
Discrete Uncertainty Quantification Approach for
Offline RL

Javier Corrochano1 Javier García2 Rubén Majadas1 Cristina Ibanez-Llano3

Sergio Pérez3 Fernando Fernández1

1Computer Science Department, Universidad Carlos III de Madrid, Spain
2Electronics and Computing Department, Universidad de Santiago de Compostela, Spain

3Repsol, Spain

Abstract

In many Reinforcement Learning tasks, the classical online interaction of the
learning agent with the environment is impractical, either because such interaction
is expensive or dangerous. In these cases, previous gathered data can be used,
arising what is typically called Offline Reinforcement Learning. However, this
type of learning faces a large number of challenges, mostly derived from the fact
that exploration/exploitation trade-off is overshadowed. Instead, the historical data
is usually biased by the way it was obtained, typically, a sub-optimal controller,
producing a distributional shift from historical data and the one required to learn
the optimal policy. Specifically, in this paper we present a new approach to deal
with the uncertainty risen by the absence or sparse presence of some states in the
data. Our approach is based on shaping the reward signal of the environment to
ensure the task is solved. We present the approach and show that combining it with
classic online RL methods make them perform as good as state of the art offline
RL algorithms such as CQL and BCQ. Finally, we show that using our method on
top of established offline learning algorithms can improve them significantly.

1 Introduction

In many Reinforcement Learning (RL) tasks, the classical online interaction between the learning
agent and the environment is unfeasible, either because such interaction is very expensive or because
it may produce catastrophic effects in the agent or its environment. In addition, even when an online
interaction is feasible, we might prefer to use previously collected data, for example, to obtain a
sub-optimal policy that can be used in a later refinement process. This way of learning from a batch
of experiences without exploration in order to obtain the best possible policy given the data has been
referred to as batch RL, offline RL, or data-driven RL [1, 2].

Although some of the most common methods within RL can learn from off-policy data, following
an experience replay approach, they do not make it fully effective from offline data without adding
some online interaction due to several factors. The main problem is that the classical exploration-
exploitation trade-off that makes efficient and effective to most RL algorithms is, in off-line RL,
broken due to some new challenges. A fundamental one is related to the distributional shift, also
called out-of-distribution states and actions [3, 4, 1]. Distributional shift is the difference between the
distribution of the data on which our function approximator (policy, value function or model) has
been trained and the distribution in which it will be evaluated. This is due both to the change in the
states visited by the learned policy, and to the act of maximising the expected return.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2021

Distributional shift issues can be addressed in several ways and can be classified into two groups:

• Policy Constraint: It mitigates distributional shift constraining the learned policy to be
close to the behaviour policy [1].

• Uncertainty based: These solutions attempt to estimate the epistemic uncertainty of Q
values an then use it to detect distributional shift [1].

In this paper, we present a simple but effective approach to quantify the uncertainty of the dataset
based on how frequent the visited states are. This information is used to conservatively reshape the
reward signal of the environment, therefore propagating it to the value function estimation. This
idea comes from a previous work in which we implemented a model-based RL framework based on
learning the Markov Decission Process (MDP) model through discretisation of the states and actions.

The paper is organized as follows. Section 2 present a brief review of previous work on offline RL.
Then the new approach to deal with distributional shift of the dataset through reshaping of the reward
function is presented in Section 3. After this, experiment section and conclusions are presented in
Section 4 and 5. The experiments section shows the results obtained by introducing this reward
reshaping with different algorithms in three different domains from the D4RL benchmark datasets.

2 Related work

Offline RL is an emerging field that has gained momentum over the past few years. Most of its
works try to deal with the problem of distributional shift using different techniques. In the Literature,
there exist model-free and model-based methods as in online RL. We give a brief overview of them
alongside their online counterpart, discussing their most prominent algorithms and their relation with
policy constraint and uncertainty-based methods.

Online RL: Although online algorithms are not specifically designed for offline applications, they
have been used in the past. A widely adopted solution in continuous control tasks is Soft Actor-Critic
(SAC) [5]. SAC is a model-free and off-policy RL model that maximizes both the expected reward
and entropy. The most concerning issue with online methods is that they are not devised for static
datasets, thereby not addressing distributional shift. Our solution provides a simple and effective way
of quantifying uncertainty for adapting them to offline scenarios.

Model-free offline RL: Fujimoto et al. [6] presented the first continuous control Deep RL algorithm,
Batch-Constrained Deep Q-learning (BCQ), which can learn effectively from a fixed batch of data.
They introduce a novel class of off-policy algorithms, which restricts the actions space in order
to force the agent to behave close to the policy with respect to a subset of the given data. Kumar
et al. [7] propose the Conservative Q-learning (CQL) algorithm capable of learning from a fixed
dataset and without further interaction. It aims to address the limitations caused by the distributional
shift by learning a conservative Q-function such that the expected value of a policy under this Q-
function lower-bounds its true value. This paper provides an easy-to-use mechanism to further reduce
out-of-distribution states and actions problems in these solutions with little modification.

Model-based offline RL: Model-Based Policy Optimization (MBPO) [8] is a model-based RL
algorithm that, if it is properly tuned, it can yield better results than model-free approaches in the
offline setting. This method utilizes a predictive model of the transition distribution from the dataset.
It updates the policy using data sampled both from the dataset and model. Other state-of-the-art
works propose conservative model-based RL algorithms, such as Model-Based Offline RL (MoReL)
[9], Model-based Offline Policy Optimization (MOPO) [4] and Conservative Offline Model-Based
Policy Optimization (COMBO) [10].

They use conservative value estimates by modifying the MDP model learned from data to induce
conservative behaviours. Their main idea is to give the policy a penalty for visiting states in which
the trained model is highly unlikely to perform well. Both MOPO and MoReL use a measure of
uncertainty, which changes for each selected state-action pair. On the one hand, MOPO utilizes this
measure as a soft penalty in the reward function. On the other hand, MoReL constructs the MDP
with terminal states based on a threshold of this measure. Finally, COMBO extends CQL [7] into the
model-based setting. It is similar to MOPO, although it penalizes the Q-values directly instead of
through the reinforcement function. While model-based approaches offer great performance, they are

2

usually harder to fit due to their added complexity. The simplicity of our solution helps to decrease
distributional shift using a easy-to-use technique with few parameters.

3 Discrete Uncertainty Quantification Approach for Offline RL (DUQ)

DUQ is a simple approach to quantify uncertainty using the discretization of states. This information
is received by the agent through the reward and used in the learning process to avoid less-known
regions. In the following section, we motivate this concept and include its formal definition

3.1 Motivation

In Figure 1, we show two different data distributions of the Cartpole domain. The first distribution,
Figure 3a, is an exploration done during training with offline data. The second one, Figure 3b, is a
random exploration performed in the environment of the Cartpole domain. As seen in these images,
the distribution corresponding to the exploration in the environment is wider than the distribution of
the offline dataset, in other words, there are regions that are little or not at all known by the offline
dataset. If an agent learns a policy using the offline dataset, there will be less-known regions, and it
will act blindly.

Figure 1: Exploration comparison.

(a) Exploration in Discrete Environment (b) Exploration in Continuous Environment

The main idea proposed in this paper is to weight the original reward with a measure of the uncertainty
of that region of the space. The metric is based on the clustering of the visited state space. We use
a well known bias of the k-means algorithm, which locates centroids or prototypes in the all the
known instance space, but in an unbalance way: it may locate only a few instances in one Voronoi
region, and many in others, focusing only in the distortion metric. Therefore, our measure is based
on the number of instances that are located in the visited region or cluster, so the higher the number
of instances, the better known should be the region and therefore the original reward is reduced little
or not at all. In the opposite case, if the number of instances is low, we understand that the region is
less-known and the original reward is reduced proportionally.

3.2 Definitions - DUQ Metric

Given a dataset D = {d1, ..., dm}, given a set of centroids C = {C1, ..., Cn}, and given the Voronoi
regions generated by the set C over the dataset D, R = {r1, ..., rn} being ri = {dj |dist(dj , ci) ≤
dist(dj , ck), k 6= i}. Then, DUQ metric can be defined as Equation 1 shows:

DUQ(dj) = |ri|, dj ∈ ri (1)

In different words, the DUQ of an instance is the number of instances of its corresponding Voronoi
region.

3

We add a transformation τp to weight and reshape the DUQ metric. This allows us to experiment with
different shapes of the distributionWDUQ

p : τp ·DUQ. The transformation τp consists on a sigmoidal
function in which the parameter p defines the input range of the function; τp(di) = 1

1+e−di (p)
. Some

examples of this functions are shown later in Figure 2. Finally, the reshaped reward is defined in
Equation 2.

rDUQ(s, a, s
′) = roriginal(s, a, s

′) ·WDUQ
p (s′) (2)

where WDUQ
p (s) = τp(s) ·DUQ(s)

3.3 Implementation

Below, we describe the steps we follow to apply our approach.

1. The first step is the data acquisition. Any dataset from a OpenAI Gym domain (or any
other RL task) could be valid, but we have chosen those from D4RL [11]. They are widely
adopted in RL publications, allowing the community to standardize benchmarks.

2. To calculate the DUQ metric is necessary to discretize the state space where frequency
of states can be computed. Therefore the second step consists on the normalization and
discretization of that data. As introduced above, we have chosen to apply k-means or
mini-batch k-means, depending on the dataset size, implemented in scikit-learn [12]. The
appropriate number of clusters depends on the dataset used. In our experiments, we have
obtained several combinations based on the distortion observed in the discretization process.

3. Next, the DUQ metric is computed for all the datasets based on the number of instances
by cluster. Since this measure will be used as a weight to reshape the reward, it has to
be normalized in the range [0,1]. Moreover, to make it even smoother and avoid abrupt
changes between different clusters, a transformation with a sigmoidal function is applied to
the number of instances of each cluster, as defined above.
The range of the DUQ metric, i.e. the minimum and maximum value of the distribution,
modifies the shape of the final distribution obtained after applying the sigmoidal function.
This range is used as a parameter to experiment with different shapes. To define this
parameter, it is necessary to select a minimum and maximum value to scale the distribution.
Once the transformation has been applied, we get the previously defined WDUQ.
In Figure 2, we show a couple of examples of the uncertainty measure by cluster processed
and ready to use in the training process, i.e. the WDUQ. In that figures, the number of
instances by cluster have been ordered from highest to lowest. In this examples we use
different range for the DUQ metric. The first example is much smoother than the second
since in most of the clusters the original reward is preserved (WDUQ = 1). However, in the
second one, it is penalized more frequently. This form has usually shown the best results.

Figure 2: Uncertainty measure by cluster ready to use in the training process.

4

3.4 DUQ Algorithm

At this point, we can launch the training process. We have tested our approach using well known
algorithms, such as CQL, BCQ, or SAC, comparing the results of using the original reward function
and the DUQ reward. We show the results in the experimentation (see Section 4).

During the training, the agent visits one state s ∈ S, selects an action a ∈ A and goes to another state
s′ ∈ S at each step. Our approach modifies the reward, using the previously defined method the new
reward as defined in Equation 2.

4 Experimentation

In this section, we show the different aspects to consider for experimentation. On the one hand, the
domains and datasets (see Section 4.1), on the other hand, the experimental parameters, which are
defined in the experimental results (see Section 4.2).

4.1 Domains and datasets

There are many domains modeled as environments under the OpenAI Gym [13] library, but only a
part of them have good offline datasets to perform Offline Reinforcement Learning. It is crucial to
share standard datasets to evaluate algorithms. In data-driven deep RL, the D4RL datasets [11] are
widely employed by the research community in numerous recently published papers. Although, we
have run experiments in other classic domains [13], such as CartPole or Mountain Car, we present
the results of those from D4RL to seamlessly compare with other works.

Specifically, we have obtained results from the MuJoCo environments Hopper, HalfCheetah, and
Walker2D, which have available datasets in D4RL. D4RL offers different types of datasets for the
same environments. In our case, we have chosen the option called Medium. In this option, the data are
generated by first training a policy using SAC, then early-stopping the training, and finally collecting
1M samples from this partially-trained policy.

4.2 Experimental results

The experiments have been performed using the current state of the art algorithms CQL, BCQ, and
SAC, and modifying their parameters. We have decided to compare our approach with CQL and
BCQ since they are among the first well-known data-driven methods for offline RL. There are many
parameters to consider, those related to our approach are:

1. Number of clusters: It is the amount of clusters used to group the data and calculate the
uncertainty measure (k parameter of k-means algorithm).

2. Input range of the sigmoidal: It is the range used to normalize the number of instances by
cluster to calculate the uncertainty measure, as shown in Equation 1.

3. Common parameters: It is also necessary to experiment with other parameters, such as
learning rate, batch size, or number of episodes, to name a few.

In Table 1, we show the numeric results obtained by executing the CQL, BCQ, and SAC algorithms
in three different domains, both using the original reward and our modified reward to account for
uncertainty of the dataset. We have obtained the score and standard deviation values from two
independent executions. As it can be seen, the modified reward (DUQ) improves the final results in
2 of the 3 domains tested in most cases. Moreover, in a couple of tests, the improvement is quite
significant compared with the original result.

In order to facilitate the reproducibility of the experiments, we show the parameters used for the final
experiments in Table 2. The actor and critic learning rate and the batch size are not listed in this
table since we use the same values for each algorithm. CQL uses 0.0001 for actor and 0.0003 for
critic learning rate, BCQ uses 0.001 for actor and critic learning rate and SAC uses 0.0003 for actor
and critic learning rate. We used a batch size of 256 for all experiments.

For a more detailed view of the behavior of the experiments performed, we present Figures 3 and 4.
These graphs show the evolution of the reward obtained during the agent’s learning. Figure 3 depicts

5

Table 1: Experimental results

Algorithm Reward (Mean ± SD)
hopper-medium halfcheetah-medium walker2d-medium

CQL original 79.84 ± 4.98 24.38 ± 1.69 75.73 ± 0.92
DUQ 30.01 ± 0.03 40.21 ± 5.42 81.35 ± 0.26

BCQ original 74.48 ± 2.95 41.09 ± 0.07 69.55 ± 2.9
DUQ 30.25 ± 0.05 43.29 ± 0.02 72.17 ± 1.70

SAC original 0.71 ± 0.04 10.96 ± 3.03 1.89 ± 1.61
DUQ 0.75 ± 0.02 41.63 ± 1.64 1.61 ± 1.42

The results have been normalized according to the D4RL paper [11]. We highlight the experiments in which our
approach obtains better results.

Table 2: Experimental parameters.

Domain Reward Algorithm epochs Nº Clusters Sigm. range

hopper-medium original CQL 400 - -
hopper-medium original BCQ 400 - -
hopper-medium original SAC 250 - -
hopper-medium DUQ CQL 400 1024 [-10,25]
hopper-medium DUQ BCQ 400 1024 [-10,25]
hopper-medium DUQ SAC 250 1024 [-10,25]

halfchetah-medium original CQL 400 - -
halfchetah-medium original BCQ 400 - -
halfchetah-medium original SAC 250 - -
halfchetah-medium DUQ CQL 400 1024 [-10,25]
halfchetah-medium DUQ BCQ 400 2048 [-10,25]
halfchetah-medium DUQ SAC 250 1024 [-10,25]
walker2d-medium original CQL 400 - -
walker2d-medium original BCQ 400 - -
walker2d-medium original SAC 250 - -
walker2d-medium DUQ CQL 400 512 [-10,25]
walker2d-medium DUQ BCQ 400 2048 [-10,25]
walker2d-medium DUQ SAC 250 1024 [-10,25]

Nº Clusters: Number of Clusters, Sigm. range: Input range of the sigmoidal function

6

the reward evolution during training in the HalfCheetah domain using BCQ and SAC algorithms. In
the same plot, we see the experiment that utilizes the original and the modified reward. In the same
way, Figure 4 shows the reward evolution during training in the Walker2D domain using CQL and
BCQ algorithms. From these graphs, we can draw several conclusions. The first finding is that, with
varying degrees of success, our modified reward consistently beats the original reward. The second
one is that our modification reaches high and stable scores more rapidly than the unmodified baseline.

Figure 3: HalfCheetah Medium Dataset. BCQ and SAC. Original and modified reward (DUQ)
comparison.

Nomenclature of experiments in legend: Algorithm (BCQ) - type of experiment (modifiedReward) - Input range
of the sigmoidal ([-10,25]) - Number of clusters (1024)

5 Conclusions

In this paper, we present DUQ (Discrete Uncertainty Quantification Approach for Offline RL),
which provides a simple approach to partially mitigate the distributional shift through an effortless
uncertainty quantification method. Additionally, we have also shown how it is easily applicable on
top of offline RL algorithms. Our experiments show that our approach improves the performance in
several MuJoCo environments compared to standard benchmarks from D4RL. We believe that DUQ
can be used extensively as an additional technique to any other, helping to achieve better and more
stable results.

As future work, we consider the option of calculating the uncertainty measure by discretizing not
only the states, but also the actions, so that state-action pairs are considered. In this way, it would be
possible to evaluate which actions are more or less known in a state.

Figure 4: Walker 2D Medium Dataset. CQL and BCQ. Original and modified reward (DUQ)
comparison.

Nomenclature of experiments in legend: Algorithm (CQL) - type of experiment (modifiedReward) - Input range
of the sigmoidal ([-10,25]) - Number of clusters (512)

7

References
[1] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:

Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[2] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pages 45–73. Springer, 2012.

[3] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction, 2019.

[4] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[6] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. pages 2052–2062, 2019.

[7] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[8] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. arXiv preprint arXiv:1906.08253, 2019.

[9] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[10] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. arXiv preprint
arXiv:2102.08363, 2021.

[11] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

8

	Introduction
	Related work
	Discrete Uncertainty Quantification Approach for Offline RL (DUQ)
	Motivation
	Definitions - DUQ Metric
	Implementation
	DUQ Algorithm

	Experimentation
	Domains and datasets
	Experimental results

	Conclusions

