
MBAIL: Multi-Batch Best Action Imitation Learning
utilizing Sample Transfer and Policy Distillation

Di Wu∗ Tianyu Li∗ David Meger Michael Jenkin Steve Liu Gregory Dudek
Samsung AI Center Montreal

{tianyu.li, david.merger}@partner.samsung.com
{di.wu1, m.jenkin, steve.liu, greg.dudek}@samsung.com

Abstract

Batch reinforcement learning (RL) aims to learn a good control policy
from a previously collected dataset without requiring additional interac-
tions with the environment. Unfortunately, in the real world, we may
only have a limited amount of training data for tasks we are interested
in. Most batch RL methods are intended to learn a policy over one fixed
dataset, and are not intended to learn a policy that can perform well over
other tasks. How can we leverage the advantages of batch RL while
dealing with limited training data is another challenge in real world. In
this work, we propose to add sample transfer and policy distillation to
a leading Batch RL approach. The proposed methods are evaluated on
multiple control tasks to showcase their effectiveness.

1 Introduction

Deep RL (DRL) has achieved impressive successes in different areas including the game of Go
(Silver et al., 2017), Atari games (Mnih et al., 2015), and continuous control tasks (Lillicrap et al.,
2015). However, deploying RL algorithms for real-world problems can be very challenging. Com-
pared with supervised learning algorithms (e.g., classification or regression), most reinforcement
learning algorithms need to interact with the environment many times to learn a reliable control
policy. This process can be very costly or even dangerous for some real-world applications, e.g.,
safety-critical applications. The current success of deep RL algorithms heavily depends on a large
number of interactions with the environment. Thus the practical application of reinforcement learn-
ing algorithms in the real world is critically limited by its poor data efficiency and its inflexibility of
learning in an offline fashion.

Batch reinforcement learning algorithms (also known as offline reinforcement learning algorithms)
have been developed to solve this issue. Batch RL aims to learn a control policy from a previously
collected dataset without further interactions with the environment. There have been many efforts in
developing batch RL methods: early approaches include fitted Q iteration method (Ernst et al., 2005)
which uses a tree-based model to estimate the state-action value function (Q function) in an iterative
way, and the neural fitted Q method (Riedmiller, 2005), which leverages a multilayer perceptron
(MLP) to approximate the Q function. Since these earlier efforts, a number of batch reinforcement
learning algorithms have been developed that further improve the learning performance. These
approaches can be generally categorized as Q function based methods (Fujimoto et al., 2019; Kumar
et al., 2020) and imitation learning based methods (Wang et al., 2018; Peng et al., 2019).

Even with these advances, most existing batch RL algorithms assume that we have a large number of
data points in the batch. In the real world, this may be an unrealistic assumption. For example, when

∗Equal contribution

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021

learning energy management control policies, we may only have a very limited amount of collected
data for newly built houses and buildings. It is hard for most current batch RL algorithms to learn a
reliable policy with a limited number of data points. In this work, we use transfer learning (Torrey
& Shavlik, 2010) to address this issue. Transfer learning aims to use the knowledge from source
domains (domains for which we have a large amount of data) to improve the learning performance
in the target domain (the domain we are interested in, but for which we only have a limited amount
of data). Depending on the manner in which knowledge is reused from the source domains, there
are three main categories of transfer learning: sample transfer, model transfer, and representation
transfer. In this work, we use sample transfer, i.e., we transfer some related data points from the
source tasks to improve the learning performance in the target control task. This can help the target
task with low data. The proposed algorithm is referred to as BAIL+ as it is a direct extension of the
BAIL algorithm proposed by Chen et al. (2019).

Batch RL algorithms are typically designed to deal with single task scenario (a single batch setting).
In the real world, it is more common to have batches collected from a set of tasks that have similar
Markov Decision Process (MDP) settings, but which correspond to different environments. For
example, we may have collected datasets from a set of houses/buildings in the same area. Thus,
it will very helpful if one general policy can be learned from different batches that performs well
on these different tasks even including unseen tasks, without further adaptation. In Li et al. (2019),
the authors implemented preliminary investigations on multitask batch reinforcement learning. In
our work, to improve the task-level generalization of the policy learned with batch RL, we further
extend BAIL+ for multi-batch settings via policy distillation. The resulting algorithm is referred to
as MBAIL. Specifically, we aim to learn a general policy without the need to infer the task identity
which can make batch RL more applicable in the real world.

2 Background

Batch Reinforcement Learning Reinforcement learning (Sutton & Barto, 2018) is a paradigm in
which an agent aims to learn an optimal control policy by interacting with the environment. For-
mally, an RL problem is typically formulated as a Markov Decision Process (MDP), i.e., a tuple
〈S,A, p, r, µ, γ〉, where S is the state space, A is the action space, p : S ⊗ A → S is the state
transition function, r : S ⊗ A → R is the reward function, µ is the initial state distribution, and γ
is the discount factor. In batch reinforcement learning (batch RL), the goal is to learn a high perfor-
mance control policy using an offline dataset without further interactions with the environment. The
dataset consists of N data points B = {(st, at, rt, s

′

t)|t = 1, .., N}. The batch can be collected with
any method, and specifically it does not represent an on or near-policy distribution of states. B can
be obtained while training an RL policy in a episodic fashion or running some other control policy
(e.g., rule-based methods) in the same way.

BAIL: Best Action Imitation Learning Best Action Imitation Learning (BAIL) (Chen et al.,
2019) is a simple and computationally efficient imitation learning-based batch RL algorithm. The
core concept of BAIL is very simple: finding actions that can achieve high return for each state s
and then learning a control policy based on these selected state-action pairs. To be more specific,
for a particular state-action pair (s, a), let G(s, a) denote the return starting in state s and executing
action a, under the policy π. Denote the optimal value function by V ∗(s). Then if the action a∗
satisfies G(s, a∗) = V ∗(s), a∗ is an optimal action for state s. The problem now becomes how
to obtain V ∗ in a batch setting. Since there is no further interaction with the environment, it is
impossible to find V ∗. Therefore we seek to eliminate as many useless state-action pairs in the
batch as possible, to avoid the algorithm inferring bad actions. To do this, we estimate a supremum
of the optimal value function V ∗, which is referred to as the upper envelope. Given φ = (w, b), a
neural network parameterized Vφ : S → R, a regularization weight λ and a dataset D of size m,
where Di = (si, Gi) and Gi is the accumulated return of the state si computed within the given
batch, then the upper envelope function V ∗ : S → R is estimated by minimizing the following loss
function:

min
φ

m∑
i=1

[Vφ(si)−Gi]2 + λ||w||2 s.t. Vφ(si) > Gi where i = 1, 2, · · ·m (1)

2

Algorithm 1 BAIL+: Best Action Imitation Learning with Multi-source Sample Transfer
Input: A target task batch Bt andN source task batches B1,B2, · · · ,BN and the pre-defined sample
selection ratio threshold α̃

1: Learn the upper envelope function Vt and the reward function r̂t for batch Bt.
2: for j = 1, · · · , N do
3: for d = 1, · · · ,M do
4: Denote the current state action pair by (sjd, a

j
d).

5: Following equation 5, estimate return of sample (sjd, a
j
d), denote by Ĝjd.

6: Compute the sample selection ratio α(sjd, a
j
d) via equation 4.

7: if α(sjd, a
j
d) > α̃ then

8: Append (sjd, a
j
d) to dataset Bt

9: end if
10: end for
11: Learn the final policy πt on Bt via imitation learning
12: end for
Output: the final policy of the target task πt

Once the upper envelope function Vφ is estimated, the best state-action pairs can be selected from
the batch data B based on the estimated Vφ. One way of selecting such pair is that for a fixed β > 0,
we choose all (si, ai) pairs from the batch data set B such that:

Gi > βVφ(si) (2)
Typically, one can set β such that p% of the data points are selected, where p is a hyper-parameter.
In this work, we follow the same setting as Chen et al. (2019), in which β is set to ensure that
approximately 25% of all the data points are selected for each batch.

Multi-Batch Reinforcement Learning To make batch RL more suitable for real-world applica-
tions, it is desirable that the learned control policy performs well in multiple situations. In this work,
we aim to learn one RL agent from a set of batches sampled from a set of tasks {T1, · · · , TN}. Then
the multi-task (multi-batch) batch reinforcement learning can be formulated as

arg max
θ

J(θ) = ETi∼p(T)[JTi(πθ)] (3)

where JTi(πθ) is referred to as the performance of control policy πθ on task i. Here p(T) defines
the task distribution and for each task i, we have a corresponding dataset Bi.

3 Methodology

In this work, we aim to improve the RL agent’s performance over multiple tasks given a set of
datasets collected from multiple tasks. We tackle this problem in two stages. We first improve
the BAIL algorithm via sample transfer, which results in the BAIL+ algorithm, in which we have
one target task with a set of related source tasks. Furthermore, leveraging policy distillation, we
extend BAIL+ to MBAIL (Multi-batch Best Action based Imitation Learning with sample transfer)
to achieve better generalization over multiple tasks. Below we will illustrate both of our methods in
more details.

3.1 BAIL+

When dealing with a set of related tasks, it is natural to think about how to leverage data across all
of them. To achieve this, one straight forward approach is through sample transfer. The core idea
of sample transfer is to utilize samples from numerous source tasks to construct a comprehensive
dataset to improve the learning on the target task. In terms of BAIL, we employ an effective ap-
proach, that is, given a target task Tt, a state action pair (s, a) from any source task and its trajectory
ηs,a = ((s, a), (s1, a1), · · · , (sk, ak)), we define the sample selection ratio of the state action pair
(s, a) similar to the definition of BAIL’s sample selection ratio β, i.e.

α(s, a) =
Ĝt(ηs,a)

V t(s)
(4)

3

Figure 1: The overview for multi-batch BAIL.

Algorithm 2 MBAIL: Best Action Imitation Learning for Multiple Batches
Input: Batches B1, · · · ,BN ofN tasks, maximum number of epochsE

1: for t = 1, · · · , N do
2: Following Algorithm 1, train policy πt.
3: end for
4: for i = 1, · · · , E do
5: Compute the distillation loss Lπ via Equation 6
6: Compute the triplet loss Ltriplet via Equation 7.
7: Do gradient descent w.r.t. π and q for the loss function: L = Ltriplet + Lπ
8: end for

Output: The distilled policy π and the task inference module q.

Note Ĝt(η) is the estimated return of the source task samples evaluated on the target task and the
same is for V t(s). Then given a selection threshold α̃, if any state action pair (s, a) has α(s, a) > α̃,
we incorporate this pair into our newly selected batch. The motivation for this is that, by assuming
the correct estimation of Gt and V t, we just need to follow the original BAIL routine to pick the
state action pair that induces the best action.

Then, the imminent problem is to obtain an estimate of the return Ĝt evaluated on the target task. To
solve this, we first learn a reward function estimator on the target task r̂t : S ×A → R. Then given
a discount factor γ and a trajectory of state action pairs η = ((s1, a1), (s2, a2), · · · , (sM , aM)) from
any source task batch, we can obtain its return estimate on the target task, that is:

Ĝt(η) =

M∑
i=1

γi−1r̂t(si, ai) (5)

Note that we assume all tasks share the same transition function, and the batch is collected via the
same policy, therefore Equation 5 is a reasonable estimation of the return on the target task. Once the
return estimation is complete, we just need to select the samples based on the selection ratio function
α and some threshold α̃. Similarly to BAIL, we select α̃ such that the top p% of all datasets from
the source tasks is selected. Once the data is selected, we then use a standard supervised learning
based imitation learning method to obtain the final BAIL+ policy.

The pseudo code for BAIL+ is given in Algorithm 1. Assume we have one target task Tt and N
source tasks T1, T2, · · · , TN and their batch dataset Bt and B1,B2, · · · ,BN of state action pairs.
These tasks share the same state space, action space and transition functions, but have different
reward functions. Assume |B1| = · · · = |BN | = M . For the sake of simplicity, we also assume the
length of all trajectories is L. Note that this assumption can be easily lifted.

3.2 Multi-batch BAIL+

In multitask reinforcement learning, we are often faced with a set of similar tasks and it is desirable
to learn a policy that is able to leverage knowledge from all tasks and obtain a policy that has
similar or better performance across all tasks than the ones learned via single task training. Policy
distillation (Rusu et al., 2015) is a classic multitask reinforcement learning approach, where the
distillation agent aggregates knowledge from all of the policies and distill them into one consistent

4

policy (Rusu et al., 2015). This distillation process leverages knowledge from all tasks and thus
can potentially further improve the performance. In this section, we will introduce our approach for
multitask batch reinforcement learning based on the previous BAIL+ method, we will refer to this
method as MBAIL.

Given a set of policies Π = {πi|i = [1, 2, · · · , N]} and corresponding tasks T1, · · · , TN , we want to
learn a policy π : S → A such that

∑N
i=1

∑
s∈Bi

d(π(s), πi(s)) is minimized, where d is a distance
measure, and is chosen to be L2 distance. In addition, to help the task identification, we incorporate
a task inference module q : S × A × R × S → Rk. The distilled policy and the task inference
module are all parameterized by a neural network. Denote the context tuple c = (s, a,R, s

′
), our

algorithm aims to minimize the following loss function:

Lπ =
1

N

N∑
i=1

E
s,ci∼Bi

[(πi(s)− π(s, zi))
2 + βKL(q(ci)||N (0, 1))], zi ∼ q(ci) (6)

However, this approach is not directly deployable under the batch setting. In (Li et al., 2019), the
authors observed that the task inference module has learned to model the posterior over task identity
as conditionally dependent on only the state-action pairs, but omit the effect of reward, which is
crucial in the multitask setting. The reason for this behavior lies in the fact that there is no overlap
(or little) between each batch. Therefore in this case, minimizing Equation 6 only leads to the
algorithm learning the trivial correlations.

To avoid this problem, in (Li et al., 2019), the authors propose to add an additional loss function,
namely the triplet loss. The motivation behind this loss is to enforce reward information to take part
in the task inference. The authors achieve this by introducing a relabeling process. Given a context
tuple ci = (si, ai, Ri, s

′

i) from batch Bi and a reward estimation of task j, r̂j : S × A → R, the
relabelling of ci to task j, denoted by cji , is defined as: cji = (si, ai, r̂j(si, ai), s

′

i). Then the triplet
loss function is defined by:

Ltriplet =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

[d(q(cji , q(ci)))− d(q(cji), q(cj)) + a]+ (7)

where a is the triplet margin, [·]+ is the ReLU function , q outputs the posterior over task identity and
d is a divergence measure which is chosen to be the KL diverge. Through minimizing Equation 7,
we essentially encourage q to infer similar task representations when given either ci or cji . Moreover,
it helps enforcing q to infer different task identities for cji and cj , which forces q to account for the
reward information instead of only relying on the state-action pairs.

Now, to add with the previous distillation loss, our multi-batch policy distillation loss is:

L = Ltriplet + Lπ (8)

By minimizing the loss function, we will be able to obtain the final distilled policy π, as well as the
inference module q. The pseudo-code of MBAIL is summarized in Algorithm 2. There are two main
stages for MBAIL. In the first stage, BAIL+ is used to train policies for each task or each group of
tasks with identical properties for BAIL+. In the second stage, the policies learned from each of the
individual policies are distilled into one single multitask policy.

4 Experiments

In the experiment, we evaluate both BAIL+ and MBAIL on a set of datasets introduced in (Li et al.,
2019). As baseline comparisons, we have also included the results for single task BAIL, as well
as contextual BCQ, where the networks in BCQ are modified to accept the inferred task identity as
input as illustrated in (Li et al., 2019).

4.1 Experiment Setup

The datasets consist three challenging task distributions, namely Ant-Dir, Ant-Goal and HalfChee-
tahVel, from MuJoCo (Todorov et al., 2012). For the multi-task setup, we utilize the exact data

5

(a) The directions of all 10 tasks for Ant-
Dir. The dashed black line indicates the an-
gle border of the task distribution. The sim-
ulated robot ant starts at (0, 0) and needs to
move as quickly as possible in each of the
designated directions.

(b) Goal distribution of all 10 tasks for Ant-
Goal. The simulated robot ant starts at (0,
0) and needs to navigate to each designated
goal represented by dots in the figure.

(c) An example of the simulated ant robot.
This robot is used for both Ant-Dir and Ant-
Goal environments.

(d) An example of the simulated half cheetah
robot. This robot is used for the Halfchee-
tahVel environment. The task for this envi-
ronment is for the half cheetah robot to reach
and maintain a specific speed.

Figure 2: Illustrations of the experiment environment and their task distribution.

and evaluation protocols from (Li et al., 2019). In Ant-Dir, a target direction defines a task, where
the agent maximizes returns by running with maximal speed in the target direction. In Ant-Goal, a
task is defined by a goal location, to which the agent should navigate. In HalfCheetahVel, a task is
defined as a constant velocity the agent should achieve. As specified by the dataset authors (Li et al.,
2019), there are in total 200,000 samples for Ant-Dir, 300,000 samples for Ant-Goal and 60,000
trajectories for HalfCheetahVel. The state measurements for each task follows exactly the OpenAI
gym state. No task-specific information, for example goal location or the target velocity, is added to
the state. For Ant-Dir the target directions and goals are sampled from a 120◦ circular arc. Figure 2
illustrates these environments in detail.

In experiments, we illustrate the performance of our approaches for both Algorithm 1 and Algo-
rithm 2. For all upper envelope estimation (single task BAIL, BAIL+ and MBAIL), we use a
ReLu (Nair & Hinton, 2010) network of two layers with 128 neurons in each layer. To learn the
policies, we use classic supervised learning based behavior cloning method where the policy is pa-
rameterized by a three-layers ReLu network with 128 neurons in each layer. This structure is the
same across all our methods. For upper envelope estimation as well as policy learning, we use
Adam (Kingma & Ba, 2015) with learning rate 0.001 as our optimization. For policy distillation of
our MBAIL method, the inference module q is parameterized by a two-layered ReLu network with
200 neurons in each layer and we use Adam with 0.0005 learning rate to optimize the model. In
addition, to estimate the returns Ĝt, we use the trained reward models from Li et al. (2019), which
is an ensemble of 10 neural networks. We then follow Equation 5 to estimate the return with the
discount factor set to 0.99.

Contextual BCQ has the same components as the vanilla BCQ (Fujimoto et al., 2019), including a
Q function, a perturbation network and a variational autoencoder (Kingma & Welling, 2013). For
contextual BCQ, we use the exact same model structure as in Li et al. (2019), where the Q function is

6

Improvement (%) Training samples
ratio (%) 5 10 20 40 60 80 100

Ant-Dir

BAIL (Single) -0.12 3.18 5.79 14.82 19.87 22.33 23.21
BAIL+ 0.37 3.38 6.30 14.95 20.20 21.45 22.91
MBAIL 5.70 5.65 5.90 16.47 18.72 23.43 23.84
Contextual BCQ 0.74 2.40 4.08 11.87 14.46 18.59 19.49

Ant-Goal

BAIL (Single) -76.81 -51.04 -50.31 -50.08 -49.91 -50.40 -49.00
BAIL+ -62.87 -51.90 -50.30 -49.74 -50.61 -50.19 -49.74
MBAIL -50.94 -49.86 -50.24 -47.07 -47.27 -46.83 -47.44
Contextual BCQ -72.06 -44.09 -34.49 -30.25 -29.30 -26.18 -27.29

HalfCheetahVel

BAIL (Single) -22.15 -22.46 -22.80 -22.08 -20.08 -17.41 -13.35
BAIL+ -22.09 -22.72 -22.52 -16.05 -13.33 -12.87 -11.22
MBAIL -16.95 -16.85 -16.76 -15.12 -12.43 -12.04 -11.34
Contextual BCQ -20.50 -20.77 -20.44 -16.03 -12.69 -10.69 -9.05

Table 1: Improvement percentage over baseline single task BAIL.

estimated via a 9 layers neural network with 1024 neurons for each layer, the perturbation network
is parameterized via 8 layers neural network with 1024 neurons and the VAE has 7 layers of the
same number of neurons.

4.2 Experiment Results

To evaluate our models, we run the learned policies on each of the training environments for 1,000
steps and compute their returns. We then normalize all the returns for each of the tasks by the average
of the Monte Carlo estimated in-batch returns Ḡt for task t. The reason for this normalization
is that each task, although in the same environment, may differ in reward scaling (e.g., it may be
intrinsically easier to walk slowly or reach a nearby goal compared with fast running or distant goals)
- note we inherit this property from the public dataset and have not modified the environment code
or raw data. Next, we average all the normalized returns to form an evaluation on the current task.
In general, for a policy π, let rπi denote reward collected at time step i when following the policy π,
we evaluate all the learned policies by the computing the normalized return: Eπt =

∑L
i=1 r

π
i /|Ḡt|.

To illustrate the benefit of sample transfer as well as multitask learning, we show the results using
different sizes of the training batches. Because the batch for each environment varies in sample size,
for the simplicity in the result presentation, we evaluate the models with different percentages of the
training batches. We take the first x% of the batch as the training batch, where x takes the value of
5, 10, 20, 40, 60, 80, 100, respectively. The averaged normalized returns for different training sample
ratios are listed in Table 1 and the learning curves for all environments on training sample ratio 0.1
and 0.8 are presented in Figure 3.

4.3 Results Analysis

From Table 1, we can first clearly observe that our BAIL+ and MBAIL outperform the single trained
BAIL method for nearly all of the environments. This is especially the case when encountering
smaller training sample sizes. This shows that our algorithms, by leveraging information from other
tasks, whether it’s from sample transfer or policy distillation, have on average improved the policy
performance on each task.

More specifically, from Table 1, we can see that BAIL+ consistently outperforms single task BAIL.
This result shows that BAIL+, by transferring sample from source tasks to the target task, has im-
proved the performance over the original single task BAIL policy. In addition, as one can see from
the learning curve in Figure 3, when the sample size is too small, namely 20,000 for Ant-Goal and
6,000 for HalfCheetahVel, there is some model degeneration happening when training for longer
epochs. We can see that although model degeneration does happen for BAIL+, it can often converge
to a better solution. Moreover, in HalfCheetahVel, even with 48,000 examples, this degeneration still
happens for BAIL, while for BAIL+ it does not affect its learning. These results further showcase
the benefits of BAIL+ compared to BAIL by simply enriching the target batch’s dataset.

Another observation is that our MBAIL method consistently outperforms BAIL+ across almost all
different sample sizes, as shown in Table 1. This indicates that the policy distillation process of
our MBAIL method does further improve the policy’s performance on top of the BAIL+ algorithm.

7

Figure 3: Learning curves for our methods (MBAIL and BAIL+) and the baseline single task BAIL
and contextual BCQ.

Unlike single BAIL or BAIL+, even with low amount of data, as shown in the Figure 3, the distilled
policy does not seem to have model degeneration as observed for other methods, indicating a stable
performance under small data regime.

One interesting result is that it seems on Ant-Goal environment, none of the BAIL-based methods
achieves the desired level of return. This behavior persists across all sample sizes. It appears that
BAIL is struggling to obtain a meaningful policy for this particular environment. One potential
reason is that the upper envelope function approximated for this environment is not sufficiently
accurate, thus resulting in sub-optimal batches to be selected. Further analysis of the failure cases
and relative performance of BAIL across conditions is an important question, but one left for future
work. Despite the weakness in all BAIL-driven methods for this one environment, MBAIL still
outperforms single task BAIL and BAIL+, further indicating that our approach for multi-batch BAIL
works as expected.

5 Conclusions and Future Work

Sample efficiency still remains a main obstacle for most reinforcement learning (RL) algorithms be
applicable for real-world applications. Batch reinforcement learning has shown to be promising to
deal with real-world sequential decision making problems. To further improve the batch RL model’s
performance with a limited amount of training data points and its performance over multiple tasks,
in this work, we propose to tackle these problems with sample transfer and policy distillation. Ex-
periment results show that the proposed methods (BAIL+ and MBAIL) can significantly outperform
other baselines when the training data is limited. In the future, we plan to do more evaluation of the
proposed methods and investigate how to improve the policy distillation method used in this work.

References
Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-action

imitation learning for batch deep reinforcement learning. arXiv preprint arXiv:1910.12179, 2019.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference for Learning Representations, San Diego, CA, 2015.

8

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proc. Neural Information Processing Systems NeurIPS, Vancouver,
Canada, 2020.

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Keith Ross, Henrik Iskov Chris-
tensen, and Hao Su. Multi-task batch reinforcement learning with metric learning. arXiv preprint
arXiv:1909.11373, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Icml, 2010.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European conference on machine learning, pp. 317–328. Springer,
2005.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An Introduction. MIT press,
Boston, MA, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of Research on Machine Learning
Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global, 2010.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imita-
tion learning for batched historical data. In Neural Information Processing Systems (NeurIPS),
Montreal, Canada, 2018.

9

