
Learning Value Functions from
Undirected State-only Experience

Matthew Chang∗ Arjun Gupta∗ Saurabh Gupta
University of Illinois at Urbana-Champaign

{mc48, arjung2, saurabhg}@illinois.edu

Abstract

This paper tackles the problem of learning value functions from undirected state-
only experience (state transitions without action labels i.e. (s, s′, r) tuples). We
first theoretically characterize the applicability of Q-learning in this setting. We
show that tabular Q-learning in discrete Markov decision processes (MDPs) learns
the same value function under any arbitrary refinement of the action space. This
theoretical result motivates the design of Latent Action Q-learning or LAQ, an
offline RL method that can learn effective value functions from state-only experi-
ence. Latent Action Q-learning (LAQ) learns value functions using Q-learning on
discrete latent actions obtained through a latent-variable future prediction model.
We show that LAQ can recover value functions that have high correlation with
value functions learned using ground truth actions. Value functions learned using
LAQ lead to sample efficient acquisition of goal-directed behavior, can be used
with domain-specific low-level controllers, and facilitate transfer across embod-
iments. Our experiments in 5 environments ranging from 2D grid world to 3D
visual navigation in realistic environments demonstrate the benefits of LAQ over
simpler alternatives, imitation learning oracles, and competing methods.

1 Introduction

Offline or batch reinforcement learning focuses on learning goal-directed behavior from pre-recorded
data of undirected experience in the form of (st, at, st+1, rt) quadruples. However, in many realistic
applications, action information is not naturally available (e.g. when learning from video demonstra-
tions), or worse still, isn’t even well-defined (e.g. when learning from the experience of an agent
with a different embodiment). Motivated by such use cases, this paper studies if, and how, intelligent
behavior can be derived from undirected streams of observations: (st, st+1, rt).2

Our key conceptual insight is that while an observation-only dataset doesn’t tell us the precise action
to execute, i.e. the policy π(a|s); it may still tell us which states are more likely to lead us to the goal
than not, i.e. the value function V (s). For example, simply by looking at someone working in the
kitchen, we can infer that approaching the microwave handle is more useful (i.e. has higher value) for
opening the microwave than to approach the buttons. Thus, we can still make use of observation-only
data, if we focused on learning value functions as opposed to directly learning goal-directed policies.
Once we have learned a good value function, it can be used to quickly acquire or infer behavior.
Using learned value functions as dense rewards can lead to quick policy learning through some small
amount of interaction in the environment. Alternatively, they could be used to directly guide the
behavior of low-level controllers that may already be available for the agent (as is often the case
in robotics) without any further training. Furthermore, decoupling the learning of value functions

∗Equal contribution.
2We assume rt is observed. Reward can often be sparsely labeled in observation streams with low effort.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems (NeurIPS 2021).

from policy learning enables deriving behavior for agents with a different embodiment as long as the
overall strategy to solve the task remains similar.

Thus, the central technical question is how to learn a good value function from undirected observation
streams. Is it even possible? If so, under what conditions? This paper tackles these questions from a
theoretical and practical perspective.

We start out by characterizing the behavior of tabular Q-learning from [45] under missing action
labels. We note that Q-learning with naively imputed action labels is equivalent to the TD(0) policy
evaluation, which serves as a simple baseline method for deriving a value function. However,
depending on the policy that generated the data, the learned values (without any action grounding)
can differ from the optimal values. Furthermore, it is possible to construct simple environments
where the behavior implied by the learned value function is also sub-optimal.

Next, we present a more optimistic result. There are settings in which Q-learning can recover the
optimal value function even in the absence of the knowledge of underlying actions. Concretely, we
prove that if we are able to obtain an action space which is a strict refinement of the original action
space, then Q-learning in this refined action space recovers the optimal value function.

This motivates a practical algorithm for learning value functions from the given undirected
observation-only experience. We design a latent-variable future prediction model that seeks to
obtain a refined action space. It operates by predicting st+1 from st and a discrete latent variable â

from a set of actions Â (Section 4.1). Training this latent variable model assigns a discrete action
ât to each (st, st+1) tuple. This allows us to employ Q-learning to learn good value functions
(Section 4.2). The learned value function is used to derive behavior (Section 4.3) either through some
online interaction with the environment, or through the use of domain specific low-level controllers.

The use of a latent action space for Q-learning allows us to exceed the performance of methods based
on policy evaluation [9], which will learn the value of the demonstration policy, not the optimal
value function. Additionally, it side-steps the problem of reconstructing high-dimensional images
faced by other state-only value learning methods [10]. Other approaches for learning from state-only
data rely on imitating the demonstration data, which renders them unable to improve on sub-optimal
demonstration data. See Section 7 for more discussion.

Our experiments in five environments (2D grid world, 2D continuous control, Atari game Freeway,
robotic manipulation, and visual navigation in realistic 3D environments) test our proposed ideas.
Our method approximates a refinement of the latent space better than clustering alternatives, and
in turn, learns value functions highly correlated with ground truth. Good value functions in-turn
lead to sample efficient acquisition of behavior, leading to significant improvement over learning
with only environment rewards. Our method compares well against existing methods that learn
from undirected observation-only data, while being also applicable to the case of high-dimensional
observation spaces in the form of RGB images. We are also able to outperform imitation learning
methods, even when these imitation learning methods have access to privileged ground-truth action
information. Furthermore, our method is able to use observation-only experience from one agent
to speed up learning for another agent with a different embodiment. Code, models, simulation
environments will be released.

2 Preliminaries

Following the notation from [38], our Markov decision process (MDP) is specified by (S,A, p, γ),
where S is a state space, A is an action space, γ is the discount factor, and p(s′, r|s, a) is the
state/reward joint dynamics function. It specifies the probability distribution that the agent ends up in
state s′, receives a reward of r on executing action a from state s.

Offline or batch RL [22, 23] studies the problem of deriving high reward behavior when only given a
dataset of experience in an MDP, in the form of a collection of quadruples (s, a, s′, r). In this paper,
we tackle a harder version of this problem where instead we are only given a collection of triplets
(s, s′, r), i.e. experience without information about intervening actions. In general, this dataset could
contain any quality of behavior, from optimal, to actively adversarial. In contrast to some methods
(see Section 7), we will not assume that demonstrations in the dataset are of high quality, and design
our method to be robust to sub-optimal data.

2

With Ground Truth Actions
(Vgt) MSE:0.000

With One Action
(Vone act) MSE:0.064

With 4x Refined Actions
(V4x gt) MSE:0.000

With Obfuscated Actions
(Vimpure act) MSE:0.017

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1: We visualize the learned value function when using different action labels for Q-learning. See
Section 3.2 for more details.

In this paper, we will focus on methods based on Q-learning [45] for tackling this problem. Q-
learning has the advantage of being off-policy, i.e., experience from another policy (or task) can
be used to learn or improve a different policy for a different task. Q-learning seeks to learn the
optimal Q-function Q∗(s, a) by iteratively updating Q(st, at) to the Bellman equation. This process
converges to the Q∗ under mild conditions in many settings [45], and gives the optimal state-value
function as V ∗(s) = maxa Q

∗(s, a).

3 Characterizing Q-learning without True Action Labels

We characterize the outcome of Q-learning in settings where we don’t have ground truth intervening
actions in the offline dataset being used for Q-learning. We first consider the case of ignoring the
action altogether, which amounts to TD(0) policy evaluation. Next, we study if labeling (s, s′, r)

samples with actions from a different action space Â to construct a new MDP could aid learning.
More specifically, can the optimal Q-function for this new MDP, as obtained through Q-learning on
samples (s, s′, r) labeled with actions from Â, be useful in the original MDP? We show that under
the right conditions the value function learned under the altered action space Â is identical to the
value function learned for the original MDP.

Q-learning naive action labels (single action): Without action labels, one could simply assign all
transitions the same label. In this case, Q-Learning becomes TD(0) policy evaluation. The induced
value function isn’t the optimal value function for the MDP, but rather the value according to the
policy that generated the dataset. Depending on the dataset, this could be sub-optimal.

3.1 Optimality of Action Refinement

Assume we have a Markov Decision Process (MDP) M specified by (S,A, p, γ). Let the action
space A be composed of actions a1, a2, a3, ..., an ∈ A. We are interested in the value learned under
a modified MDP, M̂ composed of (S, Â, p̂, γ). We will show that if the actions and transitions Â
and p̂ are a refinement of A and p, then the value function learned on M̂ , VM̂ is identical to the value
function learned on M , VM . We define actions and transitions in M̂ to be a refinement of those in M
when, a) in each state, for every action in Â, there is at least one action in A which is functionally
identical in the same state, and b) in each state, for each action in A is represented by at least one
action in Â in that state.

Definition 3.1 Given a discrete finite MDP, M specified by (S,A, p) and MDP, M̂ specified by
(S, Â, p̂), M̂ is a refinement of M when

∀
â∈Â,s∈S

∃
a∈A

∀
s′,r

p̂(s′, r|s, â) = p(s′, r|s, a), and ∀
a∈A,s∈S

∃
â∈Â

∀
s′,r

p̂(s′, r|s, â) = p(s′, r|s, a),

Note that this definition of refinement requires a state conditioned correspondence between action
behavior. Actions do not need to have to correspond across states.

Theorem 3.1. Given a discrete finite MDP, M̂ which is a refinement of M (Definition 3.1) then both
MDPs induce the same optimal value function, i.e. ∀sV ∗

M̂
(s) = V ∗

M (s).

We prove this by showing that optimal policies under both MDPs induce the same value function.

3

Densified
RL

Latent
Action

Labeling
Q-Learning V(s) Low-Level

Controller Environment{ }(s, s′ , r) { }(s, s′ , r, ̂a)

Figure 2: Approach Overview. Our proposed approach Latent Action Q-Learning (LAQ) starts with a dataset
of (s, s′, r) triples. Using the latent action learning process, each sample is assigned a latent action â. Q-learning
on the dataset of quadruples produces a value function, V (s). Behaviors are derived from the value function
through densified RL, or by guiding low-level controllers.

Lemma 3.2. For any policy πM on M , there exists a policy πM̂ on M̂ such that V πM̂

M̂
(s) = V πM

M (s),

∀s, and for any policy πM̂ on M̂ there exists a policy πM on M such that V πM̂

M̂
(s) = V πM

M (s) ∀s.

For this lemma we introduce the notion of fundamental actions, which are actions which correspond
to sets of actions which have the same state and reward transition distributions in a given state. We
utilize the equivalence of fundamental actions between MDPs to construct a policy in the new MDP
which induces the same value function as a given policy in the original MDP. We provide proofs for
Theorem 3.1 and Lemma 3.2 in Section A.1.

3.2 Gridworld Case Study

We validate these results in a tabular grid world setting. In particular, we measure the error in learned
value functions and the induced behavior, when conducting Q-learning with datasets with different
qualities of intervening actions. The agent needs to navigate from the top left of a 6× 6 grid to the
bottom right with sparse reward. We generate data from a fixed, sub-optimal policy to evaluate all
methods in an offline fashion (additional details in Section A.5). We generate 20K episodes with this
policy, and obtain value functions using Q-learning under the following 4 choices for the intervening
actions: (1) Ground truth actions (Vgt), (2) One action (Vone-act, ammounts to TD(0) policy evaluation),
(3) 4× refinement of original action space (V4×-gt). We modify the data so that each sample for a
particular action in the original action space is randomly mapped to one of 4 actions in the augmented
space. (4) Obfuscated actions (Vimpure-act). Original action with probability 0.5, and a random action
with probability 0.5.

Figure 1 shows the learned value functions under these different action labels, and reports the MSE
from the true value function, along with induced behavior. In line with our expectations, V4×-gt
which uses a refinement of the actions is able to recover the optimal value function. Vone-act fails to
recover the optimal value function, and recovers the value corresponding to the policy that generated
the data. Vimpure-act, under noise in action labels (non-refinement) also fails to recover the optimal
value function. Furthermore, the behavior implied by Vimpure-act and Vone-act is sub-optimal. We also
analyze the effect of the action impurity on learned values and implied behavior. Behavior becomes
increasingly inaccurate as action impurity increases. More details in Section A.3.

4 Latent Action Q-Learning

Our analysis in Section 3 motivates the design of our approach for learning behaviors from state-only
experience. Our proposed approach decouples learning into three steps: mining latent actions from
state-only trajectories, using these latent actions for Q-learning to obtain value functions, and learning
a policy to act according to the learned value function. As per our analysis, if learned latent actions are
a state-conditioned refinement of the original actions, Q-learning will result in good value functions,
that will lead to good behaviors. Refer to Algorithm 1 for details.

4.1 Latent Actions from Future Prediction

Given a dataset D of observations streams . . . , ot, ot+1, . . ., the goal in this step is to learn latent
actions that are a refinement of the actual actions that the agent executed 3. We learn these latent
actions through future prediction. We train a future prediction model fθ, that maps the observation ot
at time t, and a latent action â (from a set Â of discrete latent actions) to the observation ot+1 at time

3We use the terms state (st) and observation (ot) interchangeably.

4

t+ 1, i.e. fθ(ot, â). f is trained to minimize a loss l between the prediction fθ(ot, â) and the ground
truth observation ot+1. â is treated as a latent variable during learning. Consequently, fθ is trained
using a form of expectation maximization [6]. Each training sample (ot, ot+1) is assigned to the
action that leads to the lowest loss under the current forward model. The function fθ is optimized to
minimize the loss under the current latent action assignment. More formally, the loss for each sample
(ot, ot+1) is: L(ot, ot+1) := minâ∈Â l (fθ(ot, â), ot+1). We minimize

∑
(ot,ot+1)∈D L(ot, ot+1)

over the dataset to learn fθ.

Latent action ât for observation pairs (ot, ot+1) are obtained from the learned function fθ as:
argminâ∈Â l (fθ(ot, â), ot+1). Choice of the function fθ and loss l vary depending on the problem.
We use L2 loss in the observation space (low-dimensional states, or images).

4.2 Q-learning with Latent Actions

Latent actions mined from Section 4.1 allow us to complete the given (ot, ot+1, rt) tuples into
(ot, ât, ot+1, rt) quadruples for use in Q-learning [45]. As our actions are discrete we can easily
adopt any of the existing Q-learning methods for discrete action spaces (e.g. [26]). Though, we
note that this Q-learning still needs to be done in an offline manner from pre-recorded state-only
experience. While we adopt the most basic Q-learning in our experiments, more sophisticated versions
that are designed for offline Q-learning (e.g. [21, 14]) can be directly adopted, and should improve
performance further. Value functions are obtained from the Q-functions as V (s) = maxâ∈Â Q(s, â).

4.3 Behaviors from Value Functions

Given a value function, our next goal is to derive behaviors from the learned value function. In
general, this requires access to the transition function of the underlying MDP. Depending on what
assumptions we make, this will be done in the following two ways.

Densified Reinforcement Learning. Learning a value function from state-only experience can be
extremely valuable when a dense reward function for the underlying task is not readily available. In
this case, using the learned value function can densify sparse reward functions, making previously
intractable RL problems solvable. Specifically, we use the value function to create a potential-based
shaping function F (s, s′) = V (s′) − V (s), based on [27], and construct an augmented reward
function r′(s, a, s′) = r(s, a, s′) + F (s, s′). Our experiments show that using this densified reward
function speeds up behavior acquisition.

Domain Specific Low-level Controllers. In more specific scenarios, it may be possible to employ
hand designed low-level controllers in conjunction with a model that can predict the next state s′

on executing any of low-level controllers. In such a situation, behavior can directly be obtained by
picking the low-level controller that conveys the agent to the state s′ that has the highest value under
the learned V (s). Such a technique was used by [8]. We show results in their setup.

5 Experiments

We design experiments to assess the quality of value functions learned by LAQ from undirected
state-only experience. We do this in two ways. First, we measure the extent to which value functions
learned with LAQ without ground truth information agree with value functions learned with Q-
learning with ground truth action information. This provides a direct quality measure and allows us
to compare different ways of arriving at the value function: other methods in the literature (D3G
[10]), and simpler alternatives of arriving at latent actions. Our second evaluation measures the
effectiveness of LAQ-learned value functions for deriving effective behavior in different settings:
when using it as a dense reward, when using it to guide low-level controllers, and when transferring
behavior across embodiments. Where possible, we compare to behavior cloning (BC) with privileged
ground truth actions. BC with ground truth actions serves as an upper bound on the performance
of state-only imitation learning methods (BCO from [40], ILPO from [11], etc.) and allows us to
indirectly compare with these methods.

Test Environments. Our experiments are conducted in five varied environments: the grid world
environment from Section 3, the Atari game Freeway from [5], 3D visual navigation in realistic
environments from [8, 33], and two continuous control tasks from [13]’s D4RL: Maze2D (2D

5

Freeway2D Grid World 3D Visual Nav. 2D Maze Kitchen

S

G

Figure 3: We experiment with five environments: 2D Grid World, Freeway (Atari), 3D Visual Navigation,
Maze2D (2D Continuous Control), and FrankaKitchen. Top right corner of Maze2D and FrankaKitchen, shows
the embodiments for cross-embodiment transfer (ant and hook, respectively).

Table 1: We report Spearman’s correlation coefficients for value functions learned using various methods with
DQN, against a value function learned offline using ground-truth actions (DQN for discrete action environments,
and DDPG for continuous action environments). The Ground Truth Actions column shows Spearman’s correlation
coefficients between two different runs of offline learning with ground-truth actions. See Section 5.1. Details on
model selection in Section A.8.

Environment D3G Single Action Clustering Clustering (Diff) Latent Actions Ground Truth Actions

2D Grid World 0.959 0.093 0.430 1.000 0.985 1.000
Freeway – (image input) 0.886 0.945 0.902 0.961 0.970
3D Visual Navigation – (image input) 0.641 0.722 0.827 0.927 0.991

2D Continuous Control 0.673 0.673 0.613 0.490 0.844 0.851
Kitchen Manipulation 0.854 0.858 0.818 0.815 0.905 0.901

continuous control navigation), and FrankaKitchen (dexterous manipulation in a kitchen). For
Maze2D and FrankaKitchen environments, we also consider embodiment transfer, where we seek
to learn policies for an ant and a hook respectively from the observation-only experience of a point
mass and the Franka arm. Together, these environments test our approach on factors that make
policy learning hard: continuous control, high-dimensional observations and control, complex real
world appearance, 3D geometric reasoning, and learning across embodiments. See visualizations in
Figure 3, details in Section A.4.

Experimental Setup For each setting, we work with a pre-collected dataset of experience in the
form of state, next state and reward triplets, (ot, ot+1, rt). We use our latent-variable forward model
(Section 4.1) and label triplets with latent actions to obtain quadruples (ot, ât, ot+1, r). We perform
Q-learning on these quadruples to obtain value functions V (s), which are used to acquire behaviors
either through densified RL by interacting with the environment, or through use of domains-specific
low-level controllers. We use the ACME codebase [17] for experiments.

Latent Action Quality. In line with the theory developed in Section 3, we want to establish how
well our method learns a refinement of the underlying action space. To assess this, we study the state-
conditioned purity of the partition induced by the learned latent actions. It computes the proportion
of the most frequent action of all ground truth actions mapped to a latent action (for any given state).
Overall, our method is effective at finding refinement of the original action space. It achieves higher
state-conditioned purity than a single action and clustering. In high-dimensional image observation
settings, it surpasses baselines by a wide margin. More details in Section A.6.

5.1 Quality of Learned Value Functions

We evaluate the quality of the value functions learned through LAQ. We use as reference the value
function Vgt-act, obtained through offline Q-learning (DDPG for continuous action cases) with true
ground truth actions i.e. (ot, at, ot+1, rt).4 For downstream decision making, we only care about
the relative ordering of state values. Thus, we measure the Spearman’s rank correlation coefficient
between the different value functions. Table 1 reports the Spearman’s coefficients of value functions
obtained using different action labels: single action, clustering, latent actions (ours), and with ground

4Offline DDPG in the FrankaKitchen environment was unstable. To obtain a reference value function, we
manually define a value function based on the distance between the end-effector and the microwave handle
(lower better), and the angle of the microwave door (higher better). We use this as the reference value function.

6

0 5000 10000 15000 20000
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Re

tu
rn

Gridworld

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

2D Continuous Navigation

0.00 0.25 0.50 0.75 1.00 1.25
Environment Steps 1e8

0
5

10
15
20
25
30

Re
wa

rd

Freeway

0 50000 100000 150000 200000
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

2D Continuous Navigation

Sparse Reward
Densified Reward (Ours)

BC (ground truth actions)+RL
Densified Reward (Ours + BCQ)

Densified Reward (D3G)
Densified Reward (TD(0))

BC (ground truth actions)

Figure 4: We show learning curves for acquiring behavior using learned value functions. We compare densified
RL (Section 4.3) with sparse RL and BC/BC+RL. See Section 5.2 for more details. Results are averaged over 5
seeds and show ± standard error.

truth actions. We also report Spearman’s correlations of value functions produced using D3G [10]. In
all settings we do Q-learning over the top 8 dominant actions, except for Freeway, where using the
top three actions stabilized training.

Our method out performs all baselines in settings with high-dimensional image observations (3D
Visual Navigation, Freeway). In state based settings, where clustering state differences is a helpful
inductive bias, we see that our method is still on-par with, or superior to clustering state differences
and even D3G, which predicts state differences.

5.2 Using Value Functions for Downstream Tasks

Our next experiments test the utility of LAQ-learned value functions for acquiring goal-driven
behavior. We first describe the 3 settings that we use to assess this, and then summarize our
takeaways.

• Using value functions as dense reward functions. We combine sparse task reward with the
learned value function as a potential function (Section 4.3). We scale up the sparse task rewards by
a factor of 5 so that behavior is dominated by the task reward once policy starts solving the task.
Figure 4 measures the learning sample efficiency. We compare to only using the sparse reward,
behavior cloning (BC) with ground truth actions, and BC followed by spare reward RL.

• Using value functions to learn behavior of an agent with a different embodiment. Decoupling
the learning of value function and the policy has the advantage that learned value functions can be
used to improve learning across embodiment. We demonstrate this, we keep the same task, but
change the embodiment of the agent in Maze2D and FrankaKitchen environments. Note that we do
not assume access to ground truth actions in these experiments either. For Maze2D, the point-mass
is replaced with a 8-DOF quadrupedal ant. For FrankaKitchen, the Franka arm is replaced with
a position-controlled hook. We may need to define how we query the value function when the
embodiment (and the underlying state space) changes. For the ant in Maze2D, the location (with
0 velocity) of the ant body is used to query the value function learned with the point-mass. For
the hook in FrankaKitchen, the value function is able to transfer directly as both settings observe
end-effector position and environment state. We report results in Figure 5.

• Using value functions to guide low-level controllers. Learned value functions also have the
advantage that they can be used directly at test time to guide the behavior of low-level controllers.
We do this experiment in context of 3D visual navigation in a scan of a real building and use the
branching environment from [8]. We follow their setup and replace their value functions with ones
learned using LAQ in their hierarchical policy, and compare the efficiency of behavior encoded by
the different value functions.

LAQ value functions speed up downstream learning. Learning plots in Figure 4 show that LAQ-
learned value functions speed up learning in the different settings over learning simply with sparse
rewards (orange line vs. blue line). In all settings except Freeway, our method not only learns more
quickly than sparse reward, but converges to a higher mean performance.

LAQ discovers stronger behavior than imitation learning when faced with undirected expe-
rience. An advantage of LAQ over other imitation-learning based methods such as BCO [40] and
ILPO [11] is LAQ’s ability to learn from sub-optimal or undirected experience. To showcase this,
we compare the performance of LAQ with behavior cloning (BC) with ground truth actions. Since

7

Table 2: We report Spearman’s correlation coefficients for value functions learned using either DQN or BCQ,
against a value function learned offline using BCQ with ground-truth actions. The Ground Truth Actions column
shows Spearman’s correlation coefficients between two different runs of offline learning with ground-truth
actions. See Section 5.1.

Environment Single Action Clustering Clustering (Diff) Latent Actions Ground Truth Actions

2D Continuous Control (DQN) 0.664 0.431 0.312 0.807 0.765
2D Continuous Control (BCQ) 0.710 0.876 0.719 0.927 0.990

0 1 2 3 4
Environment Steps 1e5

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

2D Navigation Transfer to Ant
Sparse Reward
Densified Reward (Ours)
Densified Reward (Ours + BCQ)
Densified Reward (D3G)
Densified Reward (TD(0))

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Kitchen Manipulation Transfer to Hook

Figure 5: Learning curves for acquiring behavior with value func-
tions across embodiment. Results averaged over 50 seeds and show
± standard error.

Gfar

Policy Evaluation

Latent Q-learning

Gnear

Vone-act

Vlatent-act

Interaction
Samples SPL

Vone-act [8] 0 0.53
Vcluster-act 0 0.57
Vlatent-act 0 0.82
Vinverse-act [8] 40K 0.95

Figure 6: Visualization of trajectories
and SPL numbers in the 3D visual navi-
gation environment.

BCO and ILPO recover ground truth actions to perform behavior cloning (BC), BC with ground
truth actions serves as an upper bound on the performance of all methods in this class. Learning
plots in Figure 4 shows the effectiveness of LAQ over BC and BC followed by fine-tuning with
sparse rewards for environments where the experience is undirected (Maze2D, and GridWorld). For
Freeway, the experience is fairly goal-directed, thus BC already works well. A similar trend can be
seen in the higher Spearman’s coefficient for LAQ vs. Vone-act in Table 1. LAQ discovers stronger
behavior than imitation learning when faced with undirected data.

LAQ is compatible with other advances in batch RL. Although LAQ uses the most basic Q-
Learning as our offline value learning method, it is compatible with recent more advanced offline
RL value-learning methods (such as CQL [21] and BCQ [14]). We validate by simply swaping to
using (discrete) BCQ with our latent actions. Figures. 4 and 5 show that LAQ with BCQ is the
strongest method, outperforming ours with DQN, and D3G, on Maze2D and embodiment transfer
environments. Analysis of Spearman’s correlations in Table 2 shows the same trend as before with
latent actions: better than single actions, and clustering variants. Note also that use of BCQ leads to
value functions with better Spearman’s correlations than DQN.

LAQ value functions allow transfer across embodiments. Figure 5 shows learning plots of agents
trained with cross-embodiment value functions. LAQ-densified rewards functions, speed-up learning
and consistently guide to higher reward solutions than sparse task rewards, or D3G.

LAQ compares favorably to D3G. We compare LAQ and D3G (a competing state-only method) in
different ways. D3G relies on generating potential future states. This is particularly challenging for
image observations, and D3G doesn’t show results with image observations. In contrast, LAQ maps
state transitions to discrete actions, and hence works with image observations as our experiments
show. Even in scenarios with low-dimensional state inputs, LAQ learns better value functions than
D3G, as evidences by Spearman’s correlations in Table 1, and learning plots in Figure 4 and Figure 5.

LAQ value functions can guide low-level controllers for zero-shot control: We report the SPL
for 3D navigation using value functions combined with low-level controllers in Figure 6. We report
the efficiency of behavior induced by LAQ learned value functions as measured by the SPL metric
from [3] (higher is better). The branching environment has two goal states, one optimal and one
sub-optimal. The demonstrations there-in were specifically designed to emphasize the utility of

8

knowing the intervening actions. Simple policy evaluation leads sub-optimal behavior (SPL of 0.53)
and past work relied on using an inverse model to label actions [8] to derive better behavior. This
inverse model itself required 40K interactions with the environment for training, and boosted the
SPL to 0.95. LAQ is able to navigate to the optimal goal (w/ SPL 0.82) but without the 40K online
interaction samples necessary to acquire the inverse model. It also performs better than clustering
transitions, doing which achieves an SPL of 0.57. The improvement is borne out in visualizations in
Figure 6. LAQ correctly learns to go to the nearer goal, even when the underlying experience came
from a policy that preferred the further away goal.

6 Discussion

Our theoretical characterization and experiments in five representative environments showcase the
possibility and potential of deriving goal-directed signal from undirected state-only experience. Here
we discuss some scenarios which are fundamentally hard, and some avenues for future research.

Non-deterministic MDPs. Our theoretical result relies on a refinement where state-action transition
probabilities are matched. However, the latent action mining procedure in LAQ results in deterministic
actions. Thus, for non-deterministic MDPs (where executing the same action in the same state takes
the agent to different next state), LAQ will be unable to achieve a strict refinement, leading to
sub-optimal value functions. However, note that this limitation isn’t specific to our method, but
applies to any deterministic algorithm that seeks to learn from observation only data. We formalize
this concept and provide a proof in Section A.2.

Constraining evaluation of V (s) to within its domain. LAQ learns a value function V (s) over the
set of states that were available in the experience dataset, and as such its estimates are only accurate
within this set. In situations where the experience dataset doesn’t span the entire state space, we may
need to assess where the predictions of V (s) are valid to avoid degenerate solutions due to OOD
observations. We discuss a density based model solution we used for this problem in Section A.4.

Offline RL Validation. Validation (e.g. when to stop training) is a known issue in offline RL [16].
Like other offline RL methods, LAQ suffers from it too. LAQ’s use of Q-learning makes it compatible
to recent advances [20] that tackle this validation problem.

7 Related Work

Our work focuses on batch (or offline) RL with state-only data using a latent-variable future prediction
model. We survey works on batch RL, state-only learning, and future prediction.

Batch Reinforcement Learning. As the field of reinforcement learning has matured, batch RL [22,
23] has gained attention as a component of practical systems. A large body of work examines
solutions the problem of extrapolation error in batch RL settings. Advances in these works are
complementary to our approach, as substantiated by our experiments with BCQ. A more detailed
discussion of batch RL methods can be found in Section A.0.

State-only Learning. Past works have explored approaches for dealing with the lack of actions
in offline RL when given goal-directed or undirected state-only experience. Works in the former
category rely on high quality behavior in the data, and suffer on sub-optimal data. Past work on state-
only learning from undirected experience relies on either domain knowledge or state reconstruction
and only show results with low dimensional states. See Section A.0 for continued discussion.

Future Prediction Models. Past work from [28, 2, 12] (among many others) has focused on building
action conditioned forward models in pixel and latent spaces. Yet other work in computer vision
studies video prediction problems [47, 7]. Given the uncertainty in future prediction, these past
works have pursued variational (or latent variable) approaches to make better predictions. Our latent
variable future model is inspired from these works, but we explore its applications in a novel context.

Latent MDP Learning One way to interpret our method is that of learning an approximate MDP
homomorphism [39, 32]. Other works have explored learning latent homorphic MDPs. These
methods tend to focus on learning equivalent latent state spaces [24, 15]. Most similarly to our work
[44] also learns a latent action space, but relies on ground truth action data to do so.

9

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline

reinforcement learning. In International Conference on Machine Learning, pages 104–114. PMLR, 2020.
18, 19

[2] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. In NeurIPS, 2016. 9

[3] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, and Amir Zamir. On evaluation
of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018. 8

[4] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning, 2021. 13

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013. 5

[6] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006. 5

[7] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for video prediction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7608–7617, 2019. 9

[8] Matthew Chang, Arjun Gupta, and Saurabh Gupta. Semantic visual navigation by watching youtube videos.
In NeurIPS, 2020. 5, 7, 8, 9, 13, 18, 19, 22

[9] Ashley D. Edwards and Charles L. Isbell. Perceptual values from observation. CoRR, abs/1905.07861,
2019. 2, 13

[10] Ashley D. Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet,
Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q(s, s′) with deep deterministic dynamics
gradients. In ICML, 2020. 2, 5, 7, 13

[11] Ashley D Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L Isbell. Imitating latent policies
from observation. In ICML, 2019. 5, 7, 13

[12] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. arXiv preprint arXiv:1605.07157, 2016. 9

[13] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. 5, 13, 18

[14] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without explo-
ration. In ICML, 2019. 5, 8, 13

[15] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in markov
decision processes. Artificial Intelligence, 147(1-2):163–223, 2003. 9

[16] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold, Jerry
Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas Heess, and Nando deFreitas.
Rl unplugged: Benchmarks for offline reinforcement learning, 2020. 9, 13

[17] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman,
Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A research framework for
distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020. 6

[18] Ashish Kumar, Saurabh Gupta, and Jitendra Malik. Learning navigation subroutines by watching videos.
In CoRL, 2019. 13

[19] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. In NeurIPS, 2019. 13

[20] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline
model-free robotic reinforcement learning. In CoRL, 2021. 9

[21] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020. 5, 8, 13

10

[22] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012. 2, 9

[23] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 2, 9

[24] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
mdps. ISAIM, 4:5, 2006. 9

[25] Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Fei-Fei Li, Animesh Garg, and Dieter
Fox. IRIS: implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. In ICRA, 2020. 13

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013. 5

[27] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, pages 278–287. Morgan Kaufmann, 1999. 5

[28] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. arXiv preprint arXiv:1507.08750, 2015. 9

[29] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation. CoRR, abs/2004.04650, 2020. 13

[30] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. CoRR, abs/2012.11547, 2020. 13

[31] Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. arXiv preprint arXiv:1909.04630, 2019. 13

[32] Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework for non-exact
minimization in markov decision processes. 2004. 9

[33] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian
Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A platform for
embodied AI research. In ICCV, 2019. 5, 18, 19

[34] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards for imitation learning.
In RSS, 2017. 13

[35] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2robot: Learning
manipulation concepts from instructions and human demonstrations. In RSS, 2020. 13

[36] Avi Singh, Larry Yang, Chelsea Finn, and Sergey Levine. End-to-end robotic reinforcement learning
without reward engineering. In RSS, 2019. 13

[37] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the wild: Learning 6dof
closed-loop grasping from low-cost demonstrations. Robotics and Automation Letters, 2020. 13

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. 2, 14

[39] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approximate mdp
homomorphisms. Advances in Neural Information Processing Systems, 2008. 9

[40] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In IJCAI, 2018. 5, 7,
13

[41] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation. CoRR,
abs/1807.06158, 2018. 13

[42] Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial imitation learning from state-only demonstra-
tions. In AAMAS, pages 2229–2231. International Foundation for Autonomous Agents and Multiagent
Systems, 2019. 13

[43] Faraz Torabi, Garrett Warnell, and Peter Stone. Imitation learning from video by leveraging proprioception.
arXiv preprint arXiv:1905.09335, 2019. 13

11

[44] Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max Welling. Plannable approximations to MDP
homomorphisms: Equivariance under actions. In International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, 2020. 9

[45] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989. 2, 3, 5, 15

[46] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor learning
and planning. In Conference on Robot Learning, pages 40–52. PMLR, 2018. 13

[47] Tianfan Xue, Jiajun Wu, Katherine L Bouman, and William T Freeman. Visual dynamics: Probabilistic
future frame synthesis via cross convolutional networks. arXiv preprint arXiv:1607.02586, 2016. 9

12

A Appendix

A.0 Related Work Continued

Discussion continued from Section 7:

Batch Reinforcement Learning. In recent times, [16] and [13] propose datasets and experimental
setups for studying offline RL problems. A large body of work examines solutions to the batch RL
problem. Researchers have identified that extrapolation error, the phenomenon in which batch RL
algorithms incorrectly estimate the value of states/actions not present in the training batch, is a major
challenge, and have proposed methods to tackle it, e.g. BCQ [14], BEAR [19], IRIS from [25], and
CQL [21] among many others. In contrast to these model-free methods, [4, 31, 30] learn a forward
predictive model from the batch data and use it for model predictive control. These methods all
approach the traditional batch RL problem, while we consider a different and harder setting in which
the action labels are unavailable. Aforementioned advances in offline RL are complementary to our
work. Offline value learning approaches (such as CQL and BCQ) can serve as a drop-in replacement
for Q-learning in our pipeline and improve our results. In fact, our experiments with BCQ substantiate
this.

State-only Learning. In line of work which studies learning form goal-directed state-only experience,
researchers use imitation learning-based techniques [29, 40, 11, 18], learn policies that match the
distribution of visited states [41, 42, 43], or use demonstrations to construct dense reward functions
[35, 34, 36, 46, 9]. These methods make strong assumptions about the quality and goal-directed
nature of the experience data, and suffer in performance when faced with low-quality or undirected
experience.

Instead of goal-directed experience our work tackles the problem of learning from undirected
experience. Past work in this area employs Q-learning to learn optimal behavior from sub-optimal
data [8, 37, 10]. [8] and [37] use domain specific insights. [10] rely on being able to generate the
next state and only demonstrate results in environments with low-dimensional states. Instead, our
work maps transition tuples to discrete latent actions and can thus easily work with high-dimensional
observations such as RGB images.

13

A.1 Proofs

Proof. Proof for Lemma 3.2. We will start by showing that for any policy πM̂ on M̂ , there exists a
policy πM on M such that V πM̂

M̂
(s) = V πM

M (s), for all s.
To do this we need to introduce the idea of fundamental actions, which are classes of actions which
have the same state and reward transition distributions in a given state. If we have a fundamental
action b, corresponding to some state and reward distributions, let α(b, s) ⊆ A give the set of actions
in A that have the matching state and reward transition distributions,

∀
a∈α(b,s)

p(s′, r|s, a) = p(s′, r|s, α(b, s)1).

Similarly, let α̂(b, s) ⊆ Â give the set of actions in Â belonging to b in state s. In any given state,
there are at most min(|A|, |Â|) fundamental actions for M and the union of all actions belonging
to all fundamental actions gives the set of actions that make up the original action space. For our
MDP let’s denote B(s) as the set of fundamental actions in the state s for M , and B̂(s) as the set of
fundamental actions in the state s for M̂ . Let β(s, a), and β̂(s, a) be functions which return the set
of actions which correspond to the same fundamental action containing as a in state s for M , and M̂
respectively. This means,⋃

b∈B(s)

α(b, s) = A, ∀
b∈B(s)

∀
b′ ̸=b

α(b, s) ∩ α(b′, s) = ∅, and ∀
a∈A,s

∃b∈B(s)|a ∈ α(b, s). (1)

With this notation out of the way we can construct a policy πM̂ from πM , which achieves the same
value in M̂ as πM does in M . We do this by constructing πM̂ such that the probability distributions
over each fundamental action is equivalent. We define this policy as

πM (a|s) = 1

|β(s, a)|
∑

â∈β̂(s,a)

πM̂ (â|s).

Following [38] we can define the value function for a given policy as

V πM

M (s) = EπM
[Gt|St = s],

V πM

M (s) =
∑
a∈A

πM (a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γV πM

M (s′)
]
.

From the properties in Eq. 1, we know a sum over fundamental actions will count each action exactly
once, so we can write this sum as

V πM

M (s) =
∑

b∈B(s)

∑
a∈α(b,s)

πM (a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γV πM

M (s′)
]
. (2)

substituting in the constructed policy we have

V πM

M (s) =
∑

b∈B(s)

∑
a∈α(b,s)

[
1

|β(s, a)|
∑

â∈β̂(s,a)

πM̂ (â|s)
]∑

s′,r

p(s′, r|s, a)
[
r + γV πM

M (s′)
]
.

since the third sum is over β̂(s, a) with a ∈ α(b, s), we can rewrite this sum as over â ∈ α̂(b, s),
giving

V πM

M (s) =
∑

b∈B(s)

∑
a∈α(b,s)

[
1

|β(s, a)|
∑

â∈α̂(b,s)

πM̂ (â|s)
]∑

s′,r

p(s′, r|s, a)
[
r + γV πM

M (s′)
]
.

For the final sum, from the definition of fundamental actions, we know p(s′, r|s, a) =
p(s′, r|s, α(b, s)1) = p̂(s′, r|s, α̂(b, s)1), so we can rewrite that term as∑

s′,r

p̂(s′, r|s, α̂(b, s)1)
[
r + γV πM

M (s′)
]
.

14

Crucially, in the second sum (over a ∈ α(b, s)), β(s, a) is the same for all a ∈ α(b, s), so the term
in brackets can be treated as a constant. Similarly, since |B(s, a)| = |α(b, s)| we can simplify the
second sum leaving

V πM

M (s) =
∑

b∈B(s)

∑
â∈α̂(b,s)

πM̂ (â|s)
∑
s′,r

p̂(s′, r|s, α̂(b, s)1)
[
r + γV πM

M (s′)
]
.

This gives the definition of V πM̂

M̂
(s) using the same decomposition as equation Eq. 2, meaning

V πM

M (s) = V
πM̂

M̂
(s).

One can show the opposite direction, that a policy there exists a policy πM ′ for any policy πM such
V πM

M (s) = V
πM̂

M̂
(s), with a symmetric construction.

Note that Lemma 3.2 holds true regardless of the stochasticity of the policy, as the constructed policy
matches probability of the original policy for taking each fundamental action.

Proof for Theorem 3.1. Under the new MDP M̂ , Q-learning will learn the same optimal
value function value function as learned under MDP M , i.e. ∀sV ∗

M̂
(s) = V ∗

M (s).

Proof. This follows from Lemma 3.2 by contradiction. Assume there is a state s′ where V ∗
M̂
(s) ̸=

V ∗
M (s). Two cases must be considered. In the first case, V ∗

M̂
(s) > V ∗

M (s). We will notate the optimal

policy in M̂ as π̃∗
M̂

(i.e. V ∗
M̂

= V
π̃∗
M̂

M̂
) and the optimal policy in M as π∗

M . We know there must exist

a policy π̃∗
M such that V π̃∗

M

M (s) = V
π̃∗
M̂

M̂
(s) from Lemma 3.2. We arrive at a contradiction because

V
π̃∗
M

M (s) > V
π∗
M

M (s), so π∗
M could not have been the optimal policy on M . The other direction

follows a symmetric argument. If V
π̃∗
M̂

M̂
(s) < V

π∗
M

M (s), we know there must be a policy π∗
M̂

in M̂

such that V π∗
M

M (s) = V
π∗
M̂

M̂
(s). This implies V

π∗
M̂

M̂
(s) > V

π̃∗
M̂

M̂
(s), meaning that π̃∗

M̂
could not have

been the optimal policy. Since Q-learning is known to converge to the optimal value function [45],
Q-learning on M̂ will converge to the original value function V ∗

M .

15

A.2 State Only Learning From Stochastic MDPs

Here we will briefly prove that problem of deducing the optimal value function of an MDP M , from
some state-only experience dataset D, cannot be solved in general for non-deterministic MDPs. We
notate D as the space of all complete state-only datasets, and V as the space of all value functions. By
complete state-only dataset, we mean datasets in which all possible transition triples (s, s′, r) appear.
Note that exactly one complete dataset exists for each MDP. We denote DM as the complete dataset
corresponding to an MDM M .

In short, the idea is to construct a single state-only dataset which ambiguously could have been
produced from two different MDPs which have different optimal value functions. Since no function
deterministic function can model two outputs from the same input, no such function can exist.
Theorem A.1. For any function f : D → V which maps from the set of of state-only datasets, D,
to a set of value functions. There exists some MDP M , with corresponding dataset DM such that
f(D) ̸= V ∗

M .
∄f | ∀Mf(DM) = V ∗

M .

Proof. We proceed by contradiction, assume any f : D→ V such that

∀Mf(DM) = V ∗
M .

If we can construct M1 and M2 such that V ∗
M1
̸= V ∗

2 , and D such that D = DM1 = DM2 , then f
cannot produce the correct value function for f(D) in all cases, from the definition of a function. We
will now show a very simple construction which exhibits this property. Consider an MDP M1, with 3
states, s1, s2, st, and 2 actions a1, a2. st is terminal, and gives reward 1, other states give reward 0.
The transition dynamics of the two actions are given below.

Table: a1 transitions for M1

s1 s2 st
s1 0 1 0
s2 0 0 1

Table: a2 transitions for M1

s1 s2 st
s1 0 0 1
s2 1 0 0

For simplicity, assume M1 has a discount factor of 0.9. This means V ∗(s1) = V ∗(s2) = 1.

We define M2 as identical to M1, only with stochastic transitions.
Table: a1 transitions for M2

s1 s2 st
s1 0 1 0
s2 0 0 1

Table: a2 transitions for M2

s1 s2 st
s1 0.9 0.1
s2 1 0 0

In this MDP, with a discount factor of 0.9, V ∗(s2) = 1, but V ∗(s1) = 0.1 + 0.9 ∗ 0.9 = 0.91.

Since both M1 and M2 share the same states, actions, and possible transitions, DM1 = DM2 . So we
have satisfied our condition that D = DM1

= DM2
, and V ∗

M1
̸= V ∗M2. Thus, no f can model the

value functions for both MDPs in general.

16

A.3 Grid World Behavior vs. Purity

Figure S7 plots the MSE in value function and the proportion of states with correct implied actions as
a function of the noise in the action labels.

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
State based purity

0.000

0.005

0.010

0.015

0.020

M
SE

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
State based purity

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n
of

 c
or

re
ct

 a
ct

io
ns

Figure S7: We plot correctness of value function estimate and behavior as a function of state-based purity of the
intervening actions used for Q-learning. Left plot shows the mean squared error (lower is better) between the
obtained value function and the optimal value function. Right plot shows fraction of states in which the learned
value function induces the optimal action (higher is better). Both value function and behaviors become worse as
state-based purity decreases.

17

A.4 Environment Details

2D Grid World. We use the environment and data from Section 3.2. We use the (x, y) coordinates
as our state for this environment. We use a multi-layer perceptron for fθ and L2 loss for l.

2D Continuous Control Navigation. We use the Maze2D data from D4RL [13]. Observation space
here is (x, y, vx, vy) i.e. location and velocity of the agent, and action space is force along x and y
directions. We use a frame skip of 3. We use a multi-layer perceptron for fθ and L2 loss for l. In
the embodiment transfer variant, we swap the agent for a 4-legged ant, also from D4RL. The ant
embodiment is far more challenging to control, with an 8-d action space and 29-d observation space.

Atari Game. We work with Freeway. We generated our own data using the protocol described
in [1]. We turned off sticky actions and store frames both at the default resolution (84× 84) and full
resolution (224 × 224). Other settings are same as is typical: stack last 4 frames to represent the
observations, and use frame-skip of 4. We use a convolutional encoder-decoder model for fθ and
predict raw future observations. We use L2 distance in the pixel space as our loss function l.

3D Visual Navigation. We work with the branching environment from [8] in the AI Habitat
Simulator [33], and use the provided dataset of first-person trajectories as our pre-recorded experience
dataset. Following [8], we employ low-level controllers for deriving behaviors from the learned value
functions. We use a convolutional encoder-decoder for fθ, and L2 loss in pixel space as l.

Kitchen Manipulation. In this task a 9-DOF Franka arm can interact with several different objects
physically simulated kitchen. The observations are 24-d, containing the end-effector position and
state of various objects in the environment (microwave door angle, kettle position, etc.). The action
space represents the 9-d joint velocity. In cross-embodiment experiments we replace the Franka arm
with a hook. The observation space remains the same while the action space becomes 3-d position
control.

For experiments in kitchen manipulation, we add an additional component to the reward computation
to incentivize behavior to remain within the region of the state space covered by the demonstrations
(where the learned value function is in-distribution). To do this, we build a density model over the
end effector position using a 2 component Gaussian mixture model. If a state s has a less than 1%
probability according to the GMM density model, then we assign V (s) = 0, for the update described
in Section 5.2. We apply this shaping to both ours and D3G in Figure 4. We give sparse reward the
same benefit of this shaping by giving reward −1 outside of the GMM distribution, and 0 inside.
Sparse task reward remains the same.

For all environments, we throw out the provided action labels when learning our models.

18

A.5 Data Collection

2D Grid World. The setting for this experiment is a 6 × 6 grid with 8 actions, corresponding to
moving in the 4 cardinal directions and 4 diagonal directions. The agent starts in the top left (0,0),
and gets reward 0 everywhere, except for in the bottom right, (5,5). Reaching the bottom right gives
the agent reward 1 and terminates the episode. In the starting square (0,0), the agent has probability
0.5 of moving right, and probability 0.5 of moving down. When the agent is on the top or bottom
edge of the maze (row = 0 or row = 5) it moves right with probability 0.9, and takes a random action
with probability 0.1. When it is on the left or right edge of the grid (column = 0 or column = 5), it
moves down with probability 0.9 and takes a random action with probability 0.1. Otherwise, it is in
the interior of the grid, where it takes an action away from the goal (randomly chosen from: up, left,
or up-left) with probability 0.9, and one of the remaining actions otherwise (randomly chosen from:
down, right, down-right, up-right, down-left). This policy is rolled out for 20,000 policies to generate
the data for methods described in main paper Section 3.2 and Figure 1.

Atari Game. Data for the Freeway environment had to be additionally collected, as native high
resolution resolution images of the episodes from [1] are not readily available. For this, we re-
generated the data using the protocal described in [1], without sticky actions. Then, the high resolution
data was collected by taking the action sequences from the re-generated dataset and executing them
in an emulator, while storing the native resolution images. Because we re-generated the data without
sticky actions, the high resolution episodes are perfect recreations of the low resolution episodes.

Visual Navigation. The data used for the visual navigation experiment was generated using the same
protocol as [8]. Agents are tasked to reach one of two goals (Gnear and Gfar) in a visually realistic
simulator [33]. Navigating to Gnear is the optimal path as it is nearer to the agent’s starting location.

The dataset contains 3 types of trajectories, T1, T2, and T3, representing 50%, 49.5%, and 0.5% of
the trajectories in the dataset respectively . T1 takes a sub-optimal path to Gnear, T3 takes the optimal
path to Gnear, and T2 navigates to Gfar.

2D Continuous Control (Maze2D) We use the Maze2D dataset from D4RL as is.

Kitchen Manipulation. The data used for the Kitchen Manipulation environment comes from the
partial version of the D4RL FrankaKitchen dataset. To facilitate cross-embodiment transfer we
convert the state representation to contain end-effector location instead of joint angles.

19

A.6 Latent Action Quality

We first measure the effectiveness of our latent action mining process by judging the extent to
which the induced latent actions are a refinement of the original actions. We measure this using the
state-conditioned purity of the partition induced by the learned latent actions.

In a given state, for any latent action â, there must be some ground truth action which most frequently
mapped to â. We define the purity of â as the proportion of the most frequent action among all actions
mapped to â. For example, in a given state s if a set of actions [0, 0, 0, 1, 2], were mapped to latent
action â, then 0 is the most frequent action mapped to â and thus the purity of â would be 0.6. For a
given state, the purity of an entire set of latent actions is the weighted mean of purity of individual
latent actions. Overall purity is the average of all state wise purities weighted by how often the states
appear in the dataset.

We extend this definition of state-conditioned purity to continuous or high-dimensional states by
measuring the validation accuracy of a function g that is trained to map the high-dimensional state
(or observation) s, and the associated latent action â to the actual ground truth action a. Training
such a function induces an implicit partition of the state space. Learning to predict the ground truth
action from the latent action â within this induced partition estimates the most frequent ground truth
action, and accuracy measures its proportion, i.e. purity. This exact procedure reduces to the above
definition for discrete state spaces, but also handles continuous and high-dimensional states well.
For continuous action spaces, we measure the mean squared error in action prediction instead of
classification accuracy.

Table S3 reports the purity (and MSE for continuous action environment) obtained by our proposed
future prediction method. For reference, we also report the purity obtained when using single action
that maps all samples into a single cluster, and 2 clustering methods that cluster either concatenation
of the two observations i.e. [ot+1; ot], or the difference between the two observations i.e. [ot+1 − ot].
We use 8 latent actions for all environments except the FrankaKitchen environment for which we use
64 because of its richer underlying action space.

In general, our forward models are effective at generating a latent action space that is a state-
conditioned refinement of the original action space. This is indicated by the improvement in state-
conditioned purity values over using a single action or naive clustering. For the 2D Grid World and
2D Continuous Navigation, clustering in the correct space (state difference vs. state concatenation)
works well as expected. But our future prediction model, which directly predicts st+1 and doesn’t
use any domain specific choices, is able to outperform the corresponding clustering method. We
also observe large improvements over all baselines for the challenging case of environments with
high-dimensional state representations: Freeway and 3D Visual Navigation.

Table S3: We report the state-conditioned action purity (higher is better, MSE for continuous action case where
lower is better), of latent actions for different approaches: single action, clustering concatenated observations,
clustering difference in observations, and the proposed future prediction models from Section 4.1. We note the
utility of the future prediction model for the challenging case of Freeway and 3D Visual Navigation environments.
See Section A.6 for a full discussion.

Environment Observation Action Purity Single Clustering Clustering Future
Space Space Metric Action [ot, ot+1] [ot+1 − ot] Prediction

2D Grid World xy location Discrete, 8 Purity (↑) 0.827 0.851 1.000 0.998
Freeway 210× 160 image Discrete, 3 Purity (↑) 0.753 0.778 0.773 0.907
3D Visual Navigation (Branching) 224× 224 image Discrete, 3 Purity (↑) 0.783 0.839 0.859 0.928

2D Continuous Control xy loc. & vel Continuous, 2 MSE (↓) 2.207 2.188 0.325 0.905
Kitchen Manipulation 24-d State Continuous, 8 MSE (↓) 0.015 0.015 0.015 0.014

20

A.7 Analysis of Learned Latent Actions

We analyze the latent actions learned for the Freeway environment.

We visualize our future prediction model’s predictions for the Freeway environment in Figure S8.
In line with our expectations, the one action future prediction model and the latent action future
prediction model are both able to reconstruct the background and the vehicles perfectly. At the same
time, the one action future prediction model fails to reconstruct the agent accurately, whereas the
latent action future prediction model is able to reconstruct the agent almost perfectly. This provides
evidence for the effectiveness of our proposed latent action mining approach at discovering pure
action groundings.

Ground Truth ot+1 With One Action With Latent ActionsGround Truth ot

Figure S8: We visualize the Freeway future prediction models’ reconstructions for ot+1. From left to right,
the ground truth ot, the ground truth ot+1, the reconstruction for ot+1 by the future prediction model with one
action, the reconstruction for ot+1 by the future prediction model with latent actions. The agent is circled in
each image.

Agent y-position

C
ha

ng
e

in
 A

ge
nt

 y
-p

os
iti

on

R
el

at
iv

e
to

 P
re

vi
ou

s
Fr

am
e

Figure S9: Visualization of the latent actions learned in
Freeway. X-axis is the agent’s y-position, y-axis is the
displacement of the agent (which is indicative of ground
truth action).

Furthermore, we visualize the learned latent ac-
tions for Freeway in Figure S9. In Freeway, the
agent can only move along the y-axis, and con-
sequently, the environment action space only has
three actions: move up, move down, and no-op.
This means that the agent’s y-displacement be-
tween the current frame and the previous frame
directly corresponds to the ground truth action
taken. In this visualization, we visualize the the
chosen latent action (by color: blue, orange, or
green) as a function of the agent’s y-position in
the current frame (x-axis) and the y-displacement
relative to the previous frame (y-axis). Note that
as mentioned in the paper, we learn the value func-
tions over the top three most dominant actions to
stabilize training; for this reason, the visualization
only consists of three latent actions.

Within each vertical region marked by the red bars, we see that the latent actions are split into
distinct clusters based on the agent’s y-displacement. Because the agent’s y-displacement directly
corresponds to the ground truth action taken, this indicates that given the agent’s y-position, the
learned latent actions encode information about the ground truth action. Hence, we qualitatively
confirm that the state-based purity of the latent actions is high.

21

A.8 Value Function Details

Value Function Model Selection The numbers reported in Table 1 are the 95th percentile Spearman’s
correlation coefficients over the course of training. If training is stable and converges, this corresponds
to taking the final value, and in the case that training is not stable and diverges, this acts as a form of
early stopping. We take the 95th percentile as opposed to the maximum to eliminate outliers.

Below we present visualizations of value functions learned from LAQ.

Freeway. We visualize the value functions learned using our latent actions for Freeway. Figure S10
plots the values over the course of an episode. In Freeway, the agent has to move vertically up and
down the screen to cross a busy freeway, receiving reward when it successfully gets to the other side.
In a single episode, the agent can cross the freeway multiple times; each time the agent makes it
to the other side, the agent’s location is reset to the original starting location, allowing the agent to
attempt to cross the freeway once again. For this reason, we see the value increase as the agent gets
closer to the other side of the road, and then drop as soon as its position resets to the starting location.
As evident, the peaks of the learned value function correspond highly to the environment reward.

Figure S10: We visualize the value predicted by our learned value function over the course of one episode of
Freeway. The red points correspond to when the agent receives a reward from the environment.

Figure S11: Visualization of the learned value function
for 3D Visual Navigation.

3D Visual Navigation. Figure S11 visualizes the
learned value map in the 3D Visual Navigation
branching environment from [8]. As depicted in
Figure 6, there are two goals: Gnear and Gfar.
The figure on the right illustrates that the value
function learned by utilizing our latent actions
correctly assigns high value to the regions sur-
rounding the two goal locations, and low value
elsewhere. Additionally, we learn the value func-
tions with DQN using a dataset obtained by us-
ing a sub-optimal policy which prefers to go to
the goal further away rather than the goal close
by. Despite this sub-optimality, the learned value
function correctly assigns a higher value to the
nearby goal than the goal which is further away.

22

Figure S12: Visualization of the learned value function
for 2D Continuous Control.

2D Continuous Control. Figure S12 shows a
visualization of the value function learned using
latent actions for the 2D Continuous Control envi-
ronment. While the observation space of this envi-
ronment is (x, y, vx, vy) i.e. location and velocity
of the agent, we produce this visualization over
just the location of the agent. Based on just the
location of the agent, the optimal value function
would be a monotonically decreasing function as
the distance from the goal location increases. In
this particular environment, the goal of the agent
is to get to the top-right corner of the maze. The
visualization shows that the learned value func-
tion produces high values around this goal region
at the top-right corner of the maze, and gradually
lower values the farther away you go. This fig-
ure visually is in line with our quantitative results
in Table 1 which show that the value function
learned using latent actions in the 2D Continuous Control environment highly correlates to that
learned using ground truth actions.

Microwave Door Angle (radians)

D
is

ta
nc

e
be

tw
ee

n
En

d-
eff

ec
to

r
an

d
M

ic
ro

w
av

e
D

oo
r H

an
dl

e

Figure S13: Visualization of the learned value function
in Kitchen Manipulation. The x-axis is the microwave
angle in radians, the y-axis is the distance between the
end-effector and the microwave door handle, with the
colors corresponding to the magnitude of the values.

Kitchen Manipulation. We visualize the values
as a function of both the angle that the microwave
door makes with respect to its starting state as
well as the distance between the end-effector and
the microwave door handle in Figure S13. The
task here is to open the microwave door: the agent
receives a binary reward when the angle that the
microwave door makes with respect to its start-
ing state (i.e. closed microwave door) is above a
threshold (approx. 0.7 radians), and zero other-
wise. As expected, we see that the predicted value
of a state increases as the angle of the microwave
door increases. The end-effector position does
not start out at the microwave door handle, but
rather is initialized a fixed distance away from
the handle. As a result, the agent must first move
the end-effector to the microwave door handle,
before interacting with the door handle to open it.
In addition to this, we hypothesize that as the dis-
tance between the end-effector and the microwave
door handle decreases, the predicted value should
increase. While not as obvious as the relation
between the microwave door angle and the value, we see some indication that as the distance between
the end-effector and the microwave door handle decreases, the value increases.

23

A.9 LAQ in Stochastic MDPs

We have conducted experiments on stochastic MDPs in the gridworld environment. Specifically, we
do this by adding sticky actions, such that with a certain probability (called the stickiness parameter),
the environment executes the previous action as opposed to the given action. We run LAQ with data
from this stochastic environment and examine a) purity of latent actions, b) quality of learned value
functions, and c) correctness of implied behavior.

20 40 60 80
Stickiness parameter

0.75

0.80

0.85

0.90

0.95

1.00

St
at

e-
ba

se
d

pu
rit

y

20 40 60 80
Stickiness parameter

0.94

0.95

0.96

0.97

0.98

0.99

Sp
ea

rm
an

's
rh

o

20 40 60 80
Stickiness parameter

0.96

0.98

1.00

1.02

1.04

Pr
op

or
tio

n
of

 c
or

re
ct

 a
ct

io
ns

20 40 60 80
Stickiness parameter

0.750

0.775

0.800

0.825

0.850

Av
er

ag
e

va
lu

e
of

 st
at

es

Latent actions
Ground truth actions

Figure S14: As a function of stochasticity in environment, we plot: state-based purity of the latent actions (top
left), Spearman’s rank correlation between LAQ learned value function and ground truth value function (top
right), correctness of implied behavior by the LAQ learned value function (bottom left), and average state-value
of LAQ learend value function, and the ground truth value function (bottom right).

As expected, Figure S14 (left) shows that the state-based purity of the learned latent actions falls off as
the stochasticity (stickiness) increases. However, these impure latent actions have little effect on the
Spearman’s rank correlation (top right). The Spearman’s rank correlation does decrease but remains
reasonably high even when the stickiness parameter is set to 95%. While the ordering of the values
of the different states doesn’t change by much, we note increasing amount of over-estimation in the
values (bottom right). This is expected as with increasing stochasticity, there is an increasingly large
gap between what LAQ thinks it can control, and what it can actually control. However, the behavior
implied by LAQ is still always correct (bottom left), as the over-estimation is uniform over all states.
Thus, it is possible to get good performance from LAQ in some stochastic environments. However,
it is possible to also construct simple scenarios where LAQ, and for that matter any deterministic
algorithm, will suffer as we describe in Section A.2.

24

A.10 Algorithm

Algorithm 1 LAQ

1: Given dataset D of (ot, ot+1, rt) triples
2: for each epoch do ▷ Latent Action Mining
3: for sampled batch (ot, ot+1, rt) ∼ D do
4: L(ot, ot+1) = minâ∈Â l(fθ(ot, â), ot+1)
5: θ ← θ − α∇θL(ot, ot+1) ▷ Section 4.1
6: end for
7: end for
8: let ĝ(ot, ot+1) = argminâ∈Â l(fθ(ot, â), ot+1)

9: D̂ = {(ot, ot+1, rt, ĝ(ot, ot+1)) | (ot, ot+1, rt) ∈ D} ▷ Latent Action Labeling
10: for each epoch do
11: for sampled batch (ot, ot+1, rt, â) ∼ D̂ do ▷ Q-learning with Latent Actions
12: Q-learning update to learn Q(s, â)
13: end for
14: end for
15: V (s) = maxâ∈Â Q(s, â)

25

