
DCUR: Data Curriculum for Teaching
via Samples with Reinforcement Learning

Daniel Seita1, Abhinav Gopal1, Zhao Mandi1, John Canny1

1University of California, Berkeley
seita@berkeley.edu

Abstract

Deep reinforcement learning (RL) has shown great empirical successes, but suf-
fers from brittleness and sample inefficiency. A potential remedy is to use a
previously-trained policy as a source of supervision. In this work, we refer to
these policies as teachers and study how to transfer their expertise to new student
policies by focusing on data usage. We propose a framework, Data CUrriculum
for Reinforcement learning (DCUR), which first trains teachers using online deep
RL, and stores the logged environment interaction history. Then, students learn
by running either offline RL or by using teacher data in combination with a small
amount of self-generated data. DCUR’s central idea involves defining a class of
data curricula which, as a function of training time, limits the student to sampling
from a fixed subset of the full teacher data. We test teachers and students using
state-of-the-art deep RL algorithms across a variety of data curricula. Results
suggest that the choice of data curricula significantly impacts student learning, and
that it is beneficial to limit the data during early training stages while gradually
letting the data availability grow over time. We identify when the student can
learn offline and match teacher performance without relying on specialized offline
RL algorithms. Furthermore, we show that collecting a small fraction of online
data provides complementary benefits with the data curriculum. Supplementary
material is available at https://tinyurl.com/teach-dcur.

1 Introduction

Humans often learn best when guided through a curricula. When providing expert demonstrations
to human students, the demonstrations should fall within a particular range of difficulties. If they
are too easy the student learns nothing, but if they are too difficult the student may have trouble
learning [7, 53]. With this intuition, we consider the analogous context in Reinforcement Learning
(RL) [47], and study how a teacher policy can best “teach” a student policy, where both are trained
with reinforcement learning. We investigate when a teacher provides the student with a dataset of
samples (i.e., data tuples) D(T). For the student, rather than propose a new algorithm to learn from
data, we use existing algorithms but focus on data usage. In particular, given a student employing a
standard off-the-shelf RL algorithm, how can it better sample from D(T)?

We propose a framework, DCUR (pronounced dee-curr): Data CUrriculum for Reinforcement
learning, where we study how to filter a teacher’s static dataset to accelerate a student’s learning
progress, measured in terms of environment episodic reward. The framework is compatible with
pure offline reinforcement learning [10, 31, 32] and when the student can engage in a small amount
of self-generated data, which we refer to as apprenticeship learning. Either case reduces the need
for the student to engage in extensive and potentially risky exploratory behavior, and thus may hold
tremendous promise for enabling robots to learn from existing, massive datasets. In experiments,
we test the DCUR framework by training teachers in a standard fashion with online environment

Offline Reinforcement Learning Workshop at Neural Information Processing Systems (NeurIPS 2021).

https://tinyurl.com/teach-dcur

Figure 1: Visualization of DCUR. First, a teacher policy πθT is trained using standard Deep RL with
online environment interactions, and fills a replay buffer D(T) with all the experienced data tuples.
After training πθT , we choose a fixed data curriculum C(t) (see Figure 2) for training a student policy
πθS from D(T). In general, we study when students train offline, but since this can be challenging,
we optionally allow students to gather some online data to use for learning, in addition to D(T). For
each time t (i.e., minibatch gradient update), the fixed curriculum strategy C(t) restricts the samples
the student can draw from D(T), resulting in a set of eligible data tuples (shaded in light gray) that
the student can use for gradient updates.

interaction. We store the logged history of experienced environment interactions as a large dataset
D(T) to be used by the student for learning. Results over a range of standard continuous control
tasks [6, 49] suggest that students running off-the-shelf, off-policy RL algorithms can make use of
curricula to more efficiently learn from static teacher data, even without the use of specialized offline
RL algorithms. See Figure 1 for an overview of DCUR. The contributions of this paper include:

• We introduce the DCUR framework which considers data improvements, rather than algorithmic
improvements, for accelerating learning from large, teacher-provided datasets.

• We show that the best curricula, combined with potentially longer training, can enable students
training offline to match the teacher’s top performance.

• We show that students can use some online data (2.5-5.0% of the offline data size) in combination
with data curricula to aid learning in more complex environments.

2 Related Work

Curriculum Learning. The use of curriculum learning in machine learning dates to at least El-
man et al. [9], who showed the benefit of initially training on “easier” samples while gradually
increasing the difficulty. Subsequent work by Bengio et al. [5] confirmed these results by accelerating
classification and language modeling by arranging samples in order of difficulty. Other work in
curriculum learning has included training teacher agents to provide samples or loss functions to
a student [11, 55], and larger-scale studies to investigate curricula for image classification [56].
In RL, curriculum learning has shown promise in multi-task [35, 23] and self-play [46] contexts,
for selecting one of several teachers to provide samples [44], and for generating a curriculum of
start [14] or goal [13, 61] states. In this work, we design a curriculum of samples (i.e., data tuples) for
(mostly) offline RL, and we do not focus on the multi-task setting nor do we require self-play or goal
generation. When students execute online steps, this can be interpreted as a form of apprenticeship
learning [1] where the student can “practice” in addition to using offline data.

Offline Reinforcement Learning. Offline RL [32], also referred to as Batch RL [10, 31], has seen
an explosion of recent interest. Offline RL is the special case of reinforcement learning [47] without
exploration, so the agent must learn from a static dataset. It differs from imitation learning [38]
in that data is annotated with rewards, which can be utilized by reinforcement learning algorithms
to learn better policies than the underlying data generating policy. Many widely utilized Deep RL
algorithms, such as DQN [36, 50] for discrete control and DDPG [33], SAC [20], and TD3 [18]
for continuous control are off-policy algorithms and, in principle, capable of learning offline. In
practice, however, researchers have found that such off-policy algorithms are highly susceptible to
bootstrapping errors and thus may diverge quickly and perform poorly [17, 16, 27, 26, 25]. One
remedy is to incorporate conservatism such as by regularizing the value functions in model-free
RL settings [17, 26, 28, 62, 45, 57, 54]. Other studies have found promising results in model-based

2

Figure 2: Visualization of the data curricula described in Section 4.2. For all buffer visuals, the
bottom represents index 0, i.e., the first data tuple from the teacher’s training history, and the top
is index 1M. At a student training step t, data tuples available for sampling are shaded gray. Left:
we illustrate the Cadd(t) and Cscale(t) curricula, which determine different ranges of data tuples
in D(T). Right: three examples of curricula (one per row) showing how the available data to the
student changes over 1M training time steps. For Cadd(t; p = 1M,f = 1M), the full D(T) buffer is
available at all times, whereas Cscale(t; c = 1.00) only enables indices 0 to t for time t, and hence
the available samples grows linearly throughout training.

contexts [59, 24, 58]. The goals of this work are orthogonal to work that attempts to develop
specialized offline RL algorithms, because the focus here is on knowledge transfer from a teacher to
a student, with the offline setting as one possible learning scenario for the student.

Reinforcement Learning from Teachers. Combining reinforcement learning with data from teachers
is a highly effective technique for training students, particularly for hard exploration environments.
One line of research has explored distillation techniques [40, 42, 8, 30] for multi-task learning,
which trains student networks to match output from teacher networks (e.g., Q-values). Another
active area of research focuses on demonstrations [4]; in off-policy RL, a replay buffer [34] can
contain teacher demonstrations, which can be used along with self-generated samples from a student.
Examples of such algorithms in discrete control settings include DQfD [22], Ape-X DQfD [41],
and R2D3 [39]. Other work utilizes demonstrations in continuous control by adding transitions
to a replay buffer [37, 51, 52], specifying an auxiliary loss [43] or estimating value functions for
model-based RL [48]. These works enable additional exploration from the student, allowing for
self-generated samples, whereas we aim to understand how well students can learn with minimal
exploration. Furthermore, these works often use a very low demo ratio, or the fraction of expert
(teacher) demonstrations in a given minibatch. For example, R2D3 [39] reported that a demo ratio
as small as 1/256 was ideal. That these algorithms perform best when utilizing so little teacher
data motivates the need to understand how to use teacher data without requiring frequent student
environment interaction.

3 Problem Statement and Preliminaries

We utilize the Markov Decision Process (MDP) framework for RL [47]. An MDP is specified as
a tuple (S,A, P,R, γ) where at each time step t, the agent is at state st ∈ S and executes action
at ∈ A. The dynamics map the state-action pair into a successor state st+1 ∼ P (· | st,at), and
the agent receives a scalar reward rt = R(st,at). The objective is to find a policy π : S → A that
maximizes the expected discounted return E[

∑∞
t=0 γ

trt] with discount γ ∈ (0, 1]. In Deep RL, the
policy πθ is parameterized by a deep neural network with parameters θ.

The RL framework we study involves two agents: a teacher T and a student S, following respective
policies πθT and πθS with parameters θT and θS . We assume the teacher is trained via standard
online RL, and produces a dataset D(T) = {(si,ai, ri, si+1)}Ni=0 of N data tuples (also referred to
as “samples”), where each contains a state si, action ai, scalar reward ri, and successor state si+1. In
general, we use the i subscript notation in (si,ai, ri, si+1) to specify a time indexing of the tuples
across the full data, and use (s,a, r, s′) when precise time indexing is not needed. Data tuples from
teacher data D(T) are provided to the student S, which runs an off-policy RL algorithm, so that it
can in principle learn from just the fixed data. We consider the problem of designing a curriculum to

3

decide, for each time step t of the student’s learning progress,1 which data tuples from D(T) should
be “available” to the student when it samples minibatches for gradient updates.

4 Method

4.1 Teachers and Data Generation

The DCUR framework is agnostic to the precise algorithm to train students and teachers. Unless
stated otherwise, we generate teacher data D(T) using TD3 [18], a state-of-the-art off-policy Deep RL
algorithm for continuous control. TD3 is an actor-critic algorithm where the actor πθT is a policy, and
the critic is a value function which consists of two Q-networks, Qϕ1 and Qϕ2 , with target networks
Qϕ1,targ, Qϕ2,targ. During gradient updates, TD3 mitigates overestimation of Q-values by taking the
minimum of the two Q-networks to compute targets y for the Bellman update:

y = r + γ min
i∈{1,2}

Qϕi,targ(s
′,a′(s′)) (1)

with discount factor γ, and where a′ is the action considered at the successor state s′:

a′(s′) = clip(πθT (s
′) + ϵ,alow,ahigh)

ϵ ∼ clip(N (0, σ),−β, β)
(2)

which in practice involves adding zero-mean clipped Gaussian noise ϵ to πθT (s
′) for some β, then

clipping (again) component-wise to an environment-dependent action range [alow, ahigh]. For more
details on TD3, we refer the reader to Fujimoto et al. [18]. To generate D(T), we use the logged
environment interaction history of the TD3 teacher from online training, resulting in a set of ordered
tuples:

D(T) = {(si,ai, ri, si+1)}N=1M
i=0 , (3)

in a replay buffer, where following standard MuJoCo training [18], the number of environment steps
and the buffer capacity are both 1M, so no data tuples are overwritten. To our knowledge, the only
prior work that has tested TD3 in offline RL with logged data is from Agarwal et al. [3], who report
that TD3 outperformed Batch Constrained Q-learning [17] when learning from logged data generated
from DDPG agents. We perform a deeper investigation of training on logged data by showing the
utility of curricula (Section 4.2) and self-generated data (Section 4.3).

4.2 Data CUrriculum for Reinforcement Learning (DCUR)

We propose to accelerate student learning with a curriculum C(t) which specifies the range of eligible
data tuples in the static teacher data D(T) which can be sampled for the minibatch gradient update at
time t. We define two classes of curricula: additive and scale. An additive curricula Cadd uses two
parameters, p ≥ 0 and f ≥ 0, specifying the previous and future data tuples in D(T) relative to t. For
ease of notation, we omit the p parameter if the intent is to always allow data tuples from index 0,
which represents the teacher’s earliest environment interaction. We thus denote the additive curricula
on D(T) using one of two conventions:

Cadd(t; p, f) = {(si,ai, ri, si+1)}i=min(1M,t+f)
i=max(0,t−p)

Cadd(t; f) = {(si,ai, ri, si+1)}i=min(1M,t+f)
i=0

(4)

where the valid time indices are centered at the current student training time cursor t, and are always
limited by the buffer data size of |D(T)| = 1M studied in this work. The second class of curricula
Cscale, is parameterized by a single scale parameter c > 0 and defined as:

Cscale(t; c) = {(si,ai, ri, si+1)}i=min(1M,t·c)
i=0 (5)

which enables index 0 up to index t · c. See Figure 2 for a visualization. If the student trains for
1M gradient updates following Cadd(t; f = 1M), it has the full buffer accessible for sampling data

1In this work, we consider RL contexts where it is standard to have a 1:1 ratio of environment steps and
gradient (i.e., training) updates, modulo any initial online data collection to partially fill in a replay buffer
before training begins. We thus treat a “time step” t as referring to environment steps and gradient updates
interchangeably. If students learn offline, then a “time step” is interpreted as a gradient update only.

4

Table 1: Offline RL Results with DCUR. Student performance as a function of 11 data curricula,
with teacher performance (bottom row) as a reference. We report the “M1” and “M2” evaluation
metrics (Section 5). We run 1 teacher per environment, then use 5 random seeds for training
students from that same teacher data. Hence, all numbers reported below for student data curriculum
experiments are averages over 5 independent offline RL runs; see the Appendix for standard error
values. For each column, values are bolded for the best M1 and M2 results among all 11 curricula for
students, and for other students with overlapping standard errors. The bolded values do not consider
teacher performance, which is only present as a reference.

Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3

Data Curriculum M1 M2 M1 M2 M1 M2 M1 M2

Cadd(t; f = 50K) 219.9 382.0 8067.3 7147.0 2986.2 1669.5 2715.6 1712.1
Cadd(t; f = 100K) -604.2 -409.6 7416.2 7052.6 2627.4 1980.1 2746.7 1810.5
Cadd(t; f = 200K) 288.4 -620.4 8028.4 6521.5 2525.3 1887.9 2691.8 1651.9
Cadd(t; f = 500K) 283.3 -801.1 7108.7 5041.2 2498.0 1546.2 1515.7 1183.5
Cadd(t; f = 1M) -1552.1 -1390.5 7447.3 3846.8 2323.0 1610.3 1741.4 1096.4
Cadd(t; p = 800K, f = 0) -889.7 1497.9 7650.4 6942.7 2132.2 1924.4 792.0 1521.8

Cscale(t; c = 0.50) 285.0 301.4 7467.8 6261.9 2332.3 1450.5 1866.0 799.9
Cscale(t; c = 0.75) 167.0 412.2 7392.6 6689.2 3284.7 1818.2 1864.9 1251.5
Cscale(t; c = 1.00) 825.6 1103.7 8305.3 6980.0 2984.3 2092.6 2178.5 1305.7
Cscale(t; c = 1.10) 2952.5 2212.0 8306.0 7095.6 3185.2 2317.1 2423.9 1698.1
Cscale(t; c = 1.25) -1851.1 199.6 7843.8 7175.4 2755.5 1891.9 2839.4 1747.4

TD3 Teacher 4876.2 3975.8 8573.6 7285.5 3635.2 2791.9 3927.9 2579.8

tuples at all times. Using Cscale(t; c = 1.00) means the student can only sample from indices 0
up to t at time t, so the available offline data grows over time. In addition, Cadd(t; f = 0) and
Cscale(t; c = 1.00) define the same curriculum; we default to the latter notation.

In prior work, Fujimoto et al. [17] tested two special cases of these curricula, named final buffer
and concurrent. The final buffer setting enables the entire data at all times for learning and was
later studied in Agarwal et al. [3]. This is equivalent to Cadd(t; f = 1M). The concurrent setting
is represented as Cadd(t; c = 1.00). We remark that that limiting the size of the buffer is a known
option to stabilize online RL [60], but we aim to study this in an largely offline context in more
complex environments, and where the eligible data buffer can grow over time.

4.3 Apprenticeship Learning: Small Amount of Online Data

While we primarily study the student learning purely offline, we additionally explore learning with
small amounts of on-policy student data, to see how much this stabilizes training and to also check
that such effects are complementary with a data curriculum. This means the student forms a smaller
buffer D(S) of self-generated online data with exploration noise, and where |D(S)| ≪ |D(T)|. We
call this setting X% Online if the student, by the end of its training, has collected self-generated data
tuples that amount to X% of the full teacher data (1M in this work). The student still performs 1M
gradient updates, but takes one online step at equally spaced time intervals (i.e., one step every 100/X
updates). For example, with “5% Online,” the student takes online environment steps 1 out of every
20 gradient updates, and D(S) contains 50K data tuples at the end of training. This can equivalently
be viewed as the student performing 50K consecutive online environment steps, but with 20 gradient
updates between consecutive steps. The data tuples from D(S) are never discarded. When the student
samples a minibatch at time t, it first applies the pre-selected curriculum (see Section 4.2) to get the
appropriate subset of D(T), then combines the resulting eligible data tuples with all of D(S), then
uniformly samples from that.

5 Experiments

Environments. We test DCUR using standard MuJoCo environments [49] for Deep RL: Ant-
v3, HalfCheetah-v3, Hopper-v3, and Walker2d-v3 from OpenAI [6]. Earlier versions of these
environments (-v1 or -v2) have also been benchmarked in work focusing on offline RL [17, 26, 57].

5

Figure 3: Offline student performance on HalfCheetah-v3 with additive curricula (left) and scale
curricula (right); these experiments correspond to numerical values in Table 1. In both subplots, we
show the teacher’s performance for reference (at test time, without noise) with dashed black lines.
Results from additive curricula suggest a clear pattern that access to more samples initially (i.e., larger
f) slows learning.

Teachers and Students. We train TD3 teachers using the standard 1M online steps [18, 20, 57], and
store all encountered data tuples (s,a, r, s′) to make D(T). Each training epoch consists of 4000
time steps, so there are 250 training epochs for teachers and students. In Section 6.2 we investigate
training students for 10X more epochs. We apply standard noise levels for the teacher’s exploration;
the noise added to actions is N (0, 0.1) instead of N (0, 0.5) as done in some experiments in [3, 17]
to increase data diversity. In the Appendix, we have results from SAC [20] teachers and students.
The code we use is built on top of SpinningUp [2].

Data Curriculum Experiments. We test a variety of additive and scale curricula
from Section 4.2. For additive curricula, we adjust the “forward” samples allowed:
f ∈ {50K, 100K, 200K, 500K, 1M}, and we also check if ignoring older samples in D(T) helps
(with p = 800K). We report scale curricula with c ∈ {0.50, 0.75, 1.00, 1.10, 1.25}, where c < 1
tests whether the student needs more gradient updates on data tuples in D(T) relative to the teacher,
and c > 1 tests whether it helps to have additional “forward” samples, which is similar to f > 0 in
additive curricula, but where f increases throughout student training because the maximum eligible
index c · t is a function of t. Due to computational limitations, for most experiments after Section 6.1,
we test two particular curricula (from [17]): all the data (Cadd(t; f = 1M)) or concurrent data
(Cscale(t; c = 1.00)). We test with Cadd(t; f = 1M) because it serves a baseline of using all data,
which can intuitively be viewed as using no curriculum. As Deep RL evaluations are notoriously
noisy [21], all experiments are reproducible from code and data available on the project website.

Evaluation. To evaluate student and teacher performance, we use two metrics, “M1” and “M2”:

• M1 (Final): average reward of the last 100 test episodes.

• M2 (Average): average reward across all test episodes.

In all experiments, students and teachers do 10 test episodes after every epoch. We use 5 random
seeds for students, with respect to one teacher (per environment), to reduce the source of variability
that would result from different teachers. We compute M1 and M2 statistics for each of the 5 runs,
then average those 5 to get final numbers for M1 and M2. In the tables, when comparing a relevant set
of students, we bold the best M1 and M2 results, and additionally bold other results with overlapping
standard errors for a fairer comparison; see the Appendix for the exact formula.

6 Results

We present experimental results of DCUR and report M1 and M2 metrics. We defer some results to
the Appendix.

6.1 Effect of Data Curricula on Student Training Offline

We train students offline using 11 data curricula and list results in Table 1. The overall results suggest
that a curriculum allowing for the available samples from D(T) to grow over time, and to include a
few samples “ahead” relative to the student’s training time t produces stronger results. In particular,

6

Figure 4: Hopper-v3 test-time episodic returns comparing the teacher performance (black curve)
over its training period of 250 epochs (dashed vertical line), versus students trained offline over 2500
(10X more) epochs. For the two data curricula, we train 5 independent students from the fixed teacher
data D(T) with different seeds. Results suggest that the Cscale(t; c = 1.00) curriculum (blue curve)
leads to better average performance over 2500 epochs, and matches the teacher’s best performance
(dashed horizontal line).

Table 2: Offline RL Results with DCUR, 10X Training. Student performance as a function of the
data curriculum, where students train for 10X longer (2500 epochs) as compared to Table 1. Besides
this change, the setup and table formatting is identical to Table 1. See Section 6.2 for details. The
teacher metrics are repeated for reference, and are not considered when bolding numbers here.

Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3

Curriculum M1 M2 M1 M2 M1 M2 M1 M2

Cadd(t; f=1M) -2770.0 -2088.3 6041.6 6847.9 2593.1 2482.0 3713.1 2763.5
Cscale(t; c=1.00) -2780.6 -1511.2 6496.2 7555.5 3019.4 3052.3 3208.0 3121.4

TD3 Teacher 4876.2 3975.8 8573.6 7285.5 3635.2 2791.9 3927.9 2579.8

Cscale(t; c = 1.10) has the best results, as it obtains the top scores or close to it (i.e., with overlapping
standard error) on 7 out of the 8 columns in Table 1. The next best curriculum, with 4 out of 8 top
scores, is Cadd(t; f = 50K), and it similarly allows the available range of samples to go slightly
past t, in this case by a fixed t+ 50K. In contrast, allowing too much data with Cadd(t; f = 1M)
or Cadd(t; f = 500K) results in poor performance, with neither of these curricula ranking among
the best in any of the environments with respect to either metric. Ignoring older samples from the
teacher’s early training history with Cadd(t; p = 800K, f = 0) also exhibits weak performance. See
Figure 3 for a representative set of learning curves for HalfCheetah-v3, showing some curricula that
result in the student essentially matching teacher performance, despite known challenges associated
with pure offline learning, even with relying on concurrent-style training [17].

Figure 5: Ant-v3 student test performance with various amounts of online data, from 0% (i.e., offline)
to 10% online. We show the teacher curve (dashed black line) for reference. We plot results from the
two curricula tested in Table 3, Cadd(t; f = 1M) (left), and Cscale(t; c = 1.00) (right).

7

Table 3: DCUR Results with Online Data. Student performance based on one of two data curricula
and the addition of a small fraction of online data. At the end of 250 training epochs, the student has
collected self-generated, online data that constitutes 2.5%, 5.0%, or 10.0% of the original teacher data
size |D(T)| = 1M . We use the same teacher data as in Table 1 and report the M1 and M2 metrics. We
bold values by comparing only the two curricula with the same X% online experiments per column
and bolding the maximum only (if standard errors do not overlap) or both (if otherwise).

Ant-v3 HalfCheetah-v3 Hopper-v3 Walker2d-v3

Curriculum; % Online M1 M2 M1 M2 M1 M2 M1 M2

Cadd(t; f = 1M); 2.5% 3093.1 894.4 8581.7 5275.3 3354.2 1977.9 3298.1 1882.6
Cscale(t; c = 1.00); 2.5% 4004.7 2857.0 8417.9 7212.2 2712.9 2238.1 3144.9 2050.3

Cadd(t; f = 1M); 5.0% 3693.9 1556.6 8658.8 5634.6 3232.1 2230.5 3243.8 2097.3
Cscale(t; c = 1.00); 5.0% 3251.1 3068.2 8601.4 7274.0 3356.2 2459.0 3155.8 2097.0

Cadd(t; f = 1M); 10.0% 4229.0 2007.6 8864.2 6024.5 2741.2 1979.4 3607.7 2448.2
Cscale(t; c = 1.00); 10.0% 4510.9 3349.0 8608.5 7290.5 3182.9 2580.6 3146.9 2204.2

TD3 Teacher 4876.2 3975.8 8573.6 7285.5 3635.2 2791.9 3927.9 2579.8

Figure 6: Students’ estimated Q-values in HalfCheetah-v3. With more data available at the start (i.e.,
increasing f , shown left to right) this creates initial over-estimation of Q-values. All 5 subplots are
derived from students reported in Table 1, and all curves average over the 5 seeds and show standard
errors.

6.2 Data Curriculum for Training 10X Longer

Here, as in Section 6.1, we run the Cadd(t; f = 1M) and Cscale(t; c = 1.00) curricula again, but
train 10X longer to understand how this affects learning. The choice of curriculum will only affect the
first 1/10 of training (i.e., the first 250 epochs), since after that, both curricula reduce to the student
sampling data tuples from the entire teacher buffer D(T). To make results comparable with those in
Section 6.1, we use the same teacher buffers. Table 2 has results in a similar manner as in Table 1.
We find that, somewhat surprisingly, the curricula affects the long-term performance of the student
in the remaining 9/10 of training. Across all 8 columns (4 environments and the M1/M2 metrics),
using Cscale(t; c = 1.00) outperforms Cadd(t; f = 1M) or is statistically similar to it based on the
standard error metric we use (see Section 5), suggesting that the initial curriculum assists TD3 in
finding a stable set of policy and value functions so that it can continue training without significant
deterioration. Figure 4 shows a representative set of learning curves for Hopper-v3, which shows the
student with Cscale(t; c = 1.00) matching the teacher’s performance given sufficient training.

6.3 Results with Small Amounts of Online Data

We next study when students can use a small amount of online data to address challenges with pure
offline learning. We train students for 250 epochs using 2.0%, 5.0% and 10.0% online data collection,
i.e., at the end of 1M training steps, students get 25K, 50K, and 100K self-generated data tuples,
respectively, for D(S), which they can sample from in addition to the (filtered) data tuples from
D(T). Table 3 has a complete overview of the M1 and M2 results across all 4 environments, and
the Appendix contains further details. The results indicate that even with as little as 2.5% online
data, students are able to significantly improve versus offline learning, with the improvement most
notable in the complex Ant-v3 environment as shown in Figure 5. Furthermore, Cscale(t; c = 1.00)
continues to provide some benefit to learning speed compared to Cadd(t; f = 1M) with online data,
particularly with respect to the M2 metric.

8

6.4 Investigation of Q-Values

To understand why the data curriculum matters, we investigate the student’s estimated Q-values.
With too much data available from D(T) during early stages of training, this causes overestimation
of Q-values, whereas a curriculum that restricts data tuples results in more stable, monotonically
increasing Q-values. Figure 6 shows different additive curricula on HalfCheetah-v3 and plots the
estimated Q-values, where the pattern of an initial “hump” at the start is prominent for certain
curricula, particularly Cadd(t; f = 1M). As shown in the Appendix, a similar trend holds for other
environments.

7 Conclusion and Future Work

This work introduces the DCUR framework, which studies how to filter a given dataset for existing
RL algorithms. Results across a variety of curricula and training settings suggest that the choice
significantly impacts the learning speed of students running RL. The greatest benefits come from
curricula that gradually let the available data grow as a function of training time. We caution that
the results presented are contingent on the way we generated the datasets. In future work, we will
test other datasets and environments, such as D4RL [15] or RL Unplugged [19], possibly with
multiple teachers [29]. While we kept relevant experience replay hyperparameters such as the replay
ratio constant, we will use findings from recent research [12] to investigate the interplay between
experience replay and data curricula. Finally, we plan to devise more sophisticated data curricula.

Acknowledgments and Disclosure of Funding

Daniel Seita was supported by the GFSD throughout this research. We thank members of the
CannyLab for helpful advice and suggestions.

9

References
[1] P. Abbeel and A. Ng, “Apprenticeship Learning via Inverse Reinforcement Learning,” in

International Conference on Machine Learning (ICML), 2004.

[2] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.

[3] R. Agarwal, D. Schuurmans, and M. Norouzi, “An Optimistic Perspective on Offline Reinforce-
ment Learning,” in International Conference on Machine Learning (ICML), 2020.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey of Robot Learning from
Demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, 2009.

[5] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,” in International
Conference on Machine Learning (ICML), 2009.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“OpenAI Gym,” 2016.

[7] S. Chaiklin, “The Zone of Proximal Development in Vygotsky’s Analysis of Learning and
Instruction,” Vygotsky’s Educational Theory in Cultural Context, 2003.

[8] W. M. Czarnecki, R. Pascanu, S. Osindero, S. M. Jayakumar, G. Swirszcz, and M. Jader-
berg, “Distilling Policy Distillation,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

[9] J. Elman, “Learning and Development in Neural Networks: The Importance of Starting Small,”
Cognition, July 1993.

[10] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based Batch Mode Reinforcement Learning,”
Journal of Machine Learning Research, 2005.

[11] Y. Fan, F. Tian, T. Qin, X.-Y. Li, and T.-Y. Liu, “Learning to Teach,” in International Conference
on Learning Representations (ICLR), 2018.

[12] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and W. Dabney,
“Revisiting Fundamentals of Experience Replay,” in International Conference on Machine
Learning (ICML), 2020.

[13] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic Goal Generation for Reinforcement
Learning Agents,” in International Conference on Machine Learning (ICML), 2018.

[14] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse Curriculum Generation
for Reinforcement Learning,” in Conference on Robot Learning (CoRL), 2017.

[15] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4RL: Datasets for Deep Data-Driven
Reinforcement Learning,” arXiv preprint arXiv:2004.07219, 2020.

[16] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Benchmarking Batch Deep Reinforce-
ment Learning Algorithms,” arXiv preprint arXiv:1910.01708, 2019.

[17] S. Fujimoto, D. Meger, and D. Precup, “Off-Policy Deep Reinforcement Learning without
Exploration,” in International Conference on Machine Learning (ICML), 2019.

[18] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” in International Conference on Machine Learning (ICML), 2018.

[19] C. Gulcehre, Z. Wang, A. Novikov, T. L. Paine, S. G. Colmenarejo, K. Zolna, R. Agarwal,
J. Merel, D. Mankowitz, C. Paduraru, G. Dulac-Arnold, J. Li, M. Norouzi, M. Hoffman,
O. Nachum, G. Tucker, N. Heess, and N. de Freitas, “RL Unplugged: A Suite of Benchmarks
for Offline Reinforcement Learning,” in Neural Information Processing Systems (NeurIPS),
2020.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor,” in International Conference
on Machine Learning (ICML), 2018.

10

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Reinforcement
Learning that Matters,” in Association for the Advancement of Artificial Intelligence (AAAI),
2018.

[22] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep
Q-Learning From Demonstrations,” in Association for the Advancement of Artificial Intelligence
(AAAI), 2018.

[23] A. Jabri, K. Hsu, B. Eysenbach, A. Gupta, S. Levine, and C. Finn, “Unsupervised Curricula for
Visual Meta-Reinforcement Learning,” in Neural Information Processing Systems (NeurIPS),
2019.

[24] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “MOReL: Model-Based Offline
Reinforcement Learning,” in Neural Information Processing Systems (NeurIPS), 2020.

[25] A. Kumar, R. Agarwal, D. Ghosh, and S. Levine, “Implicit Under-Parameterization Inhibits
Data-Efficient Deep Reinforcement Learning,” in International Conference on Learning Repre-
sentations (ICLR), 2021.

[26] A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing Off-Policy Q-Learning via Bootstrapping
Error Reduction,” in Neural Information Processing Systems (NeurIPS), 2019.

[27] A. Kumar, A. Gupta, and S. Levine, “DisCor: Corrective Feedback in Reinforcement Learning
via Distribution Correction,” in Neural Information Processing Systems (NeurIPS), 2020.

[28] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-Learning for Offline Reinforce-
ment Learning,” in Neural Information Processing Systems (NeurIPS), 2020.

[29] A. Kurenkov, A. Mandlekar, R. Martin-Martin, S. Savarese, and A. Garg, “AC-Teach: A
Bayesian Actor-Critic Method for Policy Learning with an Ensemble of Suboptimal Teachers,”
in Conference on Robot Learning (CoRL), 2019.

[30] K.-H. Lai, D. Zha, Y. Li, and X. Hu, “Dual Policy Distillation,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2020.

[31] S. Lange, T. Gabel, and M. Riedmiller, “Batch Reinforcement Learning,” RL. Adaptation,
Learning, and Optimization, 2012.

[32] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline Reinforcement Learning: Tutorial, Review,
and Perspectives on Open Problems,” arXiv preprint arXiv:2005.01643, 2020.

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous Control With Deep Reinforcement Learning,” in International Conference on
Learning Representations (ICLR), 2016.

[34] L.-J. Lin, “Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and
Teaching,” Machine Learning, 1992.

[35] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher-Student Curriculum Learning,”
arXiv preprint arXiv:1707.00183, 2017.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-Level Control Through
Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 02 2015.

[37] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming Exploration
in Reinforcement Learning with Demonstrations,” in IEEE International Conference on Robotics
and Automation (ICRA), 2018.

[38] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters, “An Algorithmic
Perspective on Imitation Learning,” in Foundations and Trends in Robotics, 2018.

11

[39] T. L. Paine, C. Gulcehre, B. Shahriari, M. Denil, M. Hoffman, H. S. nd Richard Tanburn,
S. Kapturowski, N. Rabinowitz, D. Williams, G. Barth-Maron, Z. Wang, N. de Freitas, and
W. Team, “Making Efficient Use of Demonstrations to Solve Hard Exploration Problems,” in
International Conference on Learning Representations (ICLR), 2020.

[40] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-Mimic: Deep Multitask and Transfer
Reinforcement Learning,” in International Conference on Learning Representations (ICLR),
2016.

[41] T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden, G. Barth-Maron, H. van
Hasselt, J. Quan, M. Večerík, M. Hessel, R. Munos, and O. Pietquin, “Observe and Look
Further: Achieving Consistent Performance on Atari,” arXiv preprint arXiv:1805.11593, 2018.

[42] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell, “Policy Distillation,” in International Conference on Learning
Representations (ICLR), 2016.

[43] S. Schmitt, J. J. Hudson, A. Zidek, S. Osindero, C. Doersch, W. M. Czarnecki, J. Z. Leibo,
H. Kuttler, A. Zisserman, K. Simonyan, and S. M. A. Eslami, “Kickstarting Deep Reinforcement
Learning,” arXiv preprint arXiv:1803.03835, 2018.

[44] D. Seita, C. Tang, R. Rao, D. Chan, M. Zhao, and J. Canny, “ZPD Teaching Strategies for Deep
Reinforcement Learning from Demonstrations,” arXiv preprint arXiv:1910.12154, 2019.

[45] N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, N. Heess, and M. Riedmiller, “Keep Doing What Worked: Behavioral Modelling
Priors for Offline Reinforcement Learning,” in International Conference on Learning Represen-
tations (ICLR), 2020.

[46] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “Intrinsic Motivation
and Automatic Curricula via Asymmetric Self-Play,” in International Conference on Learning
Representations (ICLR), 2018.

[47] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 2nd ed. Cambridge,
MA, USA: MIT Press, 2018.

[48] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister, J. E. Gonzalez, S. Levine,
F. Borrelli, and K. Goldberg, “Safety Augmented Value Estimation from Demonstrations
(SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks,” in IEEE Robotics and
Automation Letters (RA-L), 2020.

[49] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A Physics Engine for Model-based Control,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

[50] H. van Hasselt, A. Quez, and D. Silver, “Deep Reinforcement Learning With Double Q-
Learning,” in Association for the Advancement of Artificial Intelligence (AAAI), 2016.

[51] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl, T. Lampe,
and M. Riedmiller, “Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
Problems with Sparse Rewards,” arXiv preprint arXiv:1707.08817, 2017.

[52] M. Vecerik, O. Sushkov, D. Barker, T. Rothorl, T. Hester, and J. Scholz, “A Practical Approach
to Insertion with Variable Socket Position Using Deep Reinforcement Learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019.

[53] L. S. Vygotsky, Mind in Society: The Development of Higher Psychological Processes. Harvard
University Press, 1978.

[54] Z. Wang, A. Novikov, K. Zolna, J. T. Springenberg, S. Reed, B. Shahriari, N. Siegel, J. Merel,
C. Gulcehre, N. Heess, and N. de Freitas, “Critic Regularized Regression,” in Neural Information
Processing Systems (NeurIPS), 2020.

[55] L. Wu, F. Tian, Y. Xia, Y. Fan, T. Qin, L. Jian-Huang, and T.-Y. Liu, “Learning to Teach with
Dynamic Loss Functions,” in Neural Information Processing Systems (NeurIPS), 2018.

12

[56] X. Wu, E. Dyer, and B. Neyshabur, “When Do Curricula Work?” in International Conference
on Learning Representations (ICLR), 2021.

[57] Y. Wu, G. Tucker, and O. Nachum, “Behavior Regularized Offline Reinforcement Learning,”
arXiv preprint arXiv:1911.11361, 2019.

[58] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn, “COMBO: Conservative
Offline Model-Based Policy Optimization,” arXiv preprint arXiv:2102.08363, 2021.

[59] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma, “MOPO: Model-based
Offline Policy Optimization,” in Neural Information Processing Systems (NeurIPS), 2020.

[60] S. Zhang and R. S. Sutton, “A Deeper Look at Experience Replay,” in Deep Reinforcement
Learning Symposium, NeurIPS, 2017.

[61] Y. Zhang, P. Abbeel, and L. Pinto, “Automatic Curriculum Learning through Value Disagree-
ment,” in Neural Information Processing Systems (NeurIPS), 2020.

[62] W. Zhou, S. Bajracharya, and D. Held, “PLAS: Latent Action Space for Offline Reinforcement
Learning,” in Conference on Robot Learning (CoRL), 2020.

13

	Introduction
	Related Work
	Problem Statement and Preliminaries
	Method
	Teachers and Data Generation
	Data CUrriculum for Reinforcement Learning (DCUR)
	Apprenticeship Learning: Small Amount of Online Data

	Experiments
	Results
	Effect of Data Curricula on Student Training Offline
	Data Curriculum for Training 10X Longer
	Results with Small Amounts of Online Data
	Investigation of Q-Values

	Conclusion and Future Work

