncertainty, that is pi = 1/rank(σ−1

i).

Likelihood. The last metric we test in the experiment is the likelihood of the behavior model [32].
Similar to previous constrained based batch RL algorithms [22, 66, 33], we want to make the learned
policy π(a|s) to stay close to the behavior policy µ(a|s). Therefore, we first learned a behavior policy
with a mixture of Gaussian model [32] and used the likelihood as the priority. We use a rank-based
PER where pi = 1/rank(logµ(ai|si)) is the priority for the i-th sample.

5 Experiment

In this section, we compare different PER variants with the proposed metrics on standard batch
RL benchmarks [17]. We seek to address the following questions in the experiments: (1) Does
non-uniform sampling scheme also help to improve the performance in batch RL? (2) Which priority
metric is preferred in the batch RL setting? We first introduce the dataset and the experiment setups.
Then we present our main experiment result and discuss some limitations of our method.

Datasets. We evaluate different sample selection strategies on the widely-used D4RL gym Mujoco
benchmark [64, 17], including three environments (halfcheetah, hopper, and walker2d) and five
dataset types (random, medium, medium-replay, medium-expert, expert), yielding a total of 15
datasets. These datasets differ in many aspects, e.g., number of transitions, quality of behavior policy,
and data coverage. We seek to validate the robustness of each sample selection strategy in different
domains.

Experiment setup. For the backbone algorithm, we use the author-provided implementation for
TD3BC. We maintain two replay buffers for the GSIL metric as in the origin paper[62], where the
first buffer stores single-step transitions to train TD3 and the second buffer stores n-step transitions to
compute the GSIL loss. In addition, we use the MBRL-Lib[51] to train the probabilistic ensemble,
and implement the SimHash according to EPG[27]. Parameters for the PER are taken from the
original paper [57]. We follow exactly the same experimental setup as [20], in which we train for
1 million time steps and evaluate every 5000 time steps for 10 episodes. More details are in the
Appendix.

5

Results. We report the final performance of different priority metrics in Table 2 and plot the learning
curves in Figure 1. We make several observations: (1) Non-uniform sampling strategy is also effective
in batch RL, for example, the most performant method in each environment is usually a non-uniform
sampling strategy. (2) There is no single metric that is consistently the best performer. (3) In some
environments, such as Hopper-Medium and Hopper-Expert, different sampling schemes perform very
similar. In light of these results, we conclude that offline datasets are quite complicate and multiple
factors can influence the sample priority. In environments with relatively low dimensions, such as
Hopper, the learned policy is less affected by the sampling scheme.

Table 2: Performance of different priority metrics in the D4RL datasets. We report the average
normalized score over the final 10 evaluations over 3 seeds (± standard deviation).

Uniform TD-Error Nstep-Return GSIL Pseudo-Count Uncertainty Likelihood

R
an

do
m HalfCheetah 11.2 ± 1.3 11.1 ± 1.1 10.3 ± 0.6 9.1 ± 2.0 11.3 ± 1.3 11.4 ± 1.2 11.0 ± 0.6

Hopper 11.0 ± 0.0 10.9 ± 0.1 11.0 ± 0.0 10.9 ± 0.0 11.1 ± 0.0 10.8 ± 0.1 11.0 ± 0.0
Walker2d 0.9 ± 0.6 1.7 ± 1.1 2.6 ± 0.8 5.1 ± 0.3 2.4 ± 0.6 2.3 ± 1.7 1.8 ± 0.6

M
ed

iu
m HalfCheetah 42.9 ± 0.1 42.8 ± 0.3 43.9 ± 0.5 43.2 ± 0.2 43.3 ± 0.4 42.9 ± 0.4 42.4 ± 0.1

Hopper 99.9 ± 0.1 99.6 ± 0.4 99.4 ± 0.6 99.8 ± 0.1 99.7 ± 0.1 99.8 ± 0.1 99.8 ± 0.2
Walker2d 77.3 ± 0.9 78.2 ± 1.0 77.3 ± 1.2 77.9 ± 1.3 77.2 ± 0.7 76.9 ± 0.6 79.4 ± 0.6

M
ed

iu
m

R
ep

la
y HalfCheetah 43.1 ± 0.4 43.3 ± 0.1 43.5 ± 0.5 42.8 ± 0.2 43.3 ± 0.5 43.4 ± 0.2 43.3 ± 0.0

Hopper 32.1 ± 1.3 30.3 ± 0.8 31.4 ± 0.7 30.6 ± 1.9 31.9 ± 0.3 31.1 ± 1.8 31.7 ± 1.6
Walker2d 24.3 ± 4.6 23.8 ± 2.5 17.4 ± 2.7 15.2 ± 9.4 29.0 ± 3.6 26.4 ± 1.0 24.8 ± 1.1

M
ed

iu
m

E
xp

er
t HalfCheetah 92.4 ± 1.5 96.9 ± 1.7 87.8 ± 3.4 96.5 ± 2.1 91.3 ± 1.7 88.0 ± 3.3 84.4 ± 4.0

Hopper 112.0 ± 0.1 106.2 ± 1.1 110.7 ± 1.7 111.6 ± 0.9 112.2 ± 0.0 109.8 ± 2.2 111.4 ± 0.6
Walker2d 95.7 ± 4.2 96.9 ± 3.0 90.8 ± 2.6 103.1 ± 4.1 96.9 ± 4.6 103.9 ± 2.1 81.4 ± 23.6

E
xp

er
t HalfCheetah 105.9 ± 0.7 103.5 ± 1.5 102.4 ± 1.6 105.4 ± 1.0 104.0 ± 1.2 103.8 ± 0.2 104.5 ± 0.9

Hopper 112.3 ± 0.0 112.2 ± 0.1 112.2 ± 0.1 112.1 ± 0.1 112.2 ± 0.1 111.8 ± 0.6 44.6 ± 47.9
Walker2d 105.0 ± 2.0 104.5 ± 1.8 105.5 ± 1.7 103.8 ± 1.3 104.2 ± 1.1 105.9 ± 0.4 104.1 ± 3.3

Beat baseline - 5 4 5 8 6 5

Figure 1: Results are averaged across 3 random seeds with shaded areas representing the standard
deviation. We can observe that non-uniform sampling strategies is also effective in batch RL, and
there is no priority metric that works in all situations.

Sampling scheme and bootstrapping error. We plot the learned Q1 function in TD3 (Figure
2). We can see that all the sampling schemes learn explosive Q values in the Walker2d-Random
environment, which implies that non-uniform sampling schemes fail to avoid the bootstrapping error.

6

We also observe that the sampling scheme affects the learned Q function, where the likelihood metric
usually learns a relatively smaller Q values and N-step return learns a relatively higher Q values. This
corresponds to the inductive bias of each metric. For example, a transition with higher N-step return
is more likely to have large single-step return, which leads to higher Q values in the Bellman backup.
In addition, we can also observe that the bootstrapping error is not the only problem which prevents
us to learn a good offline policy. For example, we did not suffer from severe bootstrapping error in
HalfCheetah-Random and Hopper-Random environment, but we still fail to exploit the offline dataset
to learn performant policies.

Figure 2: Learned Q1 function in TD3. We use a discount factor γ = 0.99.

Some problems of the proposed metrics. We summarize some shortcomings of the heuristic
metric-based sample selection strategies. Firstly, we may need extra computations to compute the
priority metrics. In addition, these extra models require further parameter tuning which may be
problematic in the offline setting. Secondly, another critical problem of the metric-based sample
selection method is that how exact is the metric for selecting a good sample. It might be better to
use these metrics as thresholds to filter bad samples. For example, a low uncertainty transition may
not be a good sample, but a high uncertainty transition is more likely to be a bad one. Thirdly, in the
experiment, we compute the priority metric metric for transition (si, ai, ri, si+1) based the current
state-action pair (si, ai). However, in the batch RL setting, the bootstrapping error comes from the
OOD state-action pair (si+1, ai+1). Therefore, it might be more effective to compute the priority
metric based on the next state-action pair (si+1, ai+1). We leave these shortcomings for future work.

6 Conclusion and Future Work

In this paper, we performed empirical analysis on non-uniform sample selection strategies in batch
reinforcement learning (RL). In particular, we compared different variants of Prioritized Experience
Replay (PER) based on various heuristic sample priority metrics, and our experiments showed that
non-uniform sampling is also effective in the batch RL setting. However, there is no single priority
metric that works in all situations. Our preliminary investigation showed that offline dataset is quite
complicate and multiple factors can influence the sample priority. With the growing number of
available offline datasets, we believe that a better sample selection strategy holds the promise to help
us learn more performant batch RL policies. One limitation of our work is that the proposed metric
only focuses on current state-action pairs and requires extra computations. In the future, we plan to
do more evaluations on different data sets and investigate learning a priority metric end-to-end with
off-policy policy evaluation (OPE) methods.

7

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective

on offline reinforcement learning. In International Conference on Machine Learning, pages
104–114. PMLR, 2020.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
arXiv preprint arXiv:1707.01495, 2017.

[3] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[4] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional determin-
istic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[6] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

[7] Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in
fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

[8] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling
data-driven robotics with reward sketching and batch reinforcement learning. arXiv preprint
arXiv:1909.12200, 2019.

[9] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.

[10] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, Qing Deng, and Keith Ross.
Bail: Best-action imitation learning for batch deep reinforcement learning. arXiv preprint
arXiv:1910.12179, 2019.

[11] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. arXiv preprint
arXiv:1805.12114, 2018.

[12] Joao Cunha, Rui Serra, Nuno Lau, Luís Seabra Lopes, and Antóio JR Neves. Batch reinforce-
ment learning for robotic soccer using the q-batch update-rule. Journal of Intelligent & Robotic
Systems, 80(3):385–399, 2015.

[13] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. Experience selection in deep
reinforcement learning for control. Journal of Machine Learning Research, 19, 2018.

[14] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503–556, 2005.

[15] Yang Fan, Fei Tian, Tao Qin, Jiang Bian, and Tie-Yan Liu. Learning what data to learn. arXiv
preprint arXiv:1702.08635, 2017.

[16] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle,
Mark Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
Conference on Machine Learning, pages 3061–3071. PMLR, 2020.

[17] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

8

[18] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep
q-learning algorithms. In International Conference on Machine Learning, pages 2021–2030.
PMLR, 2019.

[19] Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, et al. Benchmarks for deep
off-policy evaluation. arXiv preprint arXiv:2103.16596, 2021.

[20] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[22] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. 2018.

[23] Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and
non-uniform sampling in experience replay. arXiv preprint arXiv:2007.06049, 2020.

[24] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[25] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl
unplugged: Benchmarks for offline reinforcement learning. arXiv e-prints, pages arXiv–2006,
2020.

[26] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-second AAAI conference on artificial
intelligence, 2018.

[27] Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho,
and Pieter Abbeel. Evolved policy gradients. arXiv preprint arXiv:1802.04821, 2018.

[28] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[29] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[30] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In International conference on machine learning, pages 2525–2534.
PMLR, 2018.

[31] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[32] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In International Conference on Machine
Learning, pages 5774–5783. PMLR, 2021.

[33] Aviral Kumar, Justin Fu, George Tucker, and Sergey Off-policy deep reinforcement learn-
ing without exploration. Stabilizing off-policy q-learning via bootstrapping error reduction.
arXiv preprint arXiv:1906.00949, 2019.

[34] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[35] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45–73. Springer, 2012.

9

[36] Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In
International Conference on Machine Learning, pages 3703–3712. PMLR, 2019.

[37] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[38] Ang A Li, Zongqing Lu, and Chenglin Miao. Revisiting prioritized experience replay: A value
perspective. arXiv preprint arXiv:2102.03261, 2021.

[39] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[40] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[41] Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay.
arXiv preprint arXiv:1902.00528, 2019.

[42] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[43] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine learning, 13(1):103–130, 1993.

[44] Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In
International Conference on Machine Learning, pages 4851–4860. PMLR, 2019.

[45] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In Interna-
tional Conference on Machine Learning, pages 3878–3887. PMLR, 2018.

[46] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

[47] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration
with neural density models. In International conference on machine learning, pages 2721–2730.
PMLR, 2017.

[48] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[49] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[50] Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet. Sample-
efficient batch reinforcement learning for dialogue management optimization. ACM Transactions
on Speech and Language Processing (TSLP), 7(3):1–21, 2011.

[51] Luis Pineda, Brandon Amos, Amy Zhang, Nathan O Lambert, and Roberto Calandra. Mbrl-lib:
A modular library for model-based reinforcement learning. arXiv preprint arXiv:2104.10159,
2021.

[52] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88–97, 1991.

[53] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[54] Emmanuel Rachelson, François Schnitzler, Louis Wehenkel, and Damien Ernst. Optimal sample
selection for batch-mode reinforcement learning. In Proceedings of the 3rd International
Conference on Agents and Artificial Intelligence (ICAART 2011), 2011.

10

[55] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European conference on machine learning, pages 317–328.
Springer, 2005.

[56] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: A unified approach to
monte carlo simulation, randomized optimization and machine learning. Information Science &
Statistics, Springer Verlag, NY, 2004.

[57] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[58] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

[59] Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experience replay. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 5900–5907, 2020.

[60] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[61] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pages 1–18, 2017.

[62] Yunhao Tang. Self-imitation learning via generalized lower bound q-learning. arXiv preprint
arXiv:2006.07442, 2020.

[63] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted
transfer of samples in reinforcement learning. In International Conference on Machine Learning,
pages 4936–4945. PMLR, 2018.

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[65] Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

[66] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[67] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. arXiv
preprint arXiv:2105.08140, 2021.

[68] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

[69] Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations
and unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

11

A Appendix

Here, we introduce some details of our experiments. For the PER model, we use the hyperparameters
recommended in the origin paper [57], and set α = 0.6, β = 0.4. For the N-step return metric, we
select the N to be 20. For the GSIL metric, we follow the same experiment setup as in the origin GSIL
paper [62]. For the pseudo-count metric, we select the key dimension for Simhash by computing the
25% quantile and 50% quantile number (see Table 3). A small key dimension would lead to too many
collisions while a large key dimension would lead to sparse collisions. We highlight the selected
parameter for each environment we used in the experiment. For the uncertainty metric, we train an
probabilistic ensemble with 7 models with early stopping. We use the default training parameters as
in the MBRL-LIB [51] package. For the likelihood metric, we use the official FBRC [32] code to
learn the behavior policy.

Table 3: Quantile number of the pseudo-count of each state-action pair in the offline dataset.

Key Dimension 16 24 32 48 64 128

Quantile 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

R
an

do
m HalfCheetah 29 85 1 3 1 1 1 1 1 1 1 1

Hopper 1068 4377 321 1697 62 343 6 42 2 11 1 1
Walker2d 56 201 2 10 1 3 1 1 1 1 1 1

M
ed

iu
m HalfCheetah 670 3288 112 727 21 188 3 28 1 4 1 1

Hopper 562 1931 125 626 41 208 7 43 2 13 1 1
Walker2d 99 443 6 40 1 7 1 2 1 1 1 1

M
ed

iu
m

R
ep

la
y HalfCheetah 7 29 1 3 1 1 1 1 1 1 1 1

Hopper 57 205 8 37 2 10 1 1 1 1 1 1
Walker2d 6 18 1 2 1 1 1 1 1 1 1 1

M
ed

iu
m

E
xp

er
t HalfCheetah 838 4309 192 1241 23 210 4 43 1 8 1 1

Hopper 405 1354 73 326 26 135 4 23 1 4 1 1
Walker2d 218 1069 14 90 3 23 1 2 1 2 1 1

E
xp

er
t HalfCheetah 638 3831 149 947 23 198 2 12 1 2 1 1

Hopper 1032 3683 175 718 25 123 4 24 2 8 1 1
Walker2d 160 655 17 103 4 25 1 3 1 1 1 1

12

	Introduction
	Preliminaries
	Batch Reinforcement Learning
	Non-uniform Sampling with Experience Replay

	Related Work
	Sample Selection with Experience Replay
	Sample Selection in Batch Reinforcement Learning

	Methodology
	Backbone Algorithms
	Proposed Metrics

	Experiment
	Conclusion and Future Work
	Appendix

