
Importance of Empirical Sample Complexity Analysis
for Offline Reinforcement Learning

Samin Yeasar Arnob
Mila, McGill University,

samin.arnob@mail.mcgill.ca

Riashat Islam
Mila, McGill University,

Doina Precup
Mila, McGill University,

DeepMind

Abstract

We hypothesize that empirically studying the sample complexity of offline re-
inforcement learning (RL) is crucial for the practical applications of RL in the
real world. Several recent works have demonstrated the ability to learn policies
directly from offline data. In this work, we ask the question of the dependency
on the number of samples for learning from offline data. Our objective is to
emphasize that studying sample complexity for offline RL is important, and
is an indicator of the usefulness of existing offline algorithms. We propose an
evaluation approach for sample complexity analysis of offline RL.

1 Introduction

Reinforcement Learning (RL) is a powerful framework in solving complex problems. However,
applying RL to real-world application is tricky as it needs to actively interact with the environment.
In many applications (i.e self-driving car, power-system automation, financial trading, medical
trials etc.) it can get very expensive or risky to collect samples in-between training. Similar
to supervised learning, Offline-RL [3, 13] offers a data-driven alternative approach. Offline-RL
leverages previously logged data or expert samples and are trained offline without the need to
interact with the environment.

Often it is hard to guarantee the quality of the training dataset. Thus in Offline-RL, it is important
to benchmark performance [4] with different types of datasets such as; expert, medium-expert,
random etc.; to guarantee a reliable performance despite the quality of training samples. But we
do not benchmark offline-RL algorithms under sample complexity. In Offline-RL we assume not
having any constraint in collecting training dataset. For example, in continuous control tasks [4,
6, 11, 9, 5] RL agents are trained with 1 million training samples. But in real-world applications
collecting so many samples may not be possible. For more complex tasks, there is no way to
quantify how many training sample it may require for the agent to get trained like an expert. In
such scenario, there is no-way to provide performance guarantee without letting the agent to
perform in the real-world, which again can be very expensive/risky. Thus we need to construct
offline-RL algorithms such that it tries it’s best to retain performance even with smaller samples.

Several works have proposed offline RL algorithms on standard benchmark tasks, where the
assumption is that certain amount of data is always available for learning policies from offline
dataset. However, to our surprise, none of the existing works study training and validation
performance for offline RL, given its close approximity to a supervised learning setting.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021.

It is shown in [1, 10] the offline RL agents exhibit overfitting, i.e., after certain number of gradient
updates, their performance starts to deteriorates. [1, 10] restores to online performance evaluation
to identify the performance drop and early stopping to avoid overfitting. But “true” offline RL
requires offline policy evaluation. In this work we show offline RL agent overfits over the expert
dataset very early on when trained with smaller number of training samples, i.e., improvement
in minimizing the policy training objective gives a false notion of improvement, whereas policy
evaluation on validation dataset, which can be done completely offline, indicate agent’s actual
performance.

Our key contributions are as follows :

1. We emphasize the importance of sample complexity analysis for offline RL, and compare
performance of existing offline RL algorithms by varying the size of training dataset.

2. We propose that existing works should study overfitting and validation performance of
offline RL algorithms that can be computed completely offline. Our comparison of the
offline evaluation on the validation set replicate the policy performance trend of the
online policy evaluation in MuJoCo continuous control tasks. Thus this provides insights
on the offline RL algorithms performance, especially important when applied in the
real-world applications.

3. Our empirical findings show that while existing offline algorithms can work really well un-
der the standard benchmark size of training samples, the performance of these algorithms
is quite different when studies under a low data regime. This indicates that certain algo-
rithms are more likely to overfit than others. Along with data-diversity, sample-complexity
analysis further validates agents reliability and robustness.

In this work, we emphasize the importance of sample complexity analysis for offline RL algorithms,
which has perhaps been overlooked in existing studies. By ranging from a large data regime to a
small data regime, we show that the performance of different offline RL algorithms is not always
consistent across benchmark tasks. To further clarify our studies, we propose a training and
validation split for offline RL, akin to the basic supervised learning problem, and find that different
algorithms have different overfitting properties given the same algorithm complexity in terms
of the policy and value functions. This suggests the importance of sample complexity analysis
for offline RL, clearly showing that the existing performance metric may not always be a good
indicator of the usefulness of an offline RL algorithm, especially when the goal is to take offline RL
to real world applications.

2 Preliminaries

We consider learning in a Markov decision process (MDP) described by the tuple (S, A,P,R). The
MDP tuple consists of states s ∈ S, actions a ∈ A, transition dynamics P (s′|s, a), and reward
function r = R(s, a). We use st , at and rt = R(st , at) to denote the state, action and reward
at timestep t, respectively. A trajectory is made up of sequence of states, action and rewards
τ= (s0, a0,r0, s1, a1,r1, ..., sT , aT ,rT). For continuous control task we consider an infinite horizon,
where T =∞ and the goal in reinforcement learning is to learn a policy which maximizes the
discounted expected return E[

∑T
t=t ′ γ

t rt] in an MDP. In offline reinforcement learning, instead
of obtaining data through environment interactions, we only have access to some fixed limited
dataset consisting of trajectory rollouts of arbitary policies.

3 Sample Complexity in Offline RL

Sample Complexity : An important concept for our analysis is to define sample complexity. In
general, by finding the sample complexity of any algorithm we refer to the number of training
samples required to learn a good approximation of the target. But for complex task, especially in
infinite state-action space it’s not trivial to define this quantity, for our analysis we refer sample
complexity as to sensitivity of the algorithms to training sample size.

Experiment Setting : In this section, we describe our framework and experimental pipeline for
evaluating the sample complexity for different offline RL algorithms. We investigate sample com-
plexity in continous control benchmark tasks, based on the D4RL dateset [4] which is considered

2

as a standard dataset for most offline RL algorithms. For comparisons, we investigate sample
complexity of the following algorithms : Batch-Constrained deep Q-learning (BCQ) [6], Behavior
Cloning (BC, implemented in [12]) and TD3-BC [5]. We run all of our experiments for seed 0-4 and
trained for 1M gradient updates. For all the algorithms we use the default network architecture
and hyper-parameters. We share our further results in the Appendix.

3.1 How does performance vary based on dataset size?

Given training data, we compare performance for different sizes of the dataset, ranging from 1M
samples (which is the standard sample size always used), to 100K and decreasing to 5000 samples.

For each of the algorithms and given the training data size, we train for 1M training updates
and measure the normalized score metric as done in D4RL [4]. Experimental results comparing
performance dependent on the total number of offline samples is presented in figure 1.

Our experimental results show that the performance drops for each Offline-RL algorithm as we
reduce the number of training dataset. For all our offline RL algorithms, we compare the perfor-
mance with Discriminative Actor Critic (DAC) [8] - adversarial imitation learning and Off-policy
Adversarial Inverse RL (OAIRL) [2] method, which use the same number of expert samples but with
the advantage of 1 million environment interactions. The advantage of environment interactions
makes the comparison unfair. But the idea is to show, even with smaller expert samples adversarial
imitation and IRL methods manages to get consistent performance. Comparetive experiments on
these algorithms has proven to be significant later in the paper to support our claim that validation
performance always correlates with policy’s actual online evaluation improvement discussed in
3.2.1 (further experiments are in Appendix A.2).

While this is a result that one would typically expect, we find an interesting phenomenon in our
results. Note that the performance varies for each algorithm depending on the training data size.
For example, while the recent state-of-the-art algorithm TD3-BC performs significantly better
for 1M training sample, this algorithm is in fact worse for 5000 samples. This phenomenon can
be seen in almost all of our experiment in figure 1 (except in 1(f)), where even though TD3-BC
performs best for 1M standard sample size, it is the worst performing algorithm as we reduce the
size of the dataset. The reason is due to the MSE regularization term in it’s actor loss dictates the
actor gradient update and thus overfits very easily with smaller training samples and we proof
our hypothesis through validation performance in following section 3.2. We also see the similar
trend in IQL’s [7] performance but the reason is not so apparent, we need further experiments to
hypothesize or come to a solid conclusion. This tells us that the performance of each of these
algorithms can vary significantly, and comparisons are not always consistent, as to the best
performing algorithm, depending on the training dataset size. This is exactly why we can not
guarantee consistent performance with abundant training dataset.

In offline RL benchmark we compare algorithms on different categories of training samples i.e.
expert, medium, medium-expert, random and the intuition is that, in real-world application
we can not always guarantee to collect optimal-expert, thus we want to pick an algorithm that
guarantees a better performance for any kind of dataset. Similarly, for any real world application
there is no way to quantify the "sufficient amount" of data that we must collect so that training
agent can provide expected performance. Thus we consider sample complexity, sensitivity of
algorithms performance to training dataset size, as a metric to evaluate the offline-RL performance.
An Offline-RL algorithm that give better performance with smaller training samples are more
reliable in real-world application than the others. We find the sample complexity analysis to be a
very useful metric to evaluate the reliability of Offline-RL algorithm.

3.2 Does existing offline RL algorithms have overfitting phenomenon?

We conjecture that the phenomenon observed in figure 1 hints to an overfitting phenomenon for
offline RL algorithms. For offline RL, we consider an agent is overfitted over the training dataset
when the training objective reduces the divergence between the policy action and expert action
over the observed training states and yet fails to provide performance improvement in the oracle
(online evaluation).

We emphasize that, to the best of our understanding, no previous works studied similar complexity
analysis for different offline RL algorithms. Since most prior works only evaluate performance for

3

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

halfcheetah-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(a)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

halfcheetah-medium-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(b)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

halfcheetah-medium-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(c)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

hopper-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(d)

5000 10000 50000 100000 1000000
Training Samples

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

hopper-medium-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(e)

5000 10000 50000 100000 1000000
Training Samples

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

hopper-medium-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(f)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

120

140

No
rm

al
ize

d
Sc

or
e

walker2d-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(g)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

walker2d-medium-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(h)

5000 10000 50000 100000 1000000
Training Samples

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

walker2d-medium-expert-v2

DAC
OAIRL
TD3_BC
BC
BCQ
IQL

(i)

Figure 1: Performance Comparison (D4RL Normalized Score) of DAC with offline-RL Varying
Expert data.

1M sample sizes on D4RL benchmarks, we emphasize that this is not always a good measure, as
we see in our analysis in this section. In the subsequent sections, we provide a measure to study
the overfitting phenomenon in offline RL, and want to emphasize the readers, that since the goal
of offline RL is similar to supervised learning, such characterization of overfitting and sample
complexity is necessary for any offline RL algorithm empirically.

3.2.1 Evaluating Overfitting in Offline RL

To prove our overfitting hypothesis, similar to supervised learning, we propose to use sepa-
rate validation dataset. We held-out 2000 expert trajectories (which is approximately 2000,000
{sV , aV ,rV , s

′
V } tuples) from the D4RL dataset [4] during training. We perform evaluation over the

validation dataset, which provide an unbiased and the true progress of the learning agent.

Metric on Training and Validation Dataset : We provide a metric for measuring training and
validation performance in offline RL, akin to the standard loss typically studied in supervised
learning. As an evaluation criterion, we use the Mean-Square-Error (MSE) loss between expert-
action aV and policy-action πθ(sV) as to measure actor’s deviation from the expert. Note that we
use MSE instead of the KL divergence metric here, since most offline RL algorithms that we study
are based on deterministic policies, as typically in BCQ [6] and other algorithms.

Figure 2 shows the overfitting phenomenon for different offline RL algorithms. We plot the MSE
loss over the training and validation dataset, and vary the sample size. For each algorithm, we
train up to 1M iterations (as typically done in standard experiments), but with different sample
sizes. We find that as the sample size decreases, the difference between training and validation

4

5000 10000 50000 100000 1000000
Training Expert Samples

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

 lo
ss

TD3_BC halfcheetah-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(a)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.05

0.10

0.15

M
SE

 lo
ss

TD3_BC hopper-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(b)

5000 10000 50000 100000 1000000
Training Expert Samples

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

 lo
ss

TD3_BC walker2d-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(c)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.02

0.04

0.06

0.08

M
SE

 lo
ss

IQL halfcheetah-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(d)

5000 10000 50000 100000 1000000
Training Expert Samples

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
SE

 lo
ss

IQL hopper-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(e)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.02

0.04

0.06

0.08

M
SE

 lo
ss

IQL walker2d-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(f)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

 lo
ss

BCQ halfcheetah-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(g)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

M
SE

 lo
ss

BCQ hopper-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(h)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

 lo
ss

BCQ walker2d-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(i)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

 lo
ss

BC halfcheetah-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(j)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

 lo
ss

BC hopper-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(k)

5000 10000 50000 100000 1000000
Training Expert Samples

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

 lo
ss

BC walker2d-expert-v2
Validation actor loss (MSE)
Training actor loss (MSE)

(l)

Figure 2: MSE loss between πθ(sE) and aE for different Offline-RL algorithms over the training
(orange) and the validation (blue) dataset as we vary number of training expert samples

error increases significantly, which shows that the algorithms are more likely to overfit (due to a
more complex policy class compared to the dataset size).

We get a good generalization in estimation when we make improvement in estimating both the
training and validation dataset. We know our training model is overfitting over the training the
dataset when the training loss gets reduced with each gradient update but the performs worse
on the validation set. For 1 million expert samples, algorithms performs lowest validation error.
For 5000 training dataset the Actor gets the lowest training (orange) error but gets the highest
validation error. It suggests that the Actor overfits the expert samples and we see the consequence
in the policy performance (figure 1).

The largest deviation in training-validation performance in found for TD3-BC. This confirms our
hypothesis for TD3-BC’s performance drop with smaller training sample discussed in section 3.1
and consolidates the fact that validation performance and Offline policy evaluation are correlated.
We further show how the actors training loss gives a false sense of improvement in appendix A.2.

5

3.2.2 Validation Performance of Offline RL algorithms

This section further confirms our conjecture above - the validation dataset is a useful metric to
truly measure the performance improvement for different algorithms. Figure 3 further confirms
this. We plot the cumulative performance return over 1M training iterations, for each of the sample
size of the dataset over the HalfCheetah environment for different algorithms. We find that the
validation performance is consistent with the cumulative return metric - for example, in figure 3
(b) and 3(f) for the TD3-BC algorithm, the performance improvement is highest when validation
loss is the lowest; similarly for sample size of 5000, the validation error for TD3-BC is highest which
leads to the lowest performance of this algorithm, as measured by the cumulative returns. Without
evaluations in between training, we can further guarantee of an improvement using the validation
performance. The evaluation on the validation dataset provide a clear indication whether training
agent is improving or diverging from expected behavior.

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

DAC-halfcheetah-expert-v2

training samples
5000
10000
50000
100000
1000000

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

TD3_BC-halfcheetah-expert-v2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

IQL-halfcheetah-expert-v2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

BCQ-halfcheetah-expert-v2

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

/T
ru

e
Ac

to
r L

os
s

DAC-halfcheetah-expert-v2

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.04

0.06

0.08

0.10

0.12

0.14

Va
lid

/T
ru

e
Ac

to
r L

os
s

TD3_BC-halfcheetah-expert-v2

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Va
lid

/T
ru

e
Ac

to
r L

os
s

IQL-halfcheetah-expert-v2

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.030

0.035

0.040

0.045

0.050

0.055

0.060

Va
lid

/T
ru

e
Ac

to
r L

os
s

BCQ-halfcheetah-expert-v2

(h)

Figure 3: Performance curve evaluated over 1M gradient updates of (a) DAC, (b) TD3-BC, (c) BCQ,
(d) BC and corresponding MSE loss (e-h) between π(sV) and aV over the validation dataset as we
vary number of training dataset.

3.2.3 Further Discussion on the Validation Performance

In the figure 4 we see a clear deviation in actor performance on the validation set as we decrease the
training samples size. But we do not find any significant change in DAC’s estimation with expert
sample complexity. Despite providing bad estimation compared to offline-RL algorithms, DAC
performs better. The offline-RL algorithms are provided with expert samples and are compelled
to mimic the expert behavior. And since the expert samples are collected from the same expert,
validation estimation are co-related with algorithms performance. We do not have access to
optimal expert π∗, rather collected expert trajectories are sub-optimal, thus DAC still performs
better without proving good validation performance. Thus under sub-optimal expert, validation
is most useful when we compare algorithms that mimics expert.

6

5000 10000 50000 100000 1000000
Training Samples

0.04

0.06

0.08

0.10

0.12

0.14

Va
lid

at
io

n
Ac

to
r L

os
s

Environment: halfcheetah-expert-v2
DAC
TD3_BC
BC
BCQ
IQL

Figure 4: Compare Validation loss of different learning algorithms

4 Conclusion

We investigated the sample complexity of different offline RL algorithms, by varying the size of
the training dataset for the same training procedure for each of the algorithms. Our experimental
studies leads to a surprising finding : the cumulative return performance as typically shown in
standard offline RL algorithms over 1M dataset size, is not always a good indicative measure of
whether the algorithm is robust under smaller dataset. Our experiment with smaller training
dataset shows, the performance of the state of the art offline RL algorithms fall dramatically since
the objective function do not consider improving sample complexity.

The key contribution of our work is therefore to provide an important message for studying offline
RL algorithms empirically. We emphasize that studying sample complexity of offline RL algorithms
is important, to truly evaluate the performance comparison for each algorithm. We show that
current offline-RL algorithms overfit with smaller dataset and the best performing algorithm can
perform very poorly under such condition. Thus to make Offline-RL algorithm more reliable in
real-world application, where collecting data is non-trivial and no way to quantify the required
amount of the data to achieve expert like performance, we need to consider model overfitting
into account. We show how training loss can be misleading. Unlike recent studies [1, 10] that
use online performance to evaluate overfitting, we propose a complete offline evaluation of the
policy leveraging a validation dataset to foresee if agent is improving. Improving performance in
validation set shows a consistent online performance improvement in all our experiments. Thus
in real-world applications (i.e. self-driving car, drone auto-pilot, medical trails, controlling power
system etc.), where a badly trained agent can be extremely risky or costly to evaluate, a validation
performance can provide performance improvement guarantee.

References

[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. “Striving for Simplicity in Off-
policy Deep Reinforcement Learning”. In: CoRR abs/1907.04543 (2019). arXiv: 1907.04543.
URL: http://arxiv.org/abs/1907.04543.

[2] Samin Yeasar Arnob. “Off-Policy Adversarial Inverse Reinforcement Learning”. In: CoRR
abs/2005.01138 (2020). arXiv: 2005.01138. URL: https://arxiv.org/abs/2005.01138.

[3] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-based batch mode reinforcement
learning”. In: Journal of Machine Learning Research 6 (2005), pp. 503–556.

[4] Justin Fu et al. “D4RL: Datasets for Deep Data-Driven Reinforcement Learning”. In: CoRR
abs/2004.07219 (2020). arXiv: 2004.07219. URL: https://arxiv.org/abs/2004.07219.

[5] Scott Fujimoto and Shixiang Shane Gu. “A Minimalist Approach to Offline Reinforcement
Learning”. In: CoRR abs/2106.06860 (2021). arXiv: 2106.06860. URL: https://arxiv.
org/abs/2106.06860.

[6] Scott Fujimoto, David Meger, and Doina Precup. “Off-Policy Deep Reinforcement Learning
without Exploration”. In: CoRR abs/1812.02900 (2018). arXiv: 1812.02900. URL: http:
//arxiv.org/abs/1812.02900.

[7] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
Q-Learning. 2021. arXiv: 2110.06169 [cs.LG].

7

https://arxiv.org/abs/1907.04543
http://arxiv.org/abs/1907.04543
https://arxiv.org/abs/2005.01138
https://arxiv.org/abs/2005.01138
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1812.02900
https://arxiv.org/abs/2110.06169

[8] Ilya Kostrikov et al. “Addressing Sample Inefficiency and Reward Bias in Inverse Rein-
forcement Learning”. In: CoRR abs/1809.02925 (2018). arXiv: 1809.02925. URL: http:
//arxiv.org/abs/1809.02925.

[9] Ilya Kostrikov et al. “Offline Reinforcement Learning with Fisher Divergence Critic Regular-
ization”. In: CoRR abs/2103.08050 (2021). arXiv: 2103.08050. URL: https://arxiv.org/
abs/2103.08050.

[10] Aviral Kumar et al. A Workflow for Offline Model-Free Robotic Reinforcement Learning. 2021.
arXiv: 2109.10813 [cs.LG].

[11] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning”. In: CoRR
abs/2006.04779 (2020). arXiv: 2006.04779. URL: https://arxiv.org/abs/2006.04779.

[12] Aviral Kumar et al. “Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction”.
In: CoRR abs/1906.00949 (2019). arXiv: 1906.00949. URL: http://arxiv.org/abs/1906.
00949.

[13] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch reinforcement learning”. In:
Reinforcement learning. Springer, 2012, pp. 45–73.

A Appendix

A.1 Performance curve of different algorithm

In figure 5 we plot the mean performance of the algorithms for seeds 0-4 with 100% confidence
interval over 1 million gradient updates. We compare the performance of each algorithm varying
training sample size on MuJoCo control tasks.

A.2 Compare Training and Validation Actor Evaluation

We compare the actor’s training loss and actor’s validation loss (MSE(πθ(sV), aV)) over 1 million
gradient updates. It clearly shows how actors training loss (blue) gives a false sense of imporve-
ment.

For example, from the experiments conducted on IQL [7] (figure 6 (m −p)) shows, we find the
actor training loss (blue) to be declining as we update the actor network for all our experiment,
even when we reduce the number expert training dataset (from columns right to left). In idea
case, this indicates the actor’s performance should be improving for all experiments. But the
corresponding policy evaluation in online from figure 5(g) does not approve that.

Thus we use the validation set to perform the policy-action deviation from the experts. For larger
expert dataset in the training assures a declining validation loss curve but the validation loss
increases for smaller dataset, and proves that smaller expert overfits the policy. We see the similar
pattern in all our offline RL experiments.

For DAC and OAIRL, since the number of expert data has negligible impact (figure 5(a − f)), the
validation performance (figure 6 (a −h)) is always decreases with the actor’s network gradient
update.

8

https://arxiv.org/abs/1809.02925
http://arxiv.org/abs/1809.02925
http://arxiv.org/abs/1809.02925
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/2109.10813
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

DAC-halfcheetah-expert-v2

training samples
5000
10000
50000
100000
1000000

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

DAC-hopper-expert-v2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

DAC-walker2d-expert-v2

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

OAIRL-halfcheetah-expert-v2

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

OAIRL-hopper-expert-v2

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

OAIRL-walker2d-expert-v2

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

IQL-halfcheetah-expert-v2

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

IQL-hopper-expert-v2

(h)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

IQL-walker2d-expert-v2

(i)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

TD3_BC-halfcheetah-expert-v2

(j)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

20

40

60

80

100

120

140

No
rm

al
ize

d
Sc

or
e

TD3_BC-hopper-expert-v2

(k)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0
20
40
60
80

100
120
140

No
rm

al
ize

d
Sc

or
e

TD3_BC-walker2d-expert-v2

(l)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

BCQ-halfcheetah-expert-v2

(m)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

40

60

80

100

No
rm

al
ize

d
Sc

or
e

BCQ-hopper-expert-v2

(n)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

120

No
rm

al
ize

d
Sc

or
e

BCQ-walker2d-expert-v2

(o)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

BC-halfcheetah-expert-v2

(p)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

50

60

70

80

90

100

110

No
rm

al
ize

d
Sc

or
e

BC-hopper-expert-v2

(q)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

20

40

60

80

100

No
rm

al
ize

d
Sc

or
e

BC-walker2d-expert-v2

(r)

Figure 5: Performance Comparison (D4RL Normalized Score) of DAC with offline-RL Varying
Expert data. 9

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

150

200

250

300

350

Tr
ai

ni
ng

 A
ct

or
 L

os
s

DAC-halfcheetah-expert-v2-Expert-data 5000
Training Actor Loss

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

150

200

250

300

350

Tr
ai

ni
ng

 A
ct

or
 L

os
s

DAC-halfcheetah-expert-v2-Expert-data 10000
Training Actor Loss

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

100

150

200

250

300

Tr
ai

ni
ng

 A
ct

or
 L

os
s

DAC-halfcheetah-expert-v2-Expert-data 100000
Training Actor Loss

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

100

150

200

250

300

Tr
ai

ni
ng

 A
ct

or
 L

os
s

DAC-halfcheetah-expert-v2-Expert-data 1000000
Training Actor Loss

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

600

800

1000

1200

Tr
ai

ni
ng

 A
ct

or
 L

os
s

OAIRL-halfcheetah-expert-v2-Expert-data 5000
Training Actor Loss

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

500

600

700

800

900

1000

1100

Tr
ai

ni
ng

 A
ct

or
 L

os
s

OAIRL-halfcheetah-expert-v2-Expert-data 10000
Training Actor Loss

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

500

600

700

800

900

1000

Tr
ai

ni
ng

 A
ct

or
 L

os
s

OAIRL-halfcheetah-expert-v2-Expert-data 100000
Training Actor Loss

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

200

400

600

800

1000

Tr
ai

ni
ng

 A
ct

or
 L

os
s

OAIRL-halfcheetah-expert-v2-Expert-data 1000000
Training Actor Loss

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(h)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

2.485

2.480

2.475

2.470

2.465

2.460

Tr
ai

ni
ng

 A
ct

or
 L

os
s

TD3_BC-halfcheetah-expert-v2-Expert-data 5000
Training Actor Loss

0.06

0.08

0.10

0.12

0.14

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(i)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

2.49

2.48

2.47

2.46

2.45

2.44

Tr
ai

ni
ng

 A
ct

or
 L

os
s

TD3_BC-halfcheetah-expert-v2-Expert-data 10000
Training Actor Loss

0.06

0.07

0.08

0.09

0.10

0.11
Va

lid
at

io
n

Ac
to

r L
os

s (
M

SE
)Validation Actor Loss (MSE)

(j)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

2.475

2.470

2.465

2.460
Tr

ai
ni

ng
 A

ct
or

 L
os

s

TD3_BC-halfcheetah-expert-v2-Expert-data 100000
Training Actor Loss

0.034

0.036

0.038

0.040

0.042

0.044

0.046

0.048

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(k)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

2.470

2.465

2.460

2.455

Tr
ai

ni
ng

 A
ct

or
 L

os
s

TD3_BC-halfcheetah-expert-v2-Expert-data 1000000
Training Actor Loss

0.030

0.035

0.040

0.045

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(l)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.00

0.01

0.02

0.03

0.04

Tr
ai

n/
Tr

ue
 A

ct
or

 L
os

s

IQL-halfcheetah-expert-v2-Expert-data 5000
Train/True Actor Loss

0.070

0.075

0.080

0.085

0.090

0.095

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(m)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.01

0.02

0.03

0.04

0.05

Tr
ai

n/
Tr

ue
 A

ct
or

 L
os

s

IQL-halfcheetah-expert-v2-Expert-data 10000
Train/True Actor Loss

0.060

0.065

0.070

0.075

0.080

0.085

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(n)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.025

0.030

0.035

0.040

0.045

Tr
ai

n/
Tr

ue
 A

ct
or

 L
os

s

IQL-halfcheetah-expert-v2-Expert-data 100000
Train/True Actor Loss

0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(o)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

0.025

0.030

0.035

0.040

0.045

Tr
ai

n/
Tr

ue
 A

ct
or

 L
os

s

IQL-halfcheetah-expert-v2-Expert-data 1000000
Train/True Actor Loss

0.030

0.035

0.040

0.045

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(p)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

800000

600000

400000

200000

0

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BCQ-halfcheetah-expert-v2-Expert-data 5000
Training Actor Loss

0.054

0.055

0.056

0.057

0.058

0.059

0.060

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(q)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

10000

8000

6000

4000

2000

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BCQ-halfcheetah-expert-v2-Expert-data 10000
Training Actor Loss

0.052

0.054

0.056

0.058

0.060

0.062

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(r)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

1200

1100

1000

900

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BCQ-halfcheetah-expert-v2-Expert-data 100000
Training Actor Loss

0.035

0.040

0.045

0.050

0.055

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(s)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

1150

1100

1050

1000

950

900

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BCQ-halfcheetah-expert-v2-Expert-data 1000000
Training Actor Loss

0.030

0.031

0.032

0.033

0.034

0.035

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(t)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

1000

900

800

700

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BC-halfcheetah-expert-v2-Expert-data 5000
Training Actor Loss

0.0510

0.0515

0.0520

0.0525

0.0530

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(u)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

850

800

750

700

650

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BC-halfcheetah-expert-v2-Expert-data 10000
Training Actor Loss

0.050

0.052

0.054

0.056

0.058

0.060

0.062

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(v)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

1000

950

900

850

800

750

700

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BC-halfcheetah-expert-v2-Expert-data 100000
Training Actor Loss

0.035

0.040

0.045

0.050

0.055

Va
lid

at
io

n
Ac

to
r L

os
s (

M
SE

)Validation Actor Loss (MSE)

(w)

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e6

1000

950

900

850

800

750

700

Tr
ai

ni
ng

 A
ct

or
 L

os
s

BC-halfcheetah-expert-v2-Expert-data 1000000
Training Actor Loss

0.028

0.030

0.032

0.034

0.036

0.038

0.040
Va

lid
at

io
n

Ac
to

r L
os

s (
M

SE
)Validation Actor Loss (MSE)

(x)

Figure 6: Training (actor/policy πt het a training loss) and validation (MSE loss between πθ(sE)
and aE) performance comparison of the policy varying size of expert samples

10

	Introduction
	Preliminaries
	Sample Complexity in Offline RL
	How does performance vary based on dataset size?
	Does existing offline RL algorithms have overfitting phenomenon?
	Evaluating Overfitting in Offline RL
	Validation Performance of Offline RL algorithms
	Further Discussion on the Validation Performance

	Conclusion
	Appendix
	Performance curve of different algorithm
	Compare Training and Validation Actor Evaluation

