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Abstract

Offline reinforcement learning (RL) enables learning policies using pre-collected
datasets without environment interaction, which provides a promising direction to
make RL usable in real-world systems. Although recent offline RL studies have
achieved much progress, existing methods still face many practical challenges in
real-world system control tasks, such as computational restriction during agent
training and the requirement of extra control flexibility. Model-based planning
framework provides an attractive solution for such tasks. However, most model-
based planning algorithms are not designed for offline settings. Simply combining
the ingredients of offline RL with existing methods either provides over-restrictive
planning or leads to inferior performance. We propose a new model-based offline
planning framework, namely MOPP, which tackles the dilemma between the
restrictions of offline learning and high-performance planning. MOPP encourages
more aggressive trajectory rollout guided by the behavior policy learned from
data, and prunes out problematic trajectories to avoid potential out-of-distribution
samples. Experimental results show that MOPP provides competitive performance
compared with existing model-based offline planning and RL approaches.

1 Introduction

Recent advances in offline reinforcement learning (RL) have taken an important step toward applying
RL to real-world tasks. Although online RL algorithms have achieved great success in solving
complex tasks such as games [Mnih et al., 2013; Silver et al., 2017] and robotic control [Levine et al.,
2016], they often require extensive interaction with environment. This becomes a major obstacle for
real-world applications, as collecting data with an unmatured policy via environment interaction can
be expensive (e.g. robotics and healthcare) or dangerous (e.g. industrial control, autonomous driving).
Fortunately, many real-world systems are designed to log or have sufficient pre-collected historical
states and control sequences data. Offline RL tackles this challenge by training the agents offline
using the logged dataset without interacting with the environment. The key insight of recent offline
RL algorithms [Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Yu et al., 2020] is to
restrict policy learning stay “close” to the data distribution, which avoids the potential extrapolation
error when evaluating on unknown out-of-distribution (OOD) samples.

However, implementing offline RL algorithms on real-world robotics and industrial control problems
still faces some practical challenges. For example, many control agents have limited computational re-
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sources for policy learning, which require a light-weighted policy improvement procedure. Moreover,
industrial control tasks often require extra control flexibility, such as occasionally changing reward
signals due to altering system settings or certain devices, and involvement of state-based constraints
due to safety considerations (e.g. restrict policy to avoid some unsafe states). Most existing offline
RL algorithms need computationally extensive offline policy learning process on a fixed task and do
not offer any control flexibility.

Model-based planning framework provides an attractive solution to address the above challenges.
The system dynamics can be learned offline based on the prior knowledge in the offline dataset. The
policy optimization can be realized by leveraging model-predictive control (MPC) combined with a
computationally efficient gradient-free trajectory optimizer such as the cross-entropy method (CEM)
[Botev et al., 2013] or model-predictive path integral (MPPI) control [Williams et al., 2017]. The
planning process also allows easy integration with the change of reward signals or external state-based
constraints during operation, without requiring re-training agents as needed in typical RL algorithms.

Most model-based planning methods are designed for online settings. Recent studies [Wang and Ba,
2020; Argenson and Dulac-Arnold, 2021] have borrowed several ingredients of offline RL by learning
a behavior cloning (BC) policy from the data to restrain trajectory rollouts during planning. This
relieves OOD error during offline learning but unavoidably leads to over-restrictive planning. Limited
by insufficient expressive power, behavior policies learned using BC often fit poorly on datasets
generated by relatively random or multiple mixed data generating policies. Moreover, restricting
trajectory rollouts by sampling near behavior policies also impacts the performance of trajectory
optimizers (e.g. CEM, MPPI require reasonable state-action space coverage or diversity in order
to find good actions), and hinders the full utilization of the generalizability of the dynamics model.
Dynamic models may learn and generalize reasonably well in some low-density regions if the data
pattern is simple and easy to learn. Strictly avoiding OOD samples may lead to over conservative
planning which misses high reward actions.

We propose a new algorithmic framework, called Model-Based Offline Planning with Trajectory
Prunning (MOPP), which allows sufficient yet safe trajectory rollouts and have superior performance
compared with existing approaches. MOPP uses ensembles of expressive autoregressive dynamics
models (ADM) [Germain et al., 2015] to learn the behavior and dynamics from data to capture
better prior knowledge about the system. To enforce better planning performance, MOPP encourages
stronger exploration by allowing sampling from behavior policy with large deviation, as well as
performing the greedy max-Q operation to select potentially high reward actions according to the
Q-value function evaluated from the offline dataset. At the same time, to avoid undesirable OOD
samples in trajectory rollouts, MOPP prunes out problematic trajectories with unknown state-action
pairs detected by evaluating the uncertainty of the dynamics model. These strategies jointly result
in an efficient and flexible algorithm that consistently outperforms the state-of-the-art model-based
offline planning algorithm MBOP [Argenson and Dulac-Arnold, 2021], and also provides competitive
performance as well as much better control flexibility compared with existing model-based RL
approaches.

2 Related Work

2.1 Offline reinforcement learning

Offline RL focuses on the setting that no interactive data collection is allowed during policy learning.
The main difficulty of offline RL is the distributional shift [Kumar et al., 2019], which occurs when
the distribution induced by the learned policy deviates largely from the data distribution. Policies
could make counterfactual queries on unknown OOD actions, causing overestimation of values that
leads to non-rectifiable exploitation error during training.

Existing offline RL methods address this issue by following three main directions. Most model-free
offline RL algorithms constrain the learned policy to stay close to a behavior policy through deviation
clipping [Fujimoto et al., 2019] or introducing additional distributional divergence penalties (e.g. KL
divergence or MMD) [Wu et al., 2019; Kumar et al., 2019; Jaques et al., 2019]. Other model-free
offline RL algorithms instead learn a conservative, underestimated value function by modifying
standard Bellman operator to avoid overly optimistic value estimates on OOD samples [Kumar et al.,
2020; Liu et al., 2020]. Model-based offline RL methods like MOPO [Yu et al., 2020] and MOReL
[Kidambi et al., 2020], on the other hand, incorporate reward penalty based on the uncertainty of
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the dynamics model to handle the distributional shift issue. The underlying assumption is that the
model will become increasingly inaccurate further from the behavior distribution, thus exhibits larger
uncertainty. All these algorithms require a relatively intensive policy learning process as well as
re-training for novel tasks, which make them less flexible for real-world control systems.

2.2 Model-based planning

Model-based planning framework provides a more flexible alternative for many real-world control
scenarios. It does not need to learn an explicit policy, but instead, learns an approximated dynamics
model of the environment and use a planning algorithm to find high return trajectories through
this model. Online planning methods such as PETS [Chua et al., 2018], POLO [Lowrey et al.,
2019], POPLIN [Wang and Ba, 2020], and PDDM [Nagabandi et al., 2020] have shown good results
using full state information in simulation and on real robotic tasks. These algorithms are generally
built upon an MPC framework and use sample efficient random shooting algorithms such as CEM
[Botev et al., 2013] or MPPI [Williams et al., 2017] for trajectory optimization. The recent MBOP
[Argenson and Dulac-Arnold, 2021] further extends model-based planning to offline setting. MBOP
is an extension of PDDM but learns a behavior policy as a prior for action sampling, and uses a value
function to the extend planning horizon. The problem of MBOP is that its performance is strongly
dependent on the learned behavior policy, which leads to over-restrictive planning and obstructs the
full potential of the trajectory optimizer and the generalizability of the dynamics model. In this work,
we propose MOPP to address the limitations of MBOP, which provides superior planning while
avoids undesirable OOD samples in trajectory rollouts.

3 Preliminaries

We consider the Markov decision process (MDP) represented by a tuple as (S,A, P, r, γ), where
S, A denote the state and action space, P (st+1|st, at) the transition dynamics, r(st, at) the reward
function and γ ∈ [0, 1] the discounting factor. A policy π(s) is a mapping from states to actions.
We represent R =

∑∞
t=1 γ

tr(st, at) as the cumulative reward over an episode, which can be further
truncated to a specific horizon H as RH . Under offline setting, the algorithm only has access to a
static dataset B generated by arbitrary unknown behavior policies πb, and cannot interact further with
the environment. One can use parameterized function approximators (e.g. neural networks) to learn
the approximated environment dynamics fm(st, at) and behavior policy fb(st) from the data. Our
objective is to find an optimal policy π∗(st) = argmaxa∈A

∑H
t=1 γ

tr(st, at) given only dataset B
that maximizes the finite-horizon cumulative reward with γ fixed to 1.

4 The MOPP Framework

MOPP is a model-based offline planning framework that tackles the fundamental dilemma between
the restrictions of offline learning and high-performance planning. Planning by sampling strictly
from behavior policy avoids potential OOD samples. The learned dynamics model can also be
more accurate in high-density regions of the behavioral distribution. However, this also leads to
over-restrictive planning, which forbids sufficient exploitation of the generalizability of the model as
well as the information in the data.

MOPP provides a novel solution to address this problem. It allows more aggressive sampling from
behavior policy fb with boosted variance, and performs max-Q operation on sampled actions based
on a Q-value function Qb evaluated based on behavioral data. This treatment can lead to potential
OOD samples, so we simultaneously evaluate the uncertainty of the dynamics models to prune
out problematic trajectory rollouts. To further enhance the performance, MOPP also uses highly
expressive autoregressive dynamics model to learn the dynamics model fm and behavior policy fb,
as well as uses the value function to extend planning horizon and accelerate trajectory optimization.

4.1 Dynamics and Behavior Policy Learning

We use autoregressive dynamics model (ADM) [Germain et al., 2015] to learn the probabilistic
dynamics model (rt, st+1) = fm(st, at) and behavior policy at = fb(st). ADM is shown to have
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good performance in several offline RL problems due to its expressiveness and ability to capture
non-unimodal dependencies in data [Ghasemipour et al., 2020].

The ADM architecture used in our work is composed of several fully connected layers. Given the
input x (e.g. a state for fb or a state-action pair for fm), an MLP first produces an embedding for the
input, separate MLPs are then used to predict the mean and standard deviation of every dimension of
the output. Let oi denote the i-th index of the predicted output o and o[<i] represent a slice first up
to and not including the i-th index following a given ordering. ADM decomposes the probability
distribution of o into a product of nested conditionals: p(o) =

∏I
i p(oi|x,o[<i]). The parameters θ

of the model p(o) can be learned by maximizing the following log-likelihood on dataset B:

L(θ|B) =
∑
x∈B

[ |o|∑
i=1

log p(oi|x,o[<i])
]

(1)

ADM assumes underlying conditional orderings of the data. Different orderings can potentially lead
to different model behaviors. MOPP uses ensembles of K ADMs with randomly permuted orderings
for dynamics and behavior policy, which incorporates more diverse behaviors from each model to
further enhance expressiveness.

4.2 Value Function Evaluation

Introducing a value function to extend the planning horizon in model-based planning algorithms have
been shown to greatly accelerate and stabilize trajectory optimization in both online [Lowrey et al.,
2019] and offline [Argenson and Dulac-Arnold, 2021] settings. We follow this idea by learning a
Q-value function Qb(st, at) using fitted Q evaluation (FQE) [Le et al., 2019] with respect to actual
behavior policy πb and γ′ < 1:

Qkb (si, ai) = argmin
f∈F

1

N

N∑
i=1

[
f(si, ai)− yi

]2
yi = ri + γ′Qk−1b (si+1, ai+1), (si, ai, si+1, ai+1) ∼ B

(2)

A corresponding value function is further evaluated as Vb(st) = Ea∼πb
Q(st, a). This provides a

conservative estimate of values bond to behavioral distribution, which is better suited for our problem
setting. MOPP adds Vb to the cumulative returns of the trajectory rollouts to extend the planning
horizon. This helps shorten horizon H needed during planning. Besides, MOPP uses Qb to perform
the max-Q operation and guide trajectory rollouts toward potentially high reward actions.

4.3 Offline Planning

MOPP is built upon the finite-horizon model predictive control (MPC) framework. MPC has a long
history in robotics and control systems [Garcia et al., 1989]. It finds a locally optimal policy and a
sequence of actions up to horizon H based on the local knowledge of the dynamics model. At each
step, the first action from the optimized sequence is executed. In MOPP, we solve a modified MPC
problem which uses value estimate Vb to extend the planning horizon:

π∗(s0) = arg max
a0:H−1

E
[H−1∑
t=0

γtr(st, at) + γHVb(sH)
]

(3)

Obtaining the exact solution for the above problem can be rather costly, instead, we introduce a new
guided trajectory rollout and pruning scheme, combined with an efficient gradient-free trajectory
optimizer based on an extended version of MPPI [Williams et al., 2017; Nagabandi et al., 2020].

4.3.1 Guided Trajectory Rollout.

The key step in MOPP is to generate a set of proper action sequences to roll out trajectories that are
used by the trajectory optimizer. Under offline settings, such trajectory rollouts can only be performed
with the learned dynamics model fm. Using randomly generated actions can lead to large exploitation
errors during offline learning. MBOP uses a learned behavior policy as a prior to sample and roll out
trajectories. This alleviates the OOD error but has several limitations. First, the offline dataset might
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only contain limited information about the task and system. The learned behavior policy could have
insufficient coverage on good actions in low-density regions or outside of the dataset distribution.
This is common when the data is collected from low reward data generating policies. Moreover,
the dynamics model may generalize reasonably well in some low-density regions if the dynamics
pattern is easy to learn. Strictly sampling from the behavior policy limits sufficient exploitation of the
generalizability of the dynamics model. Finally, the lack of diversity in trajectories also hurts the
performance of the trajectory optimizer.

MOPP also uses the behavior policy to guide trajectory rollouts, but with a higher degree of freedom.
Let µa(st) = [µa1(st), · · · , µa|A|(st)]

T , σa(st) = [σa1 (st), · · · , σa|A|(st)]
T denote the mean and

standard deviation (std) of each dimension of the actions produced by the ADM behavior policy
fb(st). MOPP samples and selects an action at time step t as:

ait ∼ N
(
µa(st),diag

( σM
maxσa(st)

· σa(st)
)2)

At = {ait}mi=1, ∀i ∈ {1, . . . ,m}, t ∈ {0, . . . ,H − 1}
ât = arg max

a∈At

Qb(st, a), ∀t ∈ {0, . . . ,H − 1}

(4)

where σM > 0 is the std scaling parameter. We allow it to take larger values than maxσa to enable
more aggressive sampling. In MBOP, the actions are sampled by adding a very small random noise
on the outputs of a deterministic behavior policy, which assumes uniform variance across different
action dimensions. By contrast, MOPP uses the means µa and std σa boosted by σM to sample
actions (µa, σa from the ADM behavior policy fb). This allows heterogeneous uncertainty levels
across different action dimensions while preserves their relative relationship presented in data.

We further perform the max-Q operation on the sampled actions based on Qb to encourage potentially
high reward actions. Note that Qb is evaluated entirely offline with respect to the behavior policy,
which provides a conservative but relatively reliable long-term prior information. MOPP follows
the treatment in PDDM [Nagabandi et al., 2020] and MBOP [Argenson and Dulac-Arnold, 2021]
that mixes the obtained action ât with the previous trajectory using a mixture coefficient β to
roll out trajectories with the dynamics model fm. This produces a set of trajectory sequences
T = {T1, . . . , TN}, with Tn = {(ant , snt )}H−1t=0 , n ∈ {1, . . . , N}.

4.3.2 Trajectory Pruning.

The previously generated trajectories in T may contain undesirable state-action pairs that are out-
of-distribution or have large prediction errors using the dynamics model. Such samples need to
be removed, but we also want to keep OOD samples at which the dynamics model can generalize
well to extend the knowledge beyond the dataset B. The uncertainty quantification method used
in MOReL [Kidambi et al., 2020] provides a nice fit for our purpose, which is evaluated as the
prediction discrepancy of dynamics models f lm, i ∈ 1, . . . ,K in the ensemble :

disc(s, a) = max
i,j

∥∥f im(s, a)− f jm(s, a)
∥∥2
2

(5)

Let U be the uncertainty matrix that holds the uncertainty measures Un,t = disc(snt , a
n
t ) for each

step t of trajectory n in T . MOPP filters the set of trajectories using the trajectory pruning procedure
TrajPrune(T ,U). Denote T p := {Tn|Un,t < L,∀t, n}, trajectory pruning returns a refined
trajectory set for offline trajectory optimization as:

TrajPrune(T ,U) :={
T p, if |T p| ≥ Nm
T p ∪ sort(T − T p,U)[0 : Nm − |T p|], if |T p| < Nm

(6)

where L is the uncertainty threshold, Nm is the minimum number of trajectories used to run the
trajectory optimizer. In our implementation, we set Nm = 0.2bNc. The intuition of trajectory
pruning is to remove undesirable state-action samples and produce a set of trajectories that have
low uncertainty. MOPP first constructs a filtered trajectory set T p that only contains trajectories
with every state-action pair satisfying the uncertainty threshold. If T p has less than Nm trajectories,
we sort the remaining trajectories in T − T p by the cumulative uncertainty (i.e.

∑
t Un,t with

Tn ∈ T − T p). The top Nm − |T p| trajectories in the sorted set with the lowest overall uncertainty
are selected and added into Tp as the final refined trajectory set.
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4.3.3 Trajectory Optimization.

MOPP uses an extended version of the model predictive path integral (MPPI) [Williams et al., 2017]
trajectory optimizer that is used similarly in PDDM [Nagabandi et al., 2020] and MBOP [Argenson
and Dulac-Arnold, 2021]. MOPP shoots out a set of trajectories T f using the previous guided
trajectory rollout and pruning procedure. LetRf = {R1, . . . , R|T f |} be the associated cumulative
returns for trajectories in T f , the optimized action is obtained by re-weighting the actions of each
trajectory according to their exponentiated returns:

A∗t =

∑|T f |
n=1 exp(κRn)a

n
t∑|T f |

n=1 exp(κRn)
, ∀t = {0, . . . ,H − 1} (7)

where ant is the action at step t of trajectory Tn ∈ T f and κ is a re-weighting factor. The full
algorithm of MOPP is described in Algorithm 1.

Algorithm 1 Complete algorithm of MOPP
Require: Offline dataset B
1: Train Qb, ensembles of K1 dynamics models f lm and K2 behavior policies f lb on B
2: Initialize A∗t = 0, ∀t ∈ {0, . . . , H − 1}
3: for τ = 0...∞ do
4: Observe sτ , initialize T ,R = ∅
5: for n = 1, . . . , N do
6: s0 = sτ , Rn = 0, Tn = null
7: for t = 0 . . . H − 1 do
8: Sample action ât using f lb(st) (l randomly picked from 1 . . .K2) according to Eq.(4)
9: ãt = (1− β)ât + βA∗t+1, (A∗H = A∗H−1)

10: Append (st, ãt) into trajectory Tn
11: st+1 = f l

′
m(st, ãt)

s, l′ randomly picked from 1 . . .K1

12: Rn ← Rn + 1
K1

∑K1
k=1 f

k
m(st, ãt)

r

13: Un,t = maxi,j
∥∥f im(st, ãt)− f jm(st, ãt)

∥∥2
2

14: end for
15: Compute Vb(sH) =

∑KQ

i=1Q(sH , ai)/KQ, {ai}
KQ

i=1 are sampled from a randomly picked f lb(sH)
16: Rn ← Rn + Vb(sH)
17: T ← T ∪ {Tn}, R← R ∪ {Rn}
18: end for
19: Compute T f = TrajPrune(T ,U) according to Eq.(6)
20: Update A∗t , ∀t = {0, . . . , H − 1} using T f and Eq.(7)
21: Return optimized aτ = A∗0
22: end for

5 Experimental Results

We evaluate and compare the performance of MOPP with several state-of-the-art (SOTA) baselines on
standard offline RL benchmark D4RL [Fu et al., 2020]. We conduct experiments on the widely-used
MuJoCo tasks and the more complex Adroit hand manipulation tasks. These tasks are visualized
in Figure 1. In addition to performance comparison, we are interested in examining the impact of
each component in MOPP, including the use of the evaluated value function, the max-Q operation
during trajectory rollout as well as the trajectory pruning procedure. We also investigate the impact
of sampling aggressiveness in the guided trajectory rollouts and planning horizon on the behavior
of MOPP. Finally, the adaptability of MOPP under varying objectives and constraints is discussed.
Detailed experimental set-up see Appendix.

5.1 Comparative Evaluations on MoJoCo tasks.

We evaluate the performance of MOPP on three tasks (halfcheetah, hopper and walker2d)
and four dataset types (random, medium, mixed and med-expert) in the D4RL benchmark.
We compare the performance of MOPP with several SOTA baselines, including model-based offline
RL algorithms MBPO [Janner et al., 2019] and MOPO [Yu et al., 2020], as well as the recent
model-based offline planning algorithm MBOP [Argenson and Dulac-Arnold, 2021]. We also report
the results of the behavior policy used in MBOP (MBOP fb), the standard BC policy and the ADM
behavior policy fb used in MOPP. Detailed results are presented in Table 1.
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Halfcheetah Hopper Walker2d Pen Hammer Door Relocate

Figure 1: Visualization of the evaluated tasks

Model-based planning methods Model-based RL methods
Dataset type Environment MBOP (MBOP f ′b) MOPP (BC) MOPP (ADM fb) MBPO MOPO

random halfcheetah 6.3±4.0 (0.0±0.0) 9.1±0.2 (2.2±2.2) 9.4±2.6 (2.2±2.2) 30.7±3.9 31.9±2.8
random hopper 10.8±0.3 (9.0±0.2) 11.9±0.1 (10.0±0.7) 13.7±2.5 (9.8±0.7) 4.5±6.0 13.3±1.6
random walker2d 8.1±5.5 (0.1±0.0) 4.9±0.9 (6.2±2.2) 6.3±0.1 (2.6±0.1) 8.6±8.1 13.0±2.6

medium halfcheetah 44.6±0.8 (35.0±2.5) 44.5±0.3 (36.7±4.1) 44.7±2.6 (36.6±4.7) 28.3±22.7 40.2±2.7
medium hopper 48.8±26.8 (48.1±26.2) 28.2±8.8 (30.4±0.9) 31.8±1.3 (30.0±0.8) 4.9±3.3 26.5±3.7
medium walker2d 41.0±29.4 (15.4±24.7) 82.3±0.9 (15.0±19.8) 80.7±1.0 (15.6±22.5) 12.7±7.6 14.0±10.1

mixed halfcheetah 42.3±0.9 (0.0±0.0) 41.4±1.9 (31.8±7.2) 43.1±4.3 (32.7±7.7) 47.3±12.6 54.0±2.6
mixed hopper 12.4±5.8 (9.5±6.9) 30.6±2.7 (20.0±7.7) 32.3±5.9 (28.2±4.3) 49.8±30.4 92.5±6.3
mixed walker2d 9.7±5.3 (11.5±7.3) 16.5±7.4 (12.9±4.5) 18.5±8.4 (12.9±5.7) 22.2±12.7 42.7±8.3

med-expert halfcheetah 105.9±17.8 (90.8±26.9) 103.7±11.0 (37.6±6.5) 106.2±5.1 (37.6±6.5) 9.7±9.5 57.9±24.8
med-expert hopper 55.1±44.3 (15±8.7) 94.4±31.6 (34.1±18.7) 95.4±28.0 (44.3±28.4) 56.0±34.5 51.7±42.9
med-expert walker2d 70.2±36.2 (65.5±40.2) 88.3±38.8 (6.6±13.8) 92.9±14.1 (13.5±24.2) 7.6±3.7 55.0±19.1

Table 1: Results for D4RL MuJoCo tasks. The scores are normalized between 0 to 100 (0 and 100
correspond to a random policy and an expert SAC policy respectively). We report the mean scores and
standard deviation (term after ±) of each method. For MBOP and MOPP, we present the scores of
the used behavior policies (MBOP f ′b, BC and ADM fb) in the parentheses. All results are computed
based on 5 random seeds, with 20 episode runs per seed. The scores of MBOP, MBPO, and MOPO
are taken from the MBOP [Argenson and Dulac-Arnold, 2021] and MOPO [Yu et al., 2020] papers.

As expected, MOPP with the more expressive ADM behavior policy fb achieves better performance
compared with using BC behavior policy in most tasks. MBOP uses a special behavior policy that
include the action of previous step as input at = f ′b(st, at−1), thus not directly comparable. This
design will improve imitation performance under datasets generated by one or limited data generating
policies, as the next action may be correlated with the previous action. However, it could have
negative impact on high-diversity (e.g. random and mixed) or complex real-world datasets.

MOPP consistently outperforms the SOTA offline planning method MBOP, sometimes by a large
margin, except for the walker2d-random and hopper-medium tasks. It is observed that MBOP
is more dependent on its behavior policy f ′b, which limits its performance. For walker2d-mixed
task, MBOP even performs worse than its behavior policy. On the other hand, MOPP substantially
outperforms the BC and ADM behavior policy fb especially on the med-expert tasks, which
shows the great planning improvement of MOPP upon a learned semi-performance policy. Comparing
with model-based offline RL methods MBPO and MOPO, we observe that MOPP performs better
in medium and med-expert datasets, but less performant on higher-variance datasets such as
random and mixed. Model-based offline RL methods can benefit from high-diversity datasets, in
which they can learn better dynamics models and apply reinforcement learning to find better policies.
It should also be noted that training RL policies until convergence is costly and not adjustable after
deployment. This will not be an issue for a light-weighted planning method like MOPP, as the
planning process is executed in operation and suited well for controllers that require extra control
flexibility. The flexibility of MOPP will be further discussed in later sections.

MOPP performs strongly in the med-expert dataset and beats all other baselines. For all three
environments, MOPP achieves close to or even higher scores compared with the expert SAC policy
[Haarnoja et al., 2018]. As we will show in later ablation studies, this is the joint consequence
of using more aggressive trajectory rollout and trajectory pruning. This indicates that MOPP can
effectively recover the performant data generating policies in the behavioral data and use planning to
further enhance their performance.
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Dataset BC BCQ CQL MOPO MBOP MOPP

pen-human 34.4 68.9 37.5 -0.6 53.4 73.5
hammer-human 1.5 0.5 4.4 0.3 14.8 2.8
door-human 0.5 0.0 9.9 -0.1 2.7 11.9
relocate-human 0.0 -0.1 0.2 -0.1 0.1 0.5

pen-cloned 56.9 44.0 39.2 4.6 63.2 73.2
hammer-cloned 0.8 0.4 2.1 0.4 4.2 4.9
door-cloned -0.1 0.0 0.4 0.0 0.0 5.6
relocate-cloned -0.1 -0.3 -0.1 -0.1 0.1 -0.1

pen-expert 85.1 114.9 107.0 3.7 105.5 149.5
hammer-expert 125.6 107.2 86.7 1.3 107.6 128.7
door-expert 34.9 99.0 101.5 0.0 101.2 105.3
relocate-expert 101.3 41.6 95.0 0.0 41.7 98.0

Table 2: Results for Adroit tasks. The scores are normalized between 0 to 100 (correspond to a
random policy and an expert SAC policy respectively). All results are averaged based on 5 random
seeds, with 20 episode runs per seed.

5.2 Comparative Evaluations on Adroit tasks.

We also evaluate the performance of MOPP in Table 2 on more complex Adroit high-dimensional
robotic manipulation tasks with sparse reward, involving twirling a pen, hammering a nail, opening a
door and picking/ moving a ball. The Adroit datasets are particularly hard, as the data are collected
from a narrow expert data distributions (expert), human demonstrations (human), or a mixture
of human demonstrations and imitation policies (cloned). Model-based offline RL methods are
known to perform badly on such low-diversity datasets, as the dynamics models cannot be learned
well (e.g. see results of MOPO). We compare MOPP with two more performant model-free offline
RL algorithms, BCQ Fujimoto et al. [2019] and CQL Kumar et al. [2020].

It is found in Table 2 that although MOPP is a model-based planning method, it performs surprisingly
well in most of the cases. MOPP consistently outperforms the SOTA offline planning method MBOP,
and in many tasks, it even outperforms the strong model-free offline RL baselines BCQ and CQL.
The better performance of MOPP is a joint result of the inheritance of both an imitative behavior
policy and more aggressive planning with the learned dynamics model.

5.3 Ablation Study

We conduct a series of experiments on the walker2d -med-expert task to understand the
impact of each key element in MOPP, including the use of offline evaluated value function Vb, max-Q
operation in the guided trajectory rollout, the trajectory pruning procedure, as well as sampling
aggressiveness and planning horizon H .

We first investigate in Figure 2(a) the level of sampling aggressiveness on the performance of MOPP
(controlled by std scaling parameter σM ), as well as its relationship with the max-Q operation and
trajectory pruning. It is observed that reasonably boosting the action sampling variance is beneficial.
The performance of MOPP improves as σM increases from 0.01 to 0.5. However, overly aggressive
exploration (σM = 1.0) is detrimental, as it will introduce lots of undesired OOD samples during
trajectory rollouts. When most trajectory rollouts are problematic, the trajectory pruning procedure
is no longer effective, as there have to be at least Nm trajectories in order to run the trajectory
optimizer. When σM is not too large, trajectory pruning is effective to control the planning variance
and produces better performance, as is shown in the difference between MOPP-noP and MOPP under
σM = 0.1 and 0.5. Moreover, the max-Q operation in the guided trajectory rollout increases the
sampling aggressiveness. It is shown that when σM is moderate, MOPP achieves a higher score than
MOPP-noMQ. But under the case of σM = 1.0, the less aggressive MOPP-noMQ is the only variant
of MOPP that is still possible to produce high episode returns. These suggest that carefully chosen
the degree of sampling aggressiveness is important for MOPP to achieve maximum performance.

We further examine the impacts of value function Vb and max-Q operation on different planning
horizons in Figure 2(b). It is observed that even with a very short horizon (H = 2 and 4), MOPP can
attain good performance that is comparable to results using longer planning horizons (H = 16 and
32). Moreover, MOPP achieves significantly higher scores compared with MOPP-noMQ-noV. Both
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(a) Impacts of max-Q operation and trajectory pruning
with different level of sampling aggressiveness (σM ).

(b) Impacts of value function Vb and max-Q opera-
tion with different planning horizon H .

Figure 2: Ablation study on the walker2d-med-expert task. noMQ, noP, noV indicate MOPP
without max-Q operation, trajectory pruning and value function Vb respectively.

Figure 3: Impact of uncertainty threshold L

the value function Vb and max-Q operation are found to have positive effects on reducing planning
horizon and boost planning performance. The benefit of using the learned value function to extend
the horizon has already been verified in a number of past studies [Lowrey et al., 2019; Argenson
and Dulac-Arnold, 2021]. Surprisingly, we found that using max-Q operation on sampled actions
during guided trajectory rollouts provides even stronger improvements on the med-expert task.
It is observed in Figure 2(b) that MOPP-noMQ consistently perform worse than MOPP-noV. This
might because that max-Q operation is performed at every step of trajectory rollout, while the value
function is only added to the end of the cumulative return of a trajectory, thus provides stronger
guidance on trajectory rollouts towards potentially high reward actions.

Finally, Figure 3 presents the impact of uncertainty threshold L in trajectory pruning (σM = 0.5,
H = 2). We observe that both strictly avoid (L = 0.1) or overly tolerant (L = 10.0) unknown state-
action pairs impact planning performance. Reasonably increase the tolerance of sample uncertainty
(L = 2.0) to allow sufficient exploration leads to the best result with low variance.

5.4 Flexibility with Varying Objective and Constraints

A major advantage of planning methods lies in their flexibility to incorporate different objectives and
extra constraints, without re-training the whole model as needed in typical RL algorithms. These
modifications can be easily incorporated in MOPP by revising the reward function or pruning out
unqualified trajectory rollouts during operation. We construct two tasks to evaluated the control
flexibility of MOPP:

• halfcheetah-jump: This task adds incentives on the z-position in the original reward function
of halfcheetah, encouraging agent to run while jumping as high as possible.

• halfcheetah-constrained: This task adds a new constraint (x-velocity≤10) to restrain
the agent from having very high velocity along the x-axis. Two ways are used to incorporate the
constraint: 1) adding reward penalty for x-velocity>10; 2) adding penalties on the uncertainty
measures U when rolling out trajectories, which allows trajectory pruning to filer out constraint
violating trajectories.

Figure 4 shows the performance of MOPP on the halfcheetah-jump task. By simply changing
to the new reward function (MOPP-newR), MOPP is able to adapt and improve upon the average
performance level in data and the original model (MOPP-oldR). The performance will be further
improved by re-evaluating the Q-function (MOPP-newR-newQ). The offline evaluated value function
and the max-Q operation could have negative impact when the reward function is drastically different.

9



(a) Episode return under the new reward function (b) The z-position of the optimized trajectories

Figure 4: Performance on halfcheetah-jump task
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Figure 5: Performance under x-velocity constraints. We plot the x-velocity distribution of the
optimized trajectories.

In such cases, one only needs to re-evaluate a sub-component (Q-value function under the new
reward) of MOPP to guarantee the best performance rather than re-train the whole model as in typical
RL settings. Furthermore, evaluating the Q-function via FQE is achieved by simple supervised
learning, which is computationally very cheap compared with a costly RL procedure (see Appendix
for additional results and detailed computational performance).

Figure 5 presents the performance of MOPP on the halfcheetah-constrained task. The orig-
inal MOPP model without constraint (MOPP-oldR) has lots of constraint violations (x-velocity>10).
Incorporating a constraint penalty in reward (MOPP-newR) and pruning out constraint violating
trajectories (MOPP-RC) achieve very similar performance. Both models effectively reduce constraint
violations and have limited performance deterioration due to the extra constraint. Adding constraint
penalty in the reward function while re-evaluating the Q-value function via FQE (MOPP-newR-newQ)
leads to the safest policy.

6 Conclusions

We propose a new model-based offline planning algorithm, namely MOPP, for real-world control
tasks when online training is forbidden. MOPP is built upon an MPC framework that leverages a
behavior policy and a dynamics model learned from an offline dataset to perform planning. MOPP
avoids over-restrictive planning while enabling offline learning by encouraging more aggressive
trajectory rollout guided by the learned behavior policy, and prunes out problematic trajectories by
evaluating the uncertainty of the dynamics model. Although MOPP is a light-weighted planning
algorithm, we show in standard benchmarks that it provides competitive performance compared with
the state-of-the-art offline RL and model-based planning methods. MOPP performs particularly well
in datasets that contain expert policies, which can be a good fit for industrial control scenarios that
historical operational data involve professional or semi-professional control strategies.
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Appendix

7 Experiment Settings

7.1 Benchmark Datasets

We evaluate the performance of MOPP on the popular D4RL MuJoCo tasks (Halfcheetah, Hopper,
Walker2d) and the more complex Adroit hand manipulation tasks (Pen, Hammer, Door, Relocate)
[Fu et al., 2020].

7.1.1 MoJoCo tasks.

We test 12 problem settings in the D4RL MoJoCo benchmark, including three environments:
halfcheetah, hopper, walker2d and four dataset types: random, medium, mixed and
med-expert. The MoJoCo benchmark datasets are generated as follows:

• random: generated using a random policy to roll out 1M steps.

• medium: generated using a partially trained SAC policy Haarnoja et al. [2018] to roll out 1M
steps.

• mixed: train an SAC policy until reaching a predefined threshold, and take the replay buffer as the
dataset. This dataset is also termed medium-replay in the latest version of the D4RL paper.

• med-expert: generated by combining 1M samples from a expert policy and 1M samples from a
partially trained policy.

7.1.2 Adroit tasks.

The Adroit hand manipulation environment Rajeswaran et al. [2018] involves controlling a 24-DoF
simulated Shadow Hand robot with twirling a pen (Pen), hammering a nail (Hammer), opening a door
(Door) and picking up and moving a ball (Relocate). Adroit tasks are substantially more challenging
than the MoJoCo tasks, as the dataset is collected from human demonstrations and fine-tuned online
RL expert policies with narrow data distributions on sparse reward, high-dimensional control tasks.
The Adroit tasks have three dataset types:

• human: contains a small amount of demonstration data from a human, 25 trajectories per task.

• expert: contains a larger amount of expert data from a fine-tuned online RL policy.

• cloned: generated by training an imitation policy on the demonstrations, running the policy, and
mixing data at a 50-50 ratio with demonstrations.

7.2 Hyperparameters Used in the D4RL Benchmark Experiments

In Table 3, we present the hyperparameters used for runs of MOPP on the D4RL benchmark. We kept
most hyperparameter settings close to MBOP [Argenson and Dulac-Arnold, 2021] to make our results
comparable to those reported in the MBOP paper. In the ablation study, all the hyperparameters
of MOPP are the same as that in Table 3 except the varied parameters in the ablation experiments.
The hyperparameter L is selected based on the 85th percentile value of the uncertainty measures
computed from the offline dataset. In addition to the hyperparameters reported in the table, for all
experiments, we use Nm = 0.2bNc, K1 = K2 = 3 and KQ = 10 (see Algorithm 1 in the main
article for details).
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MoJoCo HalfCheetah

Dataset H κ β L σM N

random 4 3 0 4 1.15 100
medium 2 3 0 5 0.45 100
mixed 4 3 0 5 0.5 100
med-expert 2 1 0 7 0.55 100

MoJoCo Hopper

Dataset H κ β L σM N

random 4 10 0 0.5 0.65 100
medium 4 0.3 0 1 0.25 100
mixed 4 0.3 0 1 0.6 100
med-expert 10 3 0 1 0.4 100

MoJoCo Walker2d

Dataset H κ β L σM N

random 8 0.3 0 8 0.05 1000
medium 2 0.1 0 7 0.55 1000
mixed 8 3 0 8 0.2 1000
med-expert 2 1 0 7 0.4 1000

Adroit Pen

Dataset H κ β L σM N

human 4 0.3 0 0.1 0.8 100
cloned 4 0.3 0 1.7 0.8 100
expert 4 0.03 0 4.4 0.8 100

Adroit Hammer

Dataset H κ β L σM N

human 4 0.3 0 0.3 1.0 100
cloned 4 0.3 0 0.5 0.8 100
expert 4 0.3 0 1.4 0.7 100

Adroit Door

Dataset H κ β L σM N

human 4 0.3 0 1.2 0.8 100
cloned 4 0.3 0 0.3 0.8 100
expert 4 0.03 0 0.1 0.7 100

Adroit Relocate

Dataset H κ β L σM N

human 4 0.3 0 1.0 0.8 100
cloned 4 0.3 0 0.4 0.8 100
expert 16 0.3 0 0.1 0.4 100

Table 3: Hyperparameters of MOPP used in the D4RL benchmark experiments

7.3 Flexibility of Incorporating Varying Objectives and Constraints

We modify the original halfcheetah task and construct two new tasks (halfcheetah-jump
and halfcheetah-constrained) to evaluate the flexibility and generalizibility of MOPP on
new tasks with varying objectives and extra constraints. In both tasks, MOPP is trained using the
entire 1M steps training replay buffer of SAC on the original halfcheetah task. We modify
the reward function or introduce rollout constraints in MOPP during planning. To test for best
performance and examine the impact of max-Q operation, we also report the results of MOPP with
re-evaluated Q-functions under the new reward function via FQE. The results of MOPP and its
variants of the new tasks are reported in Figure 4 and 5 in the main article. All results are computed
based on 6 random seeds, with 20 episode runs per seed.
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7.3.1 Control under varying objective.

In the halfcheetah -jump task, we modify the objective of the original halfcheetah agent, which
encourages the agent to have higher z-position, leading to a run and jump behavior. The modified
reward function in the new objective is:

r′ = αr · r + (1− αr) · 100 · z (8)
where r is the original reward of the halfcheetah task, and z denotes the z-position of the
halfcheetah agent. In our experiment, αr is set as 0.4. Note that our halfcheetah-jump task is
different from the one reported in the MOPO paper Yu et al. [2020] which sets the maximum velocity
to be 3 in both behavior policy and its revised reward to only encourage the jump behavior.

Figure 6: Illustrations of the original halfcheetah and the halfcheetah-jump tasks. The
top row shows the results of MOPP with the original objective (MOPP-oldR). The bottom row
shows the results obtained using MOPP with the new reward function and re-evaluated Q-function
(MOPP-newR-newQ). It is observed that the halfcheetah agent using MOPP-newR-newQ adapts to
the new objective that is running while jumping as high as possible.

7.3.2 Constrained control.

In the halfcheetah- constrained task, we introduce a state-based constraint to the original
halfcheetah task. We constrain the velocity along the x-axis (vx) of the halfcheetah agent below
a certain threshold (10 m/s). Two implementations are tested in our experiments:

• Reward penalization: Adding a reward penalty for vx > 10 in the reward function:
r′ = αc · r + (1− αc) · 100 ·min(10− vx, 0) (9)

where r is the original reward of the halfcheetah task and the weight αc is set as 0.5 in the
experiments.

• Rollout constraint: We filter out the trajectories that violate the state-based constraint during
trajectory pruning in MOPP. This is achieved as a rollout constraint by adding penalties to the
uncertainty measures Un,t of the constraint violating trajectory rollouts.

U ′n,t = Un,t + 100 ·max(vx − 10, 0) (10)
Note that due to the existence of the minimum number of required trajectories Nm to run the
trajectory optimizer, it is possible that some unsafe trajectories will remain after trajectory pruning
if most of the trajectory rollouts violate the constraint. The advantage of rollout constraint is that it
does not alter the reward function, thus has no impact on the Q-function learned from the behavioral
data.

Figure 7 presents additional results on the episode returns of MOPP and its variants under the
original and new reward function of the halfcheetah-constrained task. Adding additional
constraints to ensure safety will sacrifice the episode return measured by the original reward function.
We observe that MOPP-newR and MOPP-RC can effective reduce constraint violations and have
limited performance deterioration under the existence of extra constraint. Adding the constraint
penalty in reward function and re-evaluating the Q-function (MOPP-newR-newQ) achieves safest
policy but have substantially drop in episode return measured by the old reward function, but it still
has improved episode return as measured by the new reward function.
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(a) Episode return under the original reward function
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(b) Episode return under the new reward function

Figure 7: Additional results of MOPP on halfcheetah- constrained task

8 Execution Speed

The execution speeds (control steps/second) of MOPP on the D4RL Walker2d and Hopper tasks
are reported in Table 4. The tests are conducted on an Intel Xeon 2.2GHz CPU computer (no GPU
involved) with simulator time included. It is observed that MOPP can easily achieve multiple controls
within 1 second, which is useable for many robotics and industrial control tasks. Using longer
planning horizons will increase the computation time. But we also observe in Table 4 that with a
moderate planning horizon (e.g. H = 8), MOPP is already able to achieve high episode returns by
incorporating the value function Vb and max-Q operation with Qb. The execution speed of MOPP
can be further speed up by reducing the number of trajectory rollouts N or use a shorter planning
horizon.

Walker2d Hopper

H Freq. Ep. return Freq. Ep. return

4 2.69 3885.2 ± 941.8 4.22 2539.6 ± 1051.7
8 2.13 4032.8 ± 450.8 3.25 2847.9 ± 992.6

16 1.50 4000.2 ± 643.8 2.41 2974.9 ± 1037.9
Table 4: Execution speeds (control frequency (Hz)) and episode returns of MOPP. Models are trained
on med-expert dataset.

HalfCheetah Hopper

Data size 1,000,000 200,000 1,000,000 200,000

Time cost(min) 26.0 5.2 24.7 4.9
Table 5: Computation time of the Q-value function evaluation via FQE. Batch size: 512, epochs: 40.
Tests are conducted on a quad-core CPU and 8 GB memory computer (no GPU involved).

In the cases when the reward function is drastically changed during system operation, to guarantee
the best model performance, it is suggested to re-evaluate the Q-value function based on the new
reward function. In MOPP, the Q-value function is evaluated via FQE, which is performed by simple
supervised learning and computationally cheap to train. Table 5 presents the computation time for
Q-value evaluation under different size of behavioral data for HalfCheetah and Hopper tasks.
The entire computation can be finished in a relatively short time with limited resources.
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9 Model Configurations of MOPP

For all the D4RL MuJoCo and Adroit benchmark tasks, we use the following model configurations
for MOPP.

9.1 ADM behavior policy and dynamics model

The ADM behavior policy fb and dynamics model fm share the same model configurations, which
are set as follows:

• Embedding layer: (500,)
• FC layers for separate dimension of output: (200, 100)
• Number of networks in the ensemble: 3
• Learning rate: 0.001
• Training steps: 5e+5
• Optimizer: Adam

9.2 Q-value network Qb

The model configurations of Qb are set as follows:

• FC layers: (500, 500)
• Learning rate: 0.001
• Training steps: 5e+5
• Optimizer: Adam
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