
Offline Reinforcement Learning with
Munchausen Regularization

Hsin-Yu Liu
University of California San Diego

La Jolla, CA
hyl001@eng.ucsd.edu

Balaji, Bharathan
Amazon∗

410 Terry Ave N, Seattle
bhabalaj@amazon.com

Rajesh Gupta
University of California San Diego

La Jolla, CA
gupta@eng.ucsd.edu

Dezhi Hong
University of California San Diego

La Jolla, CA
dehong@eng.ucsd.edu

Abstract

Most temporal differences based (TD-based) Reinforcement Learning (RL) meth-
ods focus on replacing the true value of a transiting state by their current estimate
of this value. Munchausen-RL (M-RL) proposes the idea of incorporating the
current policy to be leveraged to bootstrap RL. It regularize policies that are: 1.
Too far from the previous one. 2. Too far from uniform policy. The concept of 1.,
penalizing two consecutive policies that are far from each other is also applicable
to offline settings. In our work, we add the Munchausen term in the Q-update step
to penalize policies that deviate from previous policy too far. Our results indicate
that this method could be implemented in various offline Q-learning methods to
help improve the performance. In addition, we evaluate another TD-based method,
prioritized experience replay (PER), it prioritizes the mini-batch by its TD-error
and weighted importance sampling. Our results show that Munchausen Offline
RL outperforms the original methods that are without the regularization term. The
results indicate that adding the extra regularization term indeed helps improve the
performance of Q-learning methods even in offline settings.

1 Motivation

Current batch/offline RL methods are mainly focused on utilizing statistical methods or using
regularization methods to mitigate the effect of distribution drift. Pessimistic Q-Learning (PQL [9])
adds a state Variational Auto Encoder (VAE [5]) and uses a filtration function to avoid Q-update
when state-action visitation is not frequent enough in the batch. Bootstrapping Error Accumulation
Reduction (BEAR [7]) uses the sampled version of Maximum Mean Discrepancy (MMD) between
the unknown behaviour policy and the actor as constraint to avoid actions that lie outside of the
training data distribution. Batch Constrained Q-learning (BCQ [3]) also minimizes the distance of
selected action to the data in the batch and leads to states where familiar data could be observed.
While effective, however, none of them considers another source of learning—the current policy.

Model-free batch RL is challenging because it is in the deadly triad of off-policy learning, function
approximation, and bootstrapping [11]. The key insight of our work is that we improve offline
methods in the off-policy Q-update itself. While other works focus on the extrapolation errors,
bootstrapping errors, and function approximations.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021 (NeurIPS 2021)

2 Methodology

We add a scaled log-policy term in the Q-update step in the Batch RL Q-network architecture inspired
by Munchausen-RL [13]. State-of-the-art batch RL algorithms, such as PQL and BEAR, are based
on BCQ’s architecture, and BCQ uses double-clipped Q-learning architecture. We follow a similar
methodology and modify the Q-update step from:

r + γmax
ai

[
λ min
j=1,2

Qθ′j
(s

′
, ai) + (1− λ) max

j=1,2
Qθ′j

(s
′
, ai)

]
to

r + αmτm ln(softmax(
Q
θ
′

τm
)) + γmax

ai

[
λ min
j=1,2

Qθ′j
(s

′
, ai) + (1− λ) max

j=1,2
Qθ′j

(s
′
, ai)

]
with the Munchausen term highlighted in red, where αm and τ are hyperparameters2. Algorithm
1 gives the full description. Additionally, we also adapt Prioritized Experience Replay (PER [10])
with BCQ. We compute the rank-based probability P (j) based on priority pαj , importance-sampling
weight ωj , and TD-error δj . For each mini batch k for j = 1 to k:

P (j) = pαj /
∑
i p
α
i

ωj = (N · P (j))−β/maxi ωi
δj = Rj + γjQtarget(Sj , argmaxaQ(Sj , a))−Q(Sj−1, Aj−1)

Where N is the size of the replay period. We update the transition priority pj ← |δj |. α and β are the
exponent hyperparameters. Finally, we update the critic network with:

θi ← argminθiN
−1
∑
ω(y −Qθi)2

We evaluate against the state-of-the-art BRL methods: BCQ, PQL, and BEAR, and compare their
modified versions with Munchausen and PER variants. 3

Table 1: Evaluated Algorithm Variants

Name Description

BCM BCQ with Munchausen-RL
PML PQL with Munchausen-RL
BCQ_PER BCQ with PER

3 Experimental Setup and Result

3.1 Experimental Setup

We evaluate our methods on MuJoCo [12] environments similar to prior works but use the latest
version: Hopper-v3, HalfCheetah-v3, and Walker2d-v3. We use Deep Deterministic Policy Gradient
(DDPG [8]) to generate buffers after training for one million time steps with a N (0, 0.1) Gaussian
noise to select random actions. Then the agent is used to generate buffers across five random seeds
also with a N (0, 0.1) Gaussian noise to emulate stochastic processes.

All of our experiments are conducted with Intel Xeon Gold 6230 CPUs (2.10GHz) and NVidia
Quadro RTX 8000 GPUs with Ubuntu 18.04 OS. All results shown are trained and evaluated with
five buffers with different random seeds.

2M-RL regularization consists of two parts: the first part is the one we add on BRL architectures by using
Kullback-Leiber divergence to penalize policies that are far from the previous policy, and the other is using an
entropy term to penalize policies that deviate far from uniform distribution [14]. Our evaluation shows that
penalizing only the first term yields the best outcome.

3We also implement PQL_PER, however due to the heuristic in PQL that avoids Q-update when visiting
low-data region, the results are not improving, so we omit it in the comparison.

2

Algorithm 1: BCM algorithm
Input :Batch B, horizon T , target network update rate τ , mini-batch size N , max perturbation

Φ, number of sampled actions n, minimum weighting λ, M-RL hyperparameters αm
and temperature parameter scaling the entropy τm

Initialize Q-networks Qθ1 , Qθ2 , perturbation network ξφ, and VAE Gω = {Eω1
, Dω2

}, with
random parameters θ1, θ2, φ, ω, and target networks Qθ′1 , Qθ

′
2
, ξφ′ with

θ
′

1 ← θ1, θ
′

2 ← θ2, φ
′ ← φ

for t← 1 to T do
Sample mini-batch of N transitions (s, a, r, s

′
) from B

µ, σ = Eω1
(s, a), ã = Dω2

(s, z), z ∼ N (µ, σ)
ω ← argminω

∑
(a− ã)2 +DKL(N (µ, σ)||N (0, 1))

Sample n actions: {ai ∼ Gω(s
′
)}ni=1

Perturb each action: {ai = ai + ξφ(s
′
, ai,Φ)}ni=1

Set value target:

y = r + αmτm ln (softmax(
Q
θ
′

τm
)) + γmax

ai

[
λ min
j=1,2

Q
θ
′
j
(s

′
, ai) + (1− λ) max

j=1,2
Q
θ
′
j
(s

′
, ai)

]
θ ← argminθ

∑
(y −Qθ(s, a))2

φ← argminφ
∑
Qθ1(s, a+ ξφ(s, a,Φ)), a ∼ Gω(s)

Update target networks: θ
′
i ← τθ + (1− τ)θ

′
i

φ
′
← τφ+ (1− τ)φ

′

end

3.2 Metrics and Results

We report the mean and median scrores across our experiments. Following Agarwal et al. [1], we also
report inter-quantile mean (IQM), optimality gap, performance profile and probability of improvement
to account for inherent uncertainty in deep RL training.

Aggregate Metrics In Fig.1, aggregate metrics are with 95% of confidence interval (CI) and
stratified sampling using percentile bootstrapping 50K times. IQM discards the bottom and the top
25% of the scores, then calculates the mean. Optimality gap is the amount by which the algorithm
fails to meet a minimum score of γ = 1.0, typically we set the aim as the normalized human/expert
score. We can see that PML has a smaller optimality gap and higher median, IQM, and mean
compared with the second-best algorithm, PQL.

Performance Profile Performance profile is commonly used in benchmarking optimization soft-
ware. However, it does not consider uncertainty estimation. A revised version of performance profile
is called run-score distribution. It shows the fraction of runs above a certain normalized score. It is an
unbiased estimator of the underlying distribution and more robust than average-score distribution. In
Fig. 2 we observe that PML outperforms other methods almost under any condition. On the other
hand, the addition of Munchausen regularization and PER are helpful for improving BCQ. The results
shown here are bootstrapped with 2K times.

Probability of Improvement Probability of improvement is a metric which indicates how likely
one method outperforms the other on a randomly selected task. This metric does not account for the
size of improvement. As we can see in Fig. 3, PML is most likely to dominate among the methods
we have evaluated.The results shown here are bootstrapped with 200 times.

Learning Curves Fig. 4, 5, and 6 illustrate the learning curves of all the algorithms evaluated with
training time steps as the x-axis and the average episode rewards on the y-axis. Each solid line shows
the average between runs, and half-transparent regions indicate the range. The results again verify
the robustness of the add-on of Munchausen regularization.4

4All results are based on five runs, except for BEAR, some runs were aborted due to MuJoCo simulator
feedbacks system state for large numbers or inf./NaN.

3

Figure 1: Aggregate Metrics

Figure 2: Score distribution with linear/non-linear scaling

Figure 3: Probabilities of improvement

4

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

Hopper-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure 4: Learning curves of Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

2000

4000

6000

8000

Re
wa

rd

HalfCheetah-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure 5: Learning curves of HalfCheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timestep 1e6

0

1000

2000

3000

4000

Re
wa

rd

Walker2d-v3

BEAR PQL PML BCQ BCM BCQ_PER

Figure 6: Learning curves of Walker2d-v3

4 Conclusion and Discussion

In this work, we show that Munchausen regularization is effective in improving BRL methods. It
penalizes policies that are far from the previous ones. It can serve as a strong learning signal to
enhance the performance of models. Moreover, prioritized replay with weighted importance sampling
could also improve BRL methods with consistent Q-update. Due to the massive amount of resources
required in continuous spaces DRL algorithm evaluation, usually DRL studies conduct a handful of
runs (3 ∼ 10). We use aggregate statistical metrics that consider the uncertainty to provide a more
robust comparison. These results are encouraging to us to discover more opportunities to boost BRL
performances with regularization approaches. We expect to implement more benchmarks and further
improvements as our future work.

Acknowledgments and Disclosure of Funding

This work was supported in part by the CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.

References
[1] Rishabh Agarwal et al. “Deep Reinforcement Learning at the Edge of the Statistical Precipice”.

In: arXiv preprint arXiv:2108.13264 (2021).

5

[2] Scott Fujimoto and Shixiang Shane Gu. “A Minimalist Approach to Offline Reinforcement
Learning”. In: arXiv preprint arXiv:2106.06860 (2021).

[3] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement learning with-
out exploration”. In: International Conference on Machine Learning. PMLR. 2019, pp. 2052–
2062.

[4] Peter Henderson et al. “Deep reinforcement learning that matters”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[5] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[6] Aviral Kumar et al. “Conservative q-learning for offline reinforcement learning”. In: arXiv
preprint arXiv:2006.04779 (2020).

[7] Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error reduction”. In:
arXiv preprint arXiv:1906.00949 (2019).

[8] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv
preprint arXiv:1509.02971 (2015).

[9] Yao Liu et al. “Provably good batch reinforcement learning without great exploration”. In:
arXiv preprint arXiv:2007.08202 (2020).

[10] Tom Schaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952 (2015).
[11] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.
[12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-based

control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2012, pp. 5026–5033.

[13] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. “Munchausen reinforcement learning”.
In: arXiv preprint arXiv:2007.14430 (2020).

[14] Nino Vieillard et al. “Leverage the average: an analysis of KL regularization in reinforcement
learning”. In: NeurIPS-34th Conference on Neural Information Processing Systems. 2020.

6

	Motivation
	Methodology
	Experimental Setup and Result
	Experimental Setup
	Metrics and Results

	Conclusion and Discussion

