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Abstract

Imitating human demonstrations is a promising approach to endow robots with
various manipulation capabilities. While recent advances have been made in
imitation learning and batch (offline) reinforcement learning, a lack of open-source
human datasets and reproducible learning methods make assessing the state of
the field difficult. In this paper, we conduct an extensive study of six offline
learning algorithms for robot manipulation on five simulated and three real-world
multi-stage manipulation tasks of varying complexity, and with datasets of varying
quality. Our study analyzes the most critical challenges when learning from
offline human data for manipulation. Based on the study, we derive a series
of lessons including the sensitivity to different algorithmic design choices, the
dependence on the quality of the demonstrations, and the variability based on the
stopping criteria due to the different objectives in training and evaluation. We
also highlight opportunities for learning from human datasets, such as the ability
to learn proficient policies on challenging, multi-stage tasks beyond the scope of
current reinforcement learning methods, and the ability to easily scale to natural,
real-world manipulation scenarios where only raw sensory signals are available.
We have open-sourced our datasets and all algorithm implementations to facilitate
future research and fair comparisons in learning from human demonstration data at
https://arise-initiative.github.io/robomimic-web/

1 Introduction

Human supervision has been at the heart of the most significant recent advances in several domains
such as computer vision [1–4] and natural language processing [5–7]. By intelligently extracting
information from large-scale human-labeled datasets, autonomous machines have been able to
reach near- or even super-human performance on decades-old problems such as image recognition
and question answering. Roboticists have also attempted to tackle robot manipulation through
learning from human datasets, using the paradigms of Imitation Learning [8–10] and Batch (Offline)
Reinforcement Learning [11–13], where datasets consisting of robot arm trajectories, action labels at
each timestep, and possibly reward labels, are used to train closed-loop policies.

As in other domains, large offline datasets offer several benefits such as scale, portability, and
reproducible evaluations to measure progress. Recently, there has been considerable progress in
offline learning for robot manipulation from human demonstrations [9, 14, 10]. Despite these
advances, the offline learning paradigm has not been nearly as disruptive in robotics as in other
disciplines – there is a large gap between autonomous robot manipulation capabilities and the wide
range of tasks that humans can solve effortlessly using physical and cognitive intelligence. What has
inhibited the use of large human-provided datasets to address this gap?
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Figure 1: Tasks. We collect datasets across 6 operators of varying proficiency and evaluate offline policy
learning methods on 8 challenging manipulation tasks that test a wide range of manipulation capabilities
including pick-and-place, multi-arm coordination, and high-precision insertion and assembly.

In contrast to other domains where supervised learning has been successful, robotic manipulation
is a time-evolving dynamical system, requiring fine-grained real-time control to guide robot arms
successfully through tasks – consequently, data collection can present technical challenges requiring
specialized systems [15], which can explain why large-scale human-provided datasets [16, 17] have
not been very prevalent. Learning from such datasets can also present several challenges. Human
demonstrations can differ from machine-generated datasets (a recent trend in benchmarks for offline
policy learning [18, 19]) due to a non-Markovian decision process, since humans may not act purely
based on the current observation. There can also be significant variance in both data quality and
solution strategy when collecting data from multiple humans [20]. Differences from classic supervised
learning, such as a mismatch between training and evaluation objectives (task success rate), can make
selecting a final policy challenging [21, 22], especially in real-world settings where evaluating each
policy on a robot can be infeasible. Finally, offline learning is sensitive to state and action space
coverage (dataset size) and agent design decisions.

Studying these challenges in the context of robot manipulation and human-provided datasets could be
a stepping stone to closing the gap between robot and human manipulation capabilities. Unfortunately,
a lack of suitable benchmark and human datasets have made studying this setting difficult. Prior
works are either limited to studying simple 2D environments [23] or using data generated from
hard-coded policies [24, 25]. In this paper, we address this need by presenting a study of data-driven
offline policy learning methods on several human-provided robot manipulation datasets. We collect
task demonstrations from human teleoperators across a broad range of simulated and real world
manipulation tasks and investigate several factors that play a role in learning from such data.

From our results, we point out several lessons to guide future research in leveraging human supervision
for robot manipulation effectively. We find that history-dependent models can be extremely effective
in learning from single and multi-human datasets while state-of-the-art batch RL algorithms struggle
to learn from such datasets, and that the choice of observation space and hyperparameters play a
substantial role in training proficient policies. We also find that there is substantial promise for
solving more complex tasks using large-scale human datasets and that our insights directly transfer to
real-world scenarios, making this an important setting to explore further.

2 Challenges in Offline Learning from Human Datasets

In this section, we outline five challenges in offline learning from human datasets that motivate
different factors that we investigate in our study.

(C1) Data from Non-Markovian Decision Process. Human demonstrations can differ substantially
from machine-generated demonstrations because humans may not act purely based on a single current
observation. External factors (teleoperation device, past actions, history of episode) may all play a
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Dataset BC BC-RNN BCQ CQL HBC IRIS

Lift (MG) 65.3±2.5 70.7±3.4 91.3±1.9 64.0±2.8 47.3±4.1 96.0±1.6
Can (MG) 64.7±3.4 68.7±2.5 75.3±0.9 1.3±0.9 40.7±3.4 48.0±6.5

Lift (PH) 100.0±0.0 100.0±0.0 100.0±0.0 92.7±5.0 100.0±0.0 100.0±0.0
Can (PH) 95.3±0.9 100.0±0.0 88.7±0.9 38.0±7.5 100.0±0.0 100.0±0.0

Square (PH) 78.7±1.9 84.0±0.0 50.0±4.9 5.3±2.5 82.6±0.9 78.7±2.5
Transport (PH) 17.3±2.5 71.3±6.6 7.3±3.3 0.0±0.0 48.6±3.8 41.3±3.4
Tool Hang (PH) 29.3±0.9 19.3±5.0 0.0±0.0 0.0±0.0 30.0±7.1 11.3±2.5

Lift (MH) 100.0±0.0 100.0±0.0 100.0±0.0 56.7±40.3 100.0±0.0 100.0±0.0
Can (MH) 86.0±4.3 100.0±0.0 62.7±8.2 22.0±5.7 91.3±2.5 92.7±0.9

Square (MH) 52.7±6.6 78.0±4.3 14.0±4.3 0.7±0.9 60.7±5.0 52.7±5.0
Transport (MH) 11.3±2.5 65.3±7.4 2.6±0.9 0.0±0.0 14.0±1.6 10.7±0.9

Table 1: Results on Low-Dimensional Observations. We present success rates averaged over 3 seeds for
each method across the low-dim Machine-Generated (MG), Proficient-Human (PH), and Multi-Human (MH)
datasets. The results show that methods that model temporal correlations (BC-RNN, HBC, IRIS) exhibit
strong performance on human datasets. Furthermore, while Batch RL algorithms like BCQ are proficient on
machine-generated data, they perform poorly on human datasets.

role. Prior work [20] has noted substantial benefits from leveraging models that are history-dependent
and / or with temporal abstraction to learn from human demonstrations. We investigate various design
choices related to such architectures in this study.

(C2) Variance in Demonstration Quality from Multiple Humans. Prior work [20, 17] has found
that data collected from several humans can differ substantially in both demonstration proficiency
and solution strategy. Differences in supervisor proficiency can manifest in many ways, such as
large variations in trajectory length and noise in robot movement or mistakes (e.g. missed grasps).
In our study, we evaluate offline policy learning algorithms on such datasets. While recent batch
RL algorithms have shown an excellent ability to learn from mixed quality machine-generated
datasets [26, 27], we empirically find that they fail to learn well from mixed quality human data.

(C3) Dependence on Dataset Size. Offline policy learning is sensitive to the state and action space
coverage in the dataset, and by extension, the size of the dataset itself. In our study, we investigate
how dataset sizes affect policy performance. This analysis is useful to understand the value of adding
more data – an important consideration since collecting human demonstrations can be costly.

(C4) Mismatch between Training and Evaluation Objectives. Unlike traditional supervised
learning, where model selection can be achieved by using the model with the lowest validation
loss [21], offline policy learning often suffers from the fact that the training objective is only a
surrogate for the true objective of interest (e.g. task success rate), and policy performance can change
significantly from epoch to epoch. This makes it difficult to select the best trained model [19, 28, 29].
In our study, we evaluate each policy checkpoint online in the environment in simulation, and report
the best policy success rate per training run. We use these ground-truth values to understand the
effectiveness of different selection criteria, and confirm that offline policy selection is an important
problem, especially in real-world scenarios where large-scale empirical evaluation is difficult.

(C5) High Sensitivity to Agent Design Decisions. Prior studies on machine-generated datasets have
shown that offline policy learning can be extremely sensitive to hyperparameter choices [19, 28]. In
our study, we explore how agent design decisions affect policy performances, including the choice of
agent architecture, agent observation space, and hyperparameter choices per algorithm. This results
in several practical conclusions that should prove useful to researchers and practitioners alike. We
further show that important design decisions made through our study in simulation directly translate
to effective policy learning on real world tasks and datasets.

3 Study Design

3.1 Tasks

We conducted our study across 5 simulated and 3 real world tasks. The tasks were chosen to test a
broad range of manipulation capabilities. See Fig 1 and Appendix E for more details.

Lift (sim + real)). The robot arm must lift a small cube. This is the simplest task.
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Dataset BC BC-RNN BCQ CQL HBC IRIS

Can-Worse 56.7±2.5 92.0±1.6 29.3±10.9 4.0±3.3 78.7±3.4 77.3±1.9
Can-Okay 72.0±2.8 95.3±1.9 58.0±8.6 22.0±4.3 97.3±0.9 96.0±0.0
Can-Better 83.3±2.5 99.3±0.9 62.0±5.9 20.7±7.4 96.7±0.9 96.0±0.0

Can-Worse-Okay 74.7±5.7 98.7±1.9 50.7±3.8 18.7±2.5 88.0±1.6 87.3±1.9
Can-Worse-Better 76.0±4.3 100.0±0.0 48.0±4.9 20.7±5.7 90.0±1.6 91.3±2.5
Can-Okay-Better 90.7±1.9 100.0±0.0 68.7±2.5 30.7±7.7 99.3±0.9 98.0±1.6

Square-Worse 22.0±4.3 39.3±3.8 5.3±1.9 0.0±0.0 44.7±6.8 38.7±0.9
Square-Okay 27.3±3.4 45.3±2.5 6.7±1.9 0.0±0.0 52.0±2.8 42.0±3.3
Square-Better 58.7±2.5 66.0±2.8 32.0±4.3 0.7±0.9 61.3±1.9 60.0±1.6

Square-Worse-Okay 28.7±2.5 55.3±0.9 8.7±1.9 2.7±1.9 50.7±4.1 43.3±2.5
Square-Worse-Better 46.7±5.7 73.3±6.2 15.3±2.5 1.3±0.9 65.3±3.4 56.7±3.4
Square-Okay-Better 56.7±4.1 74.0±2.8 22.0±4.3 1.3±0.9 63.3±4.1 56.7±3.8

Can-Paired 64.0±9.1 70.0±4.3 44.7±1.9 6.0±1.6 70.7±5.2 75.3±1.9

Table 2: Results on Suboptimal Human Data. We present success rates averaged over 3 seeds for each method
across different subsets of the Multi-Human datasets, corresponding to mixtures of demonstrations from “Better”,
“Adequate”, and “Worse” human operators, and finally on a diagnostic dataset with paired success and failure
human trajectories for each starting initialization. Results indicate that BC-RNN is a strong baseline, and that
Batch RL methods perform poorly across all datasets, even on the simple diagnostic dataset.

Can (sim + real). The robot must place a coke can from a large bin into a smaller target bin. Slightly
more challenging than Lift, since picking the can is harder than picking the cube, and the can must
also be placed into the bin.

Square (sim). The robot must pick a square nut and place it on a rod. Substantially more difficult
than Lift and Pick Place Can due to the precision needed to pick up the nut and insert it on the rod.

Transport (sim). Two robot arms must transfer a hammer from a closed container on a shelf to a
target bin on another shelf. One robot arm must retrieve the hammer from the container, while the
other arm must clear the target bin by moving a piece of trash to the nearby receptacle. Finally, one
arm must hand the hammer over to the other, which must place the hammer in the target bin.

Tool Hang (sim + real). A robot arm must assemble a frame consisting of a base piece and hook
piece by inserting the hook into the base, and hang a wrench on the hook. This is the most difficult
task due to the multiple stages that each require precise, and dexterous, rotation-heavy movements.

3.2 Data Collection

To study the effect of dataset source, we collected data from three different sources – Machine-
Generated, Proficient-Human, and Multi-Human (more details in Appendix B).

Machine-Generated (MG). We collected these datasets by first training a state-of-the-art RL al-
gorithm [30] on the Lift and Can task, taking agent checkpoints that are saved regularly during
training, and collecting 300 rollout trajectories from each checkpoint. Consequently, these datasets
are comprised of mixtures of expert and suboptimal data, and resemble datasets from common offline
RL benchmarks [18, 19]. We excluded other tasks because they could not be solved by the RL
algorithm even with substantial tuning. See the appendix for more details.

Proficient-Human (PH) and Multi-Human (MH). Datasets are collected by humans through
RoboTurk [15, 17], a remote teleoperation platform. The PH datasets consist of 200 demonstrations
collected by a single, experienced teleoperator, while the MH datasets consist of 300 demonstrations,
collected by 6 teleoperators of varying proficiency, each of which provided 50 demonstrations. The 6
teleoperators consisted of a “better” group of 2 experienced operators, an “okay” group of 2 adequate
operators, and a “worse” group of 2 inexperienced operators. These data subsets in the Multi-Human
data allowed us to investigate the ability of algorithms to deal with mixed quality human data.

Observation Modalities. To study the effect of observation modalities, we capture a diverse set of
sensor streams when collecting the dataset, including end-effector, gripper fingers, and joints, ground-
truth object poses, and images from an external camera and wrist-mounted camera per robot arm (see
Appendix E). We have two observation spaces – “low-dim” and “image”. Both include end-effector
poses and gripper finger positions, and only differ in whether ground-truth object information is used
(low-dim) or whether that information is replaced by the available camera observations (image).
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(c) Image Hyperparameters

Figure 2: Effect of Observation Space and Hyperparameter Choice. We show how the success rate that
BC-RNN obtains can drop drastically due to changes to the observation space and hyperparameter settings.
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Figure 3: Effect of Dataset Size. We study how the BC-RNN success rate changes when lowering the quantity
of data to 20% and 50%. Results show that less complex tasks (Lift, Can) be learned with a fraction of the data,
while more complex tasks might benefit from even larger human datasets.

3.3 Training and Evaluation Protocols

There are several approaches to offline imitation learning [31–34, 9, 10, 25, 35, 36] and offline
reinforcement learning [26, 27, 37–43] (see Appendix A for more discussion on related work). We
chose to evaluate 6 algorithms in this study – Behavioral Cloning (BC), BC with an RNN policy
(BC-RNN), Hierarchical Behavioral Cloning (HBC) [10], Batch-Constrained Q-Learning (BCQ) [26],
Conservative Q-Learning (CQL) [27], and IRIS [20]. BC-RNN, HBC, and IRIS have all been used
in prior work to learn offline from teleoperated human demonstrations, while BCQ and CQL are
commonly-used offline RL algorithms (see Appendix C). We use binary task completion rewards for
all our experiments. Each agent is trained for N epochs, where each epoch consists of M gradient
steps, and evaluated every E epochs, by running 50 rollouts in the environment and reporting the
success rate over a maximum horizon. For each agent, we report the maximum success rate over the
coarse of training, and average over 3 seeds. For low-dim agents, N = 2000, M = 100, and E = 50,
and for image agents, N = 600, M = 500, and E = 20 (see Appendix B.2).

4 Experiments

In this section, we present each factor that we explored in our study, and note the relevant challenges
from Sec. 2 that each pertains to.

4.1 Algorithm Comparison on Single and Multi-Human Demonstrations (C1, C2)

We trained and evaluated all algorithms on the Proficient-Human (PH) and Multi-Human (MH)
datasets and report the average success rates across 3 seeds in Table 1.

Observation history is crucial for good performance. There is a substantial performance gap
between BC-RNN and BC, which highlights the benefits of history-dependence. The performance gap
is larger for longer-horizon tasks (e.g. ∼ 55% for Transport (PH) compared to∼ 5% for Square (PH))
and for multi-human data compared to single-human data (e.g. ∼ 25% for Square (MH) compared to
∼ 5% for Square (PH)). Interestingly, results are lower for MH datasets compared to PH datasets,
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even though the MH datasets contain 100 more demos (300 demos vs. 200 demos). This most likely
stems from the presence of suboptimal and multimodal data in the MH datasets.

Batch RL algorithms perform poorly on Human Datasets. Recent batch (offline) RL algorithms
such as BCQ and CQL have demonstrated excellent results in learning from suboptimal and multi-
modal agent-generated datasets. Our results confirm the capacity of such algorithms to work well –
BCQ in particular performs strongly on our agent-generated MG datasets that consist of a diverse
mixture of good and poor policies. Surprisingly though, neither BCQ nor CQL performs particularly
well on these human-generated datasets. This puts the ability of such algorithms to learn from more
natural dataset distributions into question (instead of those collected via RL exploration or pre-trained
agents). There is an opportunity for future work in batch RL to resolve this gap.

4.2 Learning from Suboptimal Human Data (C2)

To further investigate how algorithms deal with suboptimal human data, we split our MH datasets
into smaller subsets based on the proficiency of the human operators. The MH-Better, MH-Okay,
and MH-Worse are the 100 demo subsets corresponding to the 2 “better”, 2 “okay”, and 2 “worse”
operators respectively, while MH Worse-Okay, MH Worse-Better, and MH Okay-Better are the 200
demo subsets corresponding to the mixture of the previous subsets. Similar data mixtures have been
used for evaluations in batch RL [18]. Appendix B shows the average trajectory lengths in each data
subset – lower quality datasets contain demonstrations that take more time to solve the task.

BC-RNN is a strong baseline on suboptimal human data, but there is room for improvement.
Table 2 shows that BC exhibits a large performance gap between the Better and Worse 100-demo
subsets (roughly 27% and 35% for Can and Square respectively). Interestingly, BC-RNN is able
to nearly eliminate this gap in performance on the Can task, but not on the Square task. However,
BC-RNN outperforms BC on all datasets (7%-35% improvement). Comparing results on the 100
Better demonstrations and 100 Okay demonstrations to the 200 Worse-Better demonstrations and 200
Worse-Okay demonstrations further allows us to analyze how adding 100 “worse” demonstrations
impacts the performance of each algorithm. Most algorithms decline in performance while BC-RNN
is able to uniformly improve from the added data. Comparing the performance of BC-RNN on the
200-demo Square mixture datasets (55.3%, 73.3%, 74.0%) to the high-quality 200-demo Square (PH)
dataset (84.0%) shows that there is still room for algorithms to improve on the use of this data.

Diagnostic dataset shows that Batch RL struggles in simpler settings as well. The final row of
Table 2 shows additional results on a diagnostic dataset termed Can-Paired, where a single operator
collected 2 demonstrations for each of 100 task initializations – one successful demonstration, and
one where the can is tossed outside of the bin (task failure), for a total of 200 demonstrations. There
is a strong expectation for batch RL algorithms to be able to distinguish between actions leading
to successful placement and actions leading to task failure, but even in this simple setting, most
algorithms suffer, providing a pessimistic view of the state-of-the-art. The 5% improvement that IRIS
provides over BC-RNN suggests that introducing history-dependence into state-of-the-art batch RL
algorithms might be a promising direction for future work.

4.3 Effect of Observation Space (C5)

Learning from image observations can match low-dim agent performance. In Table 3, we present
policy learning results when using image observations instead of ground-truth object locations –
an important setting for real-world policy learning. BC-RNN still maintains superior performance
improvements over BC on the complex Square and Transport tasks, and with the exception of
Transport (MH), maintains nearly the same performance as learning from ground-truth observations.
This result provides an optimistic view for learning with real-world raw sensory observations.

Features used for robot proprioception can matter. In Fig 2a, we study the effect of adding end ef-
fector velocities to the observations (+ EEF Vel), and joint positions and velocities to the observations
(+ Joint). Surprisingly, we find that including end effector velocity information, and joint information
hurts agents trained on low-dim observations substantially (49%-88% relative performance drop),
while image-based agents are more tolerant to the inclusion of this extra information (2%-29%
relative performance drop). We hypothesize that performance drops might be due to overfitting
to the presence of this extra information not needed for solving these tasks. Thus, practitioners
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Dataset BC BC-RNN BCQ CQL

Lift (PH) 100.0±0.0 100.0±0.0 98.0±1.6 52.0±13.0
Can (PH) 97.3±1.9 98.0±0.9 86.7±2.5 0.7±0.9

Square (PH) 62.0±4.9 82.0±0.0 41.3±4.1 -
Transport (PH) 55.3±6.2 72.0±4.3 0.7±0.9 -
Tool Hang (PH) 20.0±5.9 67.3±4.1 3.3±0.9 -

Lift (MH) 100.0±0.0 100.0±0.0 93.3±0.9 11.3±9.3
Can (MH) 85.3±0.9 96.0±1.6 77.3±6.8 0.0±0.0

Square (MH) 46.0±1.6 76.7±3.4 17.3±7.5 -
Transport (MH) 18.7±2.5 42.0±1.6 0.0±0.0 -

Table 3: Results on Image Observations.

Figure 5: (left) Effect of Policy Selection Criteria. We compare how performance decreases when choosing the
policy to evaluate by using the lowest validation loss, or when using the final trained checkpoint, with respect to
the best policy performance. (right) Results on Image Observations. We present success rates for each method
across the image observation human datasets. BC-RNN maintains nearly the same performance as learning from
ground-truth observations, providing an optimistic view for learning with real-world raw sensory observations.

should take care to engineer the robot observation space and exclude possibly irrelevant information –
information-hiding can be a powerful paradigm for training proficient robots [44].

Image randomization and wrist observations can be crucial for manipulation tasks. In Fig 2a,
we report performance drops from removing pixel shift image randomization (- Rand) and the wrist
camera (- Wrist) from image-based agents to understand their importance. We see that removing
randomization results in 47% and 35% relative performance drops on Square and Transport respec-
tively, and removing wrist images results in 9% and 43% relative drops. Consequently, both wrist
camera images and image randomization play a substantial role in producing performant policies. We
confirm the importance of each for visuomotor imitation in the real world as well (see Sec 4.7). Wrist
observations likely help the robot improve gripper alignment for grasping and randomization helps
the policy develop invariance for portions of the image that are not important for action prediction.

4.4 Effect of Hyperparameter Choice (C5)

In this section, we take our default hyperparameters for BC-RNN and study the effect of changing a
subset of them to report practical recommendations for learning from human datasets (see Appendix I
for BCQ and CQL). We present our results in Fig 2b (low-dim) and Fig 2c (image).

(larger LR) Increasing the learning rate from 1e-4 to 1e-3 affects the performance of image-agents
substantially (drop of 35%-63%), while low-dim agents are more tolerant to the change. (no GMM)
Using a deterministic policy instead of learning a GMM action distribution results in significant
relative performance drops on the MH datasets (especially low-dim Transport, with a drop of 58%).
(larger MLP) Using a larger MLP size at each RNN timestep reduces performance uniformly,
suggesting that it is possible to overfit to dataset actions if network architectures are too large.
(shallow Conv) Using a shallow convolutional network [45] instead of the ResNet backbone [46] for
encoding image observations reduces performance significantly – with relative drops of 25%-62%,
suggesting that large-capacity visual encoders are crucial for visuomotor imitation. (smaller RNN
dim) Reducing the size of the RNN hidden dimension from 400 to 100 (low-dim) and 1000 to 400
(image) uniformly decreases performance (drops of 3%-58%), showing the importance of a large
RNN hidden dimension. (Recommendations) We recommend tuning the LR (especially for image
agents) and network structure (MLP size, size of RNN dim) carefully. Opting to use a GMM policy
and a ResNet encoder appears to be uniformly better.

4.5 Selecting a Policy to Evaluate (C4)

Model selection in offline policy learning can be challenging – for this reason, in our simulation
experiments, we evaluated every policy checkpoint online and reported the best one. This is not
feasible for real-world settings, making offline policy selection desirable. In Fig 4a, we show that this
can be non-trivial, by showing the relative performance drop when selecting the policy using the best
loss on validation data (common in supervised learning), and when using the final training checkpoint
as well (common in offline RL [47, 18, 27]) – in both cases, the selected policy is significantly worse
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than the best one (10% to 100% decrease). See Appendix G for more detailed results and discussion.
This motivates the need for better offline evaluation metrics.

4.6 Effect of Dataset Size (C3)

To study how dataset size impacts performance, we formed smaller 20% and 50% subsets of our
human datasets by sampling trajectories. We evaluate low-dim and image BC-RNN agents across
these subsets in Table 27 and Table 28. There are several promising results here. We first note that
less complex tasks (Lift, Can) can yield proficient policies (75%-100% success rate) using a small
fraction of the data (20%). Second, while policies trained on more complex tasks (Square, Transport)
suffer substantially when using 50% or 20% of the data, the converse is also true – adding more data
(e.g. moving from 20% to 50% or 50% to 100% size) can result in significant policy improvement.
This confirms the value of using large human datasets as a means to obtain proficient policies for
challenging and complex manipulation tasks.

4.7 Applicability to Real-World Settings

Here, we show that design decisions made in simulation can potentially transfer to real world settings.
We collected 3 additional real-world datasets with a Franka robotic arm – Lift (Real), Can (Real), and
Tool Hang (Real). Each consists of 200 trajectories collected by one operator. We train BC-RNN and
report the final policy checkpoint success rate, over 30 rollouts, due to the time-consuming nature
of real world policy evaluation. We also emphasize that no real-world hyperparameter tuning took
place, so our results are a lower bound. We were able to train proficient Lift (96.7%) and Can
(73.3%) policies, and the Tool Hang (3.3%) policy is able to generate some task successes, despite
the extremely difficult nature of the task. Furthermore, as in Sec. 4.3, we validate the importance
of pixel shift randomization and the wrist camera by ablating each component on the Can task, and
show that including both is the difference between a proficient and non-proficient real-world policy –
Can (- Rand) (26.7%), Can (- Wrist) (43.3%).

5 Discussion

In this section, we summarize the lessons from our study and make recommendations for future work.

(L1) Models with temporal abstraction can be extremely effective in learning from human
datasets. In Sec 4.1 and Sec 4.2, we demonstrated that history-dependent models (BC-RNN, HBC,
and IRIS) are particularly effective in learning from human datasets compared to algorithms that do
not take temporal context into account.

(L2) Need to improve the ability of batch (offline) RL to learn from suboptimal human datasets.
Sec 4.2 and Appendix I demonstrated that state-of-the-art batch RL algorithms are excellent at
learning from suboptimal machine-generated datasets but much worse at learning from suboptimal
human datasets. They even struggled with a diagnostic dataset with paired good and bad human
demonstration trajectories while IRIS was able to improve slightly on BC-RNN, suggesting that
combining history-dependence with value learning might be a good place to start for improving batch
RL methods [48–51]. This also demonstrates a need to start benchmarking new batch RL algorithms
on human datasets instead of purely on machine-generated datasets.

(L3) Improving offline policy selection is important for real world settings. Sec 4.5 demonstrated
the need for better ways to select an evaluation policy in an offline manner. We hope that our datasets
can help supplement other efforts [29].

(L4) Observation space plays a large role and hyperparameters matter. Sec 4.3 demonstrates that
policies trained on low-dim observations can be very sensitive to the choice of robot proprioception,
while pixel shift randomization and wrist camera images are critical for effective visuomotor policy
learning. The choice of observation space for imitation merits careful consideration – other work
has also confirmed the importance of feature representations used for offline policy learning [52, 53].
Sec 4.4 and Appendix I made practical recommendations for choosing hyperparameters to learn from
human data.

(L5) There is substantial promise for solving more complex tasks using large-scale human
datasets. Sec 4.6 showed that adding more data can result in significant policy improvement on
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complex tasks. Table 3 and Sec 4.7 shows that we could learn proficient policies on the Tool Hang
task, our most complex task, without any hyperparameter tuning on the task or dataset. Together,
these results show the potential of large human datasets as a means to solve challenging and complex
manipulation tasks.

(L6) Study results transfer to real-world settings. In Sec 4.7, we showed that we could directly
apply hyperparameters that were tuned on simulated tasks directly to real-world datasets and tasks.
This provides promise for using our tasks, datasets, and codebase to enable reproducible evaluation
in simulation, while also being confident that conclusions can transfer to real-world settings.

Going forward, we hope that the datasets, tasks, code, and subsequent insights of our study will serve
researchers and practitioners alike.
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Appendix
A Additional Related Works

Human Supervision for Robotics: Prior work has tried using human supervision in the form
of human demonstrations provided both by teleoperating the robot [9, 10] and via kinesthetic
teaching [54–56], corrections to actions taken by the robot [21, 57–59], and positive and negative
feedback for robot actions [60–62, 13, 63, 64].

Offline Learning from Demonstrations: Imitation Learning (IL) is a popular paradigm for training
policies from a set of demonstrations. Offline Imitation Learning typically consists of variants of
Behavioral Cloning (BC) [8], where a policy is trained to output the same actions as the ones taken
by the demonstrator in each state. Offline IL has been used extensively in robotic manipulation [31–
34, 9, 10, 25, 35, 36]. Typically, IL assumes that the demonstration data is optimal. By contrast,
Batch (Offline) Reinforcement Learning [11, 12] is a method to learn from demonstrations that can
consist of both good and bad quality data, by leveraging reward annotations in the datasets. Prior
algorithms [26, 27, 37–43] are mostly evaluated on datasets generated by several RL-trained policies
of varying quality. In this study, we evaluate both offline IL and offline RL algorithms on datasets
collected from one or more humans, which can both break the assumption of optimality in IL, and
present interesting challenges for offline RL methods compared to commonly used RL-generated
datasets.

Empirical Studies in Reinforcement and Imitation Learning: Prior work has benchmarked Rein-
forcement Learning (RL) algorithms in continuous control domains [65], run extensive evaluations of
model-based RL algorithms [66] and on-policy RL methods [67], and shown how Deep RL algorithms
can be extremely sensitive to hyperparameter choices and can make reproducing results challeng-
ing [68]. There are fewer empirical studies in imitation learning. The MAGICAL benchmark [23]
consists of 2D environments that test the ability of IL algorithms to generalize. Both RLBench [24]
and Ravens [25] provide several simulated robot manipulation tasks and expert demonstrations for
imitation learning, but demonstrators are pre-programmed and rely on ground-truth simulator state.
Simitate [69] is an imitation learning benchmark suite consisting of real-world motion trajectories
collected by humans, and carefully translated into simulation using extensive sensor instrumentation
in the real world. By contrast, our datasets are collected via remote teleoperation from humans
in both simulated and real-world settings, allowing fast and easy demonstration collection for a
wide range of tasks without assuming privileged instrumentation. Recently, Hussenot et al. [70]
presented an empirical study on the importance of hyperparameter selection in imitation learning –
it consists of an extensive evaluation of both offline and online imitation learning algorithms using
modest-sized datasets (~10s of trajectories). This work is complementary to ours – we also confirm
the importance of hyperparameter selection when learning offline from human-provided datasets
(~100s of trajectories).

Prior work has also established benchmarks for motion-based learning from demonstration meth-
ods [71, 72], which directly model entire robot arm trajectories. Lemme et al. [72] evaluates motion
generation methods by having a robot arm reproduce several point-to-point motions from demon-
strations. This differs from our focus – tabletop manipulation tasks where a robot must interact
with one or more objects. Lemme et al. [72] also evaluate the robustness of the learned motions
by introducing perturbations – similar mechanisms could be used to understand the robustness of
the policies trained in this study. While such evaluations are important for deploying policies in
real-world settings, we leave this for future work. Similar to our study, recent work by Rana et al. [71]
collected demonstration trajectories across many humans and tasks. However, their datasets consist of
robot end effector trajectories, while our datasets and learning methods focus on leveraging additional
modalities such as object poses and camera images to train policies that can solve tasks across several
scene configurations. Rana et al. [71] also used crowdsourced humans to evaluate learned robot
motions with subjective metrics such as safety, while we primarily evaluate our policies using task
success rate. Subjective measures like safety are important for real-world policy deployment, but this
is also left for future work.

Robot Manipulation Benchmarks: Several benchmark robot manipulation tasks have been proposed
before [73–76, 24, 77]. Benchmark datasets [18, 19] have also been proposed recently for batch
(offline) reinforcement learning. While these datasets span a variety of domains (locomotion, control,
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autonomous driving, video games, robot manipulation), most of the datasets are generated by
autonomous agents trained with online reinforcement learning. Unfortunately, this means that most
of these datasets are limited to tasks that RL methods can solve from scratch. By contrast, we focus
on datasets collected by one or more humans, allowing us to increase the complexity of the tasks
we consider. Furthermore, our study explores how learning from human data can be substantially
different than agent datasets.
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B Dataset Details

Dataset Type Lift Can Square Transport Tool Hang

Machine-Generated (MG) 150±0 150±0 - - -
Proficient-Human (PH) 48±6 116±14 151±20 469±54 480±88

Multi-Human (MH) 104±44 209±114 269±123 653±201 -

MH-Better 72±24 143±29 185±46 461±56 -
MH-Okay 94±30 181±47 265±78 636±128 -
MH-Worse 145±40 304±148 357±150 778±221 -

MH-Worse-Okay 119±44 242±126 311±128 710±115 -
MH-Worse-Better 109±49 224±134 271±140 734±297 -
MH-Okay-Better 83±29 162±44 225±76 597±83 -

Table 4: Average Trajectory Lengths by Dataset. The table shows the average trajectory length (mean
and standard deviation) for each dataset variant. This was used to determine evaluation rollout horizons for
each dataset. The length is a proxy for the quality of the dataset – less proficient humans took more time to
demonstrate the task.

Dataset Type Lift Can Square Transport Tool Hang

Machine-Generated(MG) 400 400 - - -
Proficient-Human(PH) 400 400 400 700 700

Multi-Human(MH) 500 500 500 1100 -
MH-Better 500 500 500 1100 -
MH-Okay 500 500 500 1100 -
MH-Worse 500 500 500 1100 -

MH-Worse-Okay 500 500 500 1100 -
MH-Worse-Better 500 500 500 1100 -

Table 5: Evaluation Rollout Length by Dataset. The table shows the evaluation rollout horizon for each dataset.
These were determined based on the average rollout length of trajectories in each dataset.

B.1 Data Collection

Machine-Generated (MG) Datasets. We trained RL agents to solve tasks and we subsequently
collected data from the trained agents to form our MG datasets. We only considered the Lift and Can
tasks, as the other tasks were exceedingly difficult for RL to solve. Our RL algorithm is based on
the Soft Actor-Critic [30] implementation in RLkit. We trained the algorithm with episode lengths
of 150 and a batch size of 1024, and used dense rewards to facilitate exploration. We trained on the
Lift and Can tasks for 2.4 million and 7.2 million environment steps respectively. For each task we
saved agent checkpoints every 600k timesteps in training, which amounts to 5 checkpoints for Lift
and 13 checkpoints for Can. Most checkpoints achieved 0% average task success rate but the last
few checkpoints reached an average task success rate of ∼ 70−80%. For generating the datasets,
we loaded each saved checkpoint and generated 300 rollouts of a fixed length of 150 timesteps. We
annotated the transitions in the rollouts with sparse task completion reward and a “done” signal of
True when the corresponding next state in the transition represented task success. Overall the Lift
dataset consists of 225k transitions, and the Can dataset consists of 585k transitions.

Proficient-Human (PH) and Multi-Human (MH) Datasets. Datasets were collected by using the
RoboTurk platform [15, 17]. Our six human operators used smartphones to control robot arms hosted
on a simulation server and were provided with video streams in a local web browser. The six operators
were located at distances ranging from tens to several thousands of miles from the simulation server,
and consisted of two "better" quality operators, two "okay" operators, and two "worse" operators.
Since the Transport task requires controlling two arms, we used Multi-Arm RoboTurk [36] to allow
pairs of operators to collect data. The Transport (PH) dataset consists of 300 demonstrations collected
jointly by the two proficient operators, while the Transport (MH) dataset consists of 6 sets of 50
demonstrations, where each set consists of a pairing of demonstrators (Better-Better, Okay-Okay,
Worse-Worse, Worse-Better, Okay-Better, Worse-Okay). As explained in Sec 4.2, we also further split
the MH datasets into smaller subsets to investigate how suboptimal human data affects performance.
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Unlike the other tasks, all MH data subsets consist of exactly 50 demonstrations, corresponding to a
specific pairing of demonstrators. Table 4 shows the average trajectory length by dataset, which is a
proxy for the quality of the dataset – less experienced operators produced longer trajectories.

Can-Paired Dataset. A single experienced operator collected 2 demonstrations for each of 100 task
initializations on the Can task, resulting in 200 total demonstrations. Each pair of demonstrations
consists of a "good" trajectory, where the can is picked up and placed in the correct bin, and a "bad"
trajectory, where the can is picked up, and tossed outside of the robot workspace. Since the task
initializations are identical, and the first part of each trajectory leading up to the can grasp is similar,
there is a strong expectation for algorithms that deal with suboptimal data, to be able to filter the good
trajectories from the bad ones, and achieve near-perfect performance (for reference, BC-RNN can
achieve near-perfect performance on the 50% subset of Can (PH), which corresponds to 100 good
quality demos, see Fig 3).

Preparing Demonstration Subsets. In order to prepare smaller datasets used in Sec 4.6 and Fig 3,
we sampled a fixed portion (20% and 50%) of the trajectories uniformly per human that provided
data. This ensured that the smaller size datasets were not biased towards higher or lower quality data.
We also split all datasets and data subsets into training (90%) and validation (10%) subsets, using the
same methodology. Models were not trained on the validation subsets.

B.2 Training Setup

As mentioned in Sec 3, each agent is trained for N epochs, where each epoch consists of M gradient
steps, and evaluated every E epochs, by running 50 rollouts in the environment and reporting the
success rate over a maximum horizon. All networks are trained using Adam optimizers [78]. The
average trajectory length in each dataset (Table 4) was used to determine an appropriate evaluation
rollout horizon for each dataset (Table 5). For each agent, we report the maximum success rate
over the coarse of training, and average over 3 seeds. For agents trained with low-dimensional
observations, N = 2000, M = 100, and E = 50, and for image observations, N = 600, M = 500, and
E = 20. With the exception of the MG datasets, agents were only trained over 90% training subsets,
with 10% held out as validation.
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C Problem Setup and Algorithm Details

Consider a robot manipulation task, formulated as an infinite-horizon discrete-time Markov De-
cision Process (MDP), M = (S,A,T ,R,γ,ρ0), where S is the state space, A is the action space,
T (·|s,a) is the state transition distribution, R(s,a,s′) is the reward function, γ ∈ [0,1) is the dis-
count factor, and ρ0(·) is the initial state distribution. At every step, an agent observes the state
st , uses a policy π to choose an action, at = π(st), and observes the next state, st+1 ∼ T (·|st ,at),
and reward, rt = R(st ,at ,st+1). The goal is to learn an policy π that maximizes the expected re-
turn: E[

∑
∞

t=0 γ tR(st ,at ,st+1)]. In this study, we assume access to an offline dataset of trajectories
D = {(si

0,a
i
0,r

i
0,s

i
1, ...,s

i
T i)}N

i=1 [12] and that a policy πθ must be learned offline, without collecting
any additional samples from the MDP.

Rewards and Dones. Unless otherwise mentioned, the rewards used in this study are binary task
completion rewards, R(s,a,s′) = 1[s′ ∈ G], where G ⊂ S is the set of all states where the task
is considered to be solved. Similarly, the done signal, which indicates the end of an episode, is
considered to be true for a transition (s,a,r,s′) if the task is solved in state s′ or if it is the last
transition in a dataset trajectory. The reward and done signals are only used by Batch (Offline) RL
algorithms (BCQ, CQL, IRIS).

We now outline the Imitation Learning and Batch (Offline) Reinforcement Learning algorithms used
in our study.

C.1 Behavioral Cloning (BC, BC-RNN, HBC)

Behavioral Cloning [8] (BC) is a common method for learning a policy from a set of demonstrations.
It trains a policy πθ (s) to clone the actions in the dataset via the objective:

argmin
θ

E(s,a)∼D||πθ (s)−a||2.

BC-RNN is a variant of BC that uses a Recurrent Neural Network (RNN) as the policy network –
this allows the policy to model temporal dependencies in the data through the recurrent hidden state.
The network is trained on length-T temporal sequences of data (st ,at , ...,st+T ,at+T ). The network
predicts the sequence of actions using the sequence of states as input. At test-time, the RNN policy
network is unrolled one-step at a time, at ,ht+1 = πθ (st ,ht) where h is the RNN hidden state. The
hidden state is refreshed every T steps.

Hierarchical Behavioral Cloning (HBC) trains hierarchical policies and has been shown to be effective
in learning from offline human demonstrations [20, 10, 36]. HBC consists of a low-level policy that
is conditioned on future observations sg ∈ S (termed subgoals) and outputs action sequences to try
and achieve them, and a high-level policy that predicts future subgoals from the current observation.
The architecture and training procedure for the low-level policy πL

θ
(s,sg) is nearly identical to BC-

RNN – the only difference is the subgoal conditioning (during training, this is the final observation
of the sampled sequence). The high-level policy πH

θ
(s) is trained to predict subgoal observations

st+T that occur T timesteps in the future from the current observation st , and is often a conditional
Variational Autoencoder (cVAE) [79] that learns a conditional distribution πH(st+T |st). At test-time,
the high-level policy is queried for a new subgoal every T timesteps, and the low-level policy is
unrolled subsequently for T timesteps using the predicted subgoal.

C.2 Batch Constrained Q-Learning (BCQ)

Batch Constrained Q-Learning (BCQ) [26] is a commonly used algorithm for batch (offline) rein-
forcement learning [11, 12]. It maintains a Q-network Qψ(s,a), a generative action model pω(a|s)
(in the original implementation, this is a cVAE [79]), and (optionally) a perturbation actor network
πθ (s,a). Fujimoto et al. [26] noted that target value estimation in batch RL can suffer from overesti-
mation error due to querying the Q-network on actions unseen in the dataset. To address this, BCQ
modifies the way target value estimates are constructed for the temporal difference Q-network loss by
approximately constraining the Q-network maximization to actions seen in the dataset.

To form the target value estimate, actions are sampled using the generative model and perturbed using
the perturbation actor A = {ai +πθ (s,ai)|ai ∼ pω(·|s)}N

i=1, and then used to maximize the Q-network
at the next state Qtarget = r + γ maxai∈A Q

′
ψ(s
′,ai). The Q-network is trained by minimizing the
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temporal difference loss (Qψ(s,a)−Qtarget)
2. As in DDPG [80], the perturbation actor is trained

to maximize Q-values via the loss −Qψ(s,a+πθ (s,a))|a ∼ pω(·|s). Using the perturbation actor
to modify the samples is optional – we find that removing it is often beneficial (see Appendix I),
as in other prior work [42]. At test-time, N actions are sampled from the generative action model,
perturbed by the actor (if present), and the action with the highest Q-value is selected.

C.3 Conservative Q-Learning (CQL)

Conservative Q-Learning (CQL) [27] is a recent batch (offline) RL algorithm that addresses the
overestimation issue of Q-values directly. While other offline RL algorithms place constraints on the
policy to stay within the support of data, CQL places an implicit constraint on the Q-function that
lower-bounds its values. Specifically a Q-value regularizer is added to the policy evaluation objective
to ensure that the estimated Q-values under the policy πθ (s,a) do not overestimate the Q-values
under the data distribution µ(a|s):

Qk+1← argmin
Q

1
2
(Q(s,a)−Qtarget)

2 +α

(
Es∼D,a∼µ(a|s)[Q(s,a)]−Es∼D,a∼πθ (a|s)[Q(s,a)]

)
Kumar et al. [27] proved that this formulation lower bounds the true Q function and has theoretical
improvement guarantees. CQL is simple to implement and has shown state-of-the-art empirical
results on various offline datasets.

C.4 Implicit Reinforcement without Interaction at Scale (IRIS)

Implicit Reinforcement without Interaction at Scale (IRIS) [20] is a batch (offline) RL algorithm
proposed for learning from large robot manipulation datasets collected by multiple humans. It is
identical to Hierarchical Behavioral Cloning (HBC) except that the high-level policy consists of both
a cVAE subgoal sampler and a value function trained using Batch Constrained Q-Learning (BCQ).
Similar to BCQ, the high-level policy selects the subgoal by sampling N subgoals from the cVAE,
and picking the state with the highest value estimate. Since the low-level policy is unimodal, all
modeling of suboptimal and diverse data takes place in the high-level policy, at a reduced frequency
(every T timesteps), enabling temporal abstraction.
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D Hyperparameters

D.1 Network Architecture

Here we briefly overview the general architecture design. Please refer to later sections for more
detailed hyperparameter choices.

General Network Details. All Multi-Layer Perceptrons (MLPs) use ReLU activations. All Recur-
rent Neural Networks (RNNs) are 2-layer LSTMs, where the final layer hidden states are fed to
downstream modules.

Encoding Observations. All networks have an observation encoder that processes observation
dictionaries into a single vector. The encoder takes image observations, passes each through an
observation-specific encoder into a low-dimensional vector, and finally concatenates the encoded
image vectors with the low-dimensional observation vectors. For example, visuomotor policies
typically contain two image encoders, one for the frontview camera, and one for the wrist camera.
Each image encoder consists of a ResNet-18 network [46] followed by a spatial-softmax layer [45].

Observation-Conditioned Network Structure. Here we describe the general structure of networks
that take observations as inputs. This includes policies, as well as value and state-action value
functions, and comprises the majority of all networks used by the algorithms. First, observations
are encoded (if they are images) and concatenated together into a flat vector. Next, in the case of
networks that use an RNN (policies for BC-RNN, HBC, and IRIS), the flat encoded observations
are sent through the RNN in order to produce hidden state outputs. Finally, outputs are passed to an
MLP consisting of one or more layers in order to predict the item of interest. In the case of policy
networks, the output either consists of raw actions, or the parameters of an action distribution (e.g.
Gaussian Mixture Model parameters), while value functions output a single scalar. Policy action
predictions (raw action predictions and mean parameter predictions) are passed through a tanh layer
for normalization to [-1, 1].

D.2 Hyperparameter Selection Procedure

For each algorithm, we tuned hyperparameters separately for the Machine-Generated (MG) datasets,
the Proficient-Human (PH) datasets, and the Multi-Human (MH) datasets. We used both the Lift
(MG) and Can (MG) datasets for selecting a single set of hyperparameters for use on all MG datasets.
We used the Square (PH) and Transport (PH) datasets for selecting a single set of hyperparameters for
use on all PH datasets. We used the Square (MH) and Transport (MH) datasets for selecting a single
set of hyperparameters for use on all MH datasets. We used Weights and Biases [81] to conduct
hyperparameter tuning.

Note that the Tool Hang (sim) and all real tasks were purely used for evaluation purposes – no
hyperparameter tuning took place on these tasks. This was to see whether our insights from
hyperparameter tuning above could transfer to our hardest simulation task, and directly to real robot
datasets.

Also note that we excluded HBC and IRIS from image-based training, due to the dependence of these
algorithms on subgoal reconstructions, which could be problematic for high-dimensional images.

BC and BC-RNN. We scanned the following hyperparameters for BC and BC-RNN:

• Learning rate: We compared 1e−3 and 1e−4 for both BC and BC-RNN. We found lower
learning rate to perform better consistently.

• Actor network dimension: We scanned different dimensions for the action output network
(MLP): [300,400], [1000,1000], and no MLP (directly output from RNN). We found higher
capacity works better for BC, and no MLP works better for RNN. Our hypothesis is that
RNN already has enough capacity to learn the tasks, and larger actor network results in
overfitting.

• GMM for action output: Stochastic policy (GMM output) performs better than determinis-
tic policy, although the gap is smaller for BC-RNN than for BC. We scanned different number
of modes: {5,10,100} standard deviation minimum clipping: {1e−2,1e−4,1e−6} and
observed no significant difference in performance.
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• Sequence length (RNN): We compared sequence length {10,30,50}. We found longer
sequence length does not improve performance significantly. We opt for short sequence
length for training efficiency.

• RNN Hidden Dim: We compared different hidden dimension sizes for the RNN (LSTM):
{100,400,1000,2000}. We observed that 400 and 1000 tend to work well for most tasks.

BCQ. As in the original implementation [26], we used two critic networks. When using the pertur-
bation actor, we also left the scale unchanged from the original (0.05). When using the VAE action
sampler, we used a latent dimension of 14. We scanned the following hyperparameters:

• Learning rate: For the learning rate of the critic (CLR) and the action sampler (ASLR), we
compared 1e−3 and 1e−4. We found smaller learning rate for the action sampler usually
has better performance on human datasets, while there was not much difference between the
two learning rates for the critic.

• Actor/Critic network dimension: We compared the networks with layer dimensions
[300,400] and [1024,1024]. We found there is no difference for them with Machine-
Generated (MG) and Proficient-Human (PH) datasets. For Multi-Human (MH) dataset,
larger network dimension [1024,1024] has better results.

• Perturbation actor: We compare the results of whether use the perturbation actor for the
BCQ action sampling[80]. As is shown in Table. 18, we found the performance drastically
decreases when using the actor. By contrast, with the machine-generated data (MG), we
found BCQ with actor enabled usually has better performance.

• Action sampler (VAE vs GMM): We compared two types of action sampler - the VAE and
GMM and found that the VAE generally has better performance than the GMM sampler.
However, the GMM sampler also allows for a direct comparison with BC – see Table 19 for
results.

• VAE KL: We scanned {5e−1,5e−2,5e−3,5e−4} the weight of KL for the VAE action
sampler and found that larger KL weights 5e−1,5e−2 show better performance.

• VAE Layer Dims:: For the VAE action sampler, we compared the encoder / decoder / prior
layer dimensions [300,400] and [1024,1024]. We found there is no significant difference for
them in low-dimensional tasks. With image observation input, larger dimension [1024,1024]
outperforms [300,400].

• VAE prior: While the VAE prior is commonly a normal prior N(0,1), it can also be learned
as part of the KL loss. We compared using the normal prior to using a state-dependent
GMM prior, whose parameters are output by an MLP. We found that the normal prior N(0,1)
generally performs better than the learned GMM prior, except for the Multi-Human(MH)
dataset. Therefore, we opted the learned GMM prior only for Multi-Human(MH) dataset
and keep N(0,1) prior for the others.

• Tau (target network update rate): We compared 5e−3 and 5e−4 and found the lower
value of 5e−4 to give better results.

• Num action samples (train/test): During training, BCQ requires generating a number of
samples from the action sampler to do the Bellman backup, while at test-time, BCQ requires
generating action samples to approximately maximize the critic over the samples to choose
an appropriate action. We compared [10,100] and [100,1000] for the number of action
samples during training and testing and found that [10,100] works better.

CQL. In contrast to other algorithms, we primarily tuned CQL hyperparameters on the low-dim
Lift (MG) dataset, due to poor performance on the harder Square (PH) and Transport (PH) datasets.
In subsequent experiments, we found that these hyperparameter settings worked better than other
choices on other datasets as well. For all experiments we used a discount factor of γ = 0.99, a target
network update rate of τ = 0.005, and actor / critic network layer sizes of [300,400]. We scanned the
following hyperparameters:

• Learning rate: For low-dim experiments we scanned an extensive sweep of learning rates
for the Q network and the policy, spanning values of {1e− 5,3e− 5,1e− 4,3e− 4,1e−
3,3e−3,1e−2}. For the Q network we found that 1e−3 performed best — lower values
slowed down learning while higher values led to unstable learning. For the policy we found
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that 3e− 4 and 1e− 3 worked well, though 3e− 4 performed slightly better. For image
experiments we performed a smaller sweep and found that 1e−4 for both the Q network
and policy performed relatively well compared to other learning rates.

• Deterministic backup: As suggested by the CQL implemented from Kumar et al. [27], we
experimented with a deterministic Bellman backup objective — i.e. removing the additional
entropy term from the target Q value backup. We found that the deterministic backup
outperformed the non-deterministic backup, though at times the gains were marginal. We
subsequently chose to deterministic variant.

• BC start steps: We experimented with replacing the policy loss objective for CQL with
the behavior cloning objective for the first 40000 gradient steps of training. We found
that the performance of the agent degraded after these initial gradient steps, so we set this
hyperparameter to 0 in all subsequent experiments.

• Batch size: For low-dim experiments, we found that increasing the batch size from the
default value of 100 to 1024 can lead to significant gains in stability and performance. For
image experiments we were bottlenecked by GPU memory and we used a batch size of 8.

• Lagrange variant: We found that the Lagrange variant consistently performed better than
the non-Lagrange variant and was less sensitive to hyperparameters. We therefore decided
to use the Lagrange variant in all of our experiments.

• Lagrange threshold τ : We found that a threshold of τ = 1 often caused the dual weight to
diverge to large values. We subsequently experimented with higher values of 5,10,25 and
found that the algorithm was relatively stable with all of these with no major difference in
performance. We subsequently chose τ = 5.

HBC. We scanned the following hyperparameters for HBC:

• Learning Rate: We scanned 1e−3,1e−4 for both the policy and goal learning rate, and
generally found the higher learning rates to perform better.

• VAE vs AE: We compared using a VAE vs. only an AE for the planner network, and found
the best performing VAE model outperformed the best performing AE model.

• VAE KL: We compared using 5e−1,5e−2,5e−3,5e−4, and found that 5e−4 worked
the best.

• VAE Prior: We compared using N (0,1),Learned GMM priors, and found that, when tuned,
the GMM prior worked the best.

• VAE Latent Dim: We compared 2,16,100, and found that 16 worked the best.

• VAE Layer Dims: We compared [300,400], [1024,1024] as the encoder / decoder / prior
layer dimensions, and found that [1024,1024] worked the best.

• RNN Hidden Dim: We compared 100,400,1000,2000 and found that 400 worked the best.

• Actor MLP Dims: We compared [], [300,400], [1024,1024] and found that no hidden layers
([]) worked the best.

IRIS. We first initialize our scan with the best hyperparameters from HBC and BCQ.
Note that from our BCQ scan, we use Action Sampler Learning Rate = 1e − 4 and
Num Action Samples (Train/Test) = 10/100. We also use Tau = 5e− 4 and no value actor for
PH and MH datasets and Tau = 5e−3 with value actor enabled for MG datasets. We then proceeded
to scan over the following hyperparameters:

• Learning Rate: We compared 1e−3,1e−4 for the policy, goal, and value learning rates
individually, and generally found the higher learning rates to perform better. The exception
is the multi-human setting, where we found a lower Value LR to work better.

• Value KL Weight: We compared 0.5,0.05, and found that both values generally performed
similarly.

• Value Actor: We compared using a value actor True,False on the MG datasets, and found
that an actor can improve results on the Can MG dataset.
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D.3 Final Hyperparameters

We present our finalized set of hyperparameters in Tables 6 and 7 for BC, Tables 8 and 9 for BC-RNN,
Tables 10 and 11 for BCQ, Table 12 for HBC, Table 13 for IRIS, and Tables 14 and 15 for CQL. Each
column shows the hyperparameters for learning from a dataset setting (shared across environments):
PH for proficient human, MH for multiple humans, MG for machine-generated. - means the
hyperparameter is inherited from the default hyperparameters shown on the left-most column. For
further details on the training setup shared by all algorithms (such as the number of gradient steps
and epochs), see Appendix B.2.

Table 6: BC Hyperparameters - Low-Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

LR 1e−4 - - 1e−3
Actor MLP Dims [1024,1024] - - -

GMM Num Modes 5 - - no-gmm

Table 7: BC Hyperparameters - Image (IM)

Hyperparameter Default
Dataset

PH MH MG

LR 1e−4 - - -
Actor MLP Dims [1024,1024] - - -

GMM Num Modes 5 - - no-gmm
Image Encoder ResNet-18 - - -

SpatialSoftmax [45] (num-KP) 64 - - -

Table 8: BC-RNN Hyperparameters - Low-Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

LR 1e−4 - - -
Actor MLP Dims [] - - -
RNN Hidden Dim 400 - - -

RNN Seq Len 10 - - -
GMM Num Modes 5 - - no-gmm

Table 9: BC-RNN Hyperparameters - Image (IM)

Hyperparameter Default
Dataset

PH MH MG

LR 1e−4 - - -
Actor MLP Dims [] - - -
RNN Hidden Dim 1000 - - -

RNN Seq Len 10 - - -
GMM Num Modes 5 - - no-gmm

Image Encoder ResNet-18 - - -
SpatialSoftmax [45] (num-KP) 64 - - -

D.4 Additional Details on Hyperparameter Choice Study for BC-RNN

In Sec 4.4, Fig 2b, and Fig 2c, we presented results that showcase how changing a subset of BC-RNN
hyperparameters can result in large performance decreases. In this section, we provide more details
for each change.

Larger LR. We changed the policy learning rate from the default 1e-4 to 1e-3.
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Table 10: BCQ Hyperparameters - Low Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

CLR 1e−4 - - 1e−3
ASLR 1e−4 - - 1e−3

Critic Dims [300,400] - [1024,1024] -
Actor Dims [300,400] - [1024,1024] -

Perturb Actor False - - True
Action Sampler VAE - - -

VAE KL 5e−2 - 5e−1 5e−1
VAE Dims [300,400] - [1024,1024] -
VAE Prior N(0,1) - GMM -

Tau 5e−4 - - 5e−3
Num Action Samples [10,100] - - -

Table 11: BCQ Hyperparameters - Image (IM)

Hyperparameter Default
Dataset

PH MH MG

CLR 1e−4 1e−3 - 1e−3
ASLR 1e−4 - - 1e−3

Critic Dims [300,400] - [1024,1024] -
Actor Dims [300,400] - [1024,1024] -

Perturb Actor False - - -
Action Sampler VAE - - -

VAE KL 5e−2 - - 5e−1
VAE Dims [1024,1024] - - -
VAE Prior N(0,1) - GMM -

Tau 5e−4 - - 5e−3
Num Action Samples [10,100] - - -

Table 12: HBC Hyperparameters - Low Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

Planner LR 1e−3 - - -
Planner VAE KL 5e−4 - - -

Planner VAE GMM Prior True - - -
Planner VAE GMM Latent Dim 16 - - -

Planner VAE MLP Dims [1024,1024] - - -
Actor LR 1e−3 - - -

Actor RNN Hidden Dim 400 - - 100
Actor MLP Dims [] - - [1024,1024]

Table 13: IRIS Hyperparameters - Low Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

Planner LR 1e−3 - - -
Planner VAE KL 5e−4 - - -

Planner VAE GMM Prior True - - -
Planner VAE GMM Latent Dim 16 - - -

Planner VAE MLP Dims [1024,1024] - - -
Actor LR 1e−3 - - -

Actor RNN Hidden Dim 400 - - -
Actor MLP Dims [] - - -

Value LR 1e−3 - 1e−4 -
Value KL 0.5 - 0.05 -
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Table 14: CQL Hyperparameters - Low Dim (LD)

Hyperparameter Default
Dataset

PH MH MG

Q network LR 1e−3 - - -
Policy LR 3e−4 - - -

Deterministic Backup True - - -
BC Start Steps 0 - - -

Batch Size 1024 - - -
Lagrange True - - -

Lagrange Threshold τ 5.0 - - -
Actor MLP Dims [300,400] - - -

Table 15: CQL Hyperparameters - Image (IM)

Hyperparameter Default
Dataset

PH MH MG

Q network LR 1e−4 - - -
Policy LR 1e−4 - - -

Deterministic Backup True - - -
BC Start Steps 0 - - -

Batch Size 8 - - -
Lagrange True - - -

Lagrange Threshold τ 5.0 - - -
Actor MLP Dims [300,400] - - -

No GMM. By default, all BC-RNN policies on PH and MH learned a Gaussian Mixture Model
(GMM) distribution. Here, we replace the GMM distribution with a direct action prediction.

Larger MLP. As noted in Appendix D.1 above, there is an MLP that transforms RNN hidden states
into action (or action distribution) predictions. By default, we use a single linear layer, but here we
try adding two layers of size 1024.

Shallow Conv. As noted in Appendix D.1 above, all image encoders are ResNet-18 networks. Here,
we tried replacing the ResNet with the shallow convolutional network from Finn et al. [45].

Smaller RNN Dim. By default, we use a hidden layer size of 400 for low-dimensional datasets, and
1000 for image datasets. Here, we tried reducing the dimension to 100 for low-dim, and 400 for
image.
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E Additional Details on Task Environments

Figure E.1: Task Demonstrations. We showcase example demonstration trajectories for the Transport (top),
Tool Hang (middle), and Tool Hang (Real) (bottom) tasks, to provide a better sense of each stage of these tasks.

E.1 Simulation Tasks

All simulation tasks were designed using MuJoCo [82] and the robosuite framework [76]. We used
Panda robotic arms in both simulation and the real world for this study. The action space for the agent
is a 7-dimensional vector for each arm where the first 3 coordinates are the desired translation from
the current end effector position, the next 3 coordinates encoder the desired delta rotation from the
current end effector rotation, and the final coordinate controls the opening and closing of the gripper
fingers. The delta rotation is encoded in axis-angle form, where the norm of the 3-vector is the angle,
and normalizing the 3-vector produces the axis. The policy outputs actions at a rate of 20 Hz. Policy
actions are transformed into end effector target poses and sent to an operational space controller [83]
that outputs the robot joint torques at 500 Hz to try and achieve the desired cartesian poses.

All simulation environments will be released along with datasets and codebase upon publication. We
next describe the low-dimensional object observations and initial state randomization for each task.

Lift. Object observations (10-dim) consist of the absolute cube position and cube quaternion (7-dim),
and the cube position relative to the robot end effector (3-dim). The cube pose is randomized at the
start of each episode with a random z-rotation in a small square region at the center of the table.

Can. Object observations (14-dim) consist of the absolute can position and quaternion (7-dim), and
the can position and quaternion relative to the robot end effector (7-dim). The can pose is randomized
at the start of each episode with a random z-rotation anywhere inside the left bin.

Square. Object observations (14-dim) consist of the absolute square nut position and quaternion
(7-dim), and the square nut position and quaternion relative to the robot end effector (7-dim). The
square nut pose is randomized at the start of each episode with a random z-rotation in a square region
on the table.

Transport. Fig E.1 (top) shows a full demonstration of the task. Object observations (41-dim) consist
of the absolute position and quaternion of the hammer (7-dim), the absolute position and quaternion
of the trash cube (7-dim), the absolute position and quaternion of the lid handle (7-dim), the target
bin position (3-dim), the trash bin position (3-dim), the relative positions of the hammer and the lid
handle with respect to the first arm end effector (6-dim), the relative positions of the hammer and
trash cube with respect to the second arm end effector (6-dim), a binary indicator for the hammer
reaching the target bin (1-dim), and a binary indicator for the trash reaching the trash bin (1-dim).
The position of all bins, the lid, the trash cube, and the hammer are randomized in small squares at
the start of each episode. The z-rotation of the trash cube and the hammer are also randomized with a
full range of 108 and 60 degrees respectively.
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Tool Hang. Fig E.1 (middle) shows a full demonstration of the task. Object observations (44-dim)
consist of the absolute position and quaternion and relative pose and quaternion with respect to the
end effector of the base frame (14-dim), the insertion hook (14-dim), and the ratcheting wrench
(14-dim), as well as binary indicators for whether the stand was assembled (1-dim) and whether the
tool was successfully placed on the stand (1-dim). The position of the insertion hook and ratcheting
wrench and z-rotation (range of 40 degrees) are randomized in a small square at the beginning of the
episode.

E.2 Real World Task Setup

We first describe details about the robot workspace and setup. Next, we discuss the materials needed
to construct each physical task. We took care to approximately match the visual appearance, the
physical dimensions, and the task initialization randomizations of the real tasks to those in simulation.

Workspace and Setup. Our physical robot workspace consists of a Franka Emika Panda robotic arm,
a front-view Intel RealSense SR300 camera, and a wrist-mounted Intel RealSense D415 camera. The
robot arm and the front-view camera are attached rigidly to the table, while the wrist-view camera
points towards the space in between the robot gripper fingers. Demonstration data was collected from
the robot sensors and the two cameras at approximately 20 Hz. Similar to simulation, the robot is
controlled using an operational space controller, using the same action space as the one in simulation
(see above).

Lift (Real). A white 3D-printed cube that measures 4 cm in all dimensions was used for this task,
with a small initialization square that roughly corresponds to the one for the simulation task.

Can (Real). We purchased this tray for the left bin (where the can starts in each episode), and four of
these small boxes to construct the right bin. We used a 7.5 oz Coca Cola Zero Sugar Diet Soda Can
(empty, and stuffed with some paper) as the coke can.

Tool Hang (Real). Fig E.1 (bottom) shows a full demonstration of the task on the real robot. We
purchased this handbag stand, and sawed the base rod and the hook rod in half. We also outfitted the
bottom of the hook rod with a soldering iron tip using 2-part epoxy in order to make the hook more
amenable to insertion. We also purchased this ratcheting wrench tool set and used the 17mm-19mm
wrench for the task.

E.3 Observation Space DetailsStudy Design: Observation Space
Low-dimensional (ld)

8

Image (im)

Proprioception 
(EEF Pose + Finger Pose)

Ground-truth
Object States External Camera 

Image
Wrist Camera 

Image

Proprioception 
(EEF Pose + Finger Pose)

Figure E.2: Observation Spaces. The figure shows the low-dimensional and image observation spaces used for
our study. Proprioception, and camera images are provided for each robot arm in the environment.

In this section, we provide additional details related to the observation spaces used to train agents
(shown in Fig E.2). Both low-dim agents and image agents receive proprioception observations
(9-dim per arm) consisting of the end effector position (3-dim), quaternion (4-dim), and gripper
finger positions (2-dim). The low-dim agents also receive object observations (described above, see
Appendix E.1), while image agents receive an external camera image and a wrist camera image
per robot arm. We first provide further details on cameras and image sizes used per task, then we
discuss pixel shift randomization details (shown to be crucial for visuomotor learning, see Sec 4.3
and Fig 2a), and finally, we provide more details on the experiments in Sec 4.3.
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Image Observations per Task. For all tasks except Transport, we provide two image observations
– one from a front-view camera and one from a wrist-mounted camera. For the Transport task, we
provide four image observations to the agent – two from shoulder-view cameras per arm, and two
from wrist-mounted camera on each arm. The front-view and shoulder-view cameras are the same
cameras used by human operators to provide task demonstrations. All simulation tasks, with the
exception of Tool Hang, provide 84 by 84 images. All real robot tasks, with the exception of Tool
Hang, provide 120 by 120 images. Tool Hang, in both simulation and real world provides 240 by 240
images (due to the need for high-precision control). On the real robot, raw camera frames are read
from the camera at a full resolution of 640 by 480, then a center crop of 480 x 480 is applied, and
finally, images are resized to the appropriate resolution.

Additional Details for Pixel Shift Randomization. To implement random pixel shifts [84–87] for
input image observations, we take large random crops from the source images when feeding image
observations to any network. For each input image of width W and height H, we randomly crop
a region of width w and height h, where W −w and H−h is small. For (H,W ) = (84,84) we use
(h,w) = (76,76), for (H,W ) = (120,120) we use (h,w) = (108,108) and for (H,W ) = (240,240)
we use (h,w) = (216,216).

Additional Details for Observation Space Study. Here, we describe the observations added for the
experiments presented in Sec 4.3 and Fig 2a. When adding EEF Vel observations, we added linear
end effector velocity (3-dim per arm), angular end effector velocity (3-dim per arm), and gripper
finger velocities (2-dim per arm). When adding Joint observations, we encoded the joint positions
using cosine (7-dim per arm) and sine (7-dim per arm), and also provided joint velocities (7-dim per
arm).
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F Learning Curves

In this section, we present learning curves that show success rate versus epoch for BC-RNN on the
Proficient-Human (PH) and Multi-Human datasets. Notice that epoch-to-epoch performance can vary
drastically, even though the number of evaluation rollouts per checkpoint is high (50), suggesting that
this is caused by the mismatch between training and evaluation objectives (C4). See Appendix G for
more discussion.

(a) Lift (PH, ld) (b) Can (PH, ld) (c) Square (PH, ld) (d) Transport (PH, ld)

(e) Lift (MH, ld) (f) Can (MH, ld) (g) Square (MH, ld) (h) Transport (MH, ld)

(i) Lift (PH, im) (j) Can (PH, im) (k) Square (PH, im) (l) Transport (PH, im)

(m) Lift (MH, im) (n) Can (MH, im) (o) Square (MH, im) (p) Transport (MH, im)

Figure F.1: Learning Curves. We show the success rate versus epoch for BC-RNN on the Proficient-Human
(PH) and Multi-Human (MH) datasets, across 3 seeds. Notice that epoch-to-epoch performance can vary
drastically.
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G Additional Results on Policy Selection

In this section, we present some more results and discussion on offline policy selection related to
Sec 4.5 and Fig 4a. We first show that policy performance can vary substantially during a training
run – this is why policy selection is non-trivial. One might expect that adding more validation data
could help improve its use as a selection criteria for selecting a good policy. We empirically show
that this is not necessarily true. Finally, we show that success rate can keep climbing, even while the
validation loss increases substantially.

Policy checkpoints can vary substantially in performance during training, even when perfor-
mance appears to converge. Fig F.1 shows several different learning curves for BC-RNN agents
on our human datasets. Low-dimensional agents exhibit significant variance in policy success rate
even in later stages of training, on harder tasks like Square (see Fig F.1c and Fig F.1g) and Transport
(see Fig F.1d and Fig F.1h). While this is also true for image agents (see Fig F.1k and Fig F.1l), even
simpler tasks like Lift (Fig F.1i) and Can (Fig F.1j) can suffer from such variance in performance.
This kind of variance in performance is problematic for real world settings where it’s not feasible
to run 50 rollouts per checkpoint for each training run, as we have done in simulation. This makes
offline policy selection a difficult, but important problem to solve.

Increasing the amount of validation data does not improve policy selection using validation
loss. Fig 4a used a validation dataset size that was 10% of the collected data. We also tried training
low-dim BC-RNN policies on the Square (PH) and Transport (PH) datasets, where we used 30%
of the collected data for validation (and only 70% for training). Across 3 seeds, the best policy
on Square (PH) achieves 80.7±0.9, while the policy achieving the lowest validation loss achieves
2.7±1.9, and the best policy on Transport (PH) achieves 64.0±2.8 while the policy achieving the
lowest validation loss achieves 0.7±0.9.

Success rate can increase even while validation loss increases substantially. Empirically, we found
that best validation loss occurs relatively early in training (epoch 100-300) but the best performance
occurs much later. In Fig G.1, we present selected plots of success rate and validation loss versus
epoch, to show this. The plots also show that validation loss can keep increasing substantially in later
epochs – despite this, the success rate also keeps increasing. This further shows that validation loss is
a poor measure of policy performance.

(a) Square (ld) – SR (b) Square (ld) – Loss (c) Transport (ld) – SR (d) Transport (ld) – Loss

(e) Square (im) – SR (f) Square (im) – Loss (g) Transport (im) – SR (h) Transport (im) – Loss

Figure G.1: Success Rate and Validation Loss. We show the success rate versus epoch and validation loss
versus epoch side-by-side for BC-RNN on the Square (PH) and Transport (PH) datasets, across 3 seeds. The top
row is low-dim observations, and the bottom is image observations. Notice that in many cases, the validation
loss increases along with success rate.
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H Additional Image Dataset Results

H.1 Machine-Generated Datasets

Dataset BC BC-RNN BCQ CQL

Lift (MG) 79.3±6.6 81.3±5.7 88.7±6.6 2.7±0.9
Can (MG) 60.7±2.5 63.3±2.5 65.3±2.5 0.0±0.0

Table 16: Machine Generated Results (image). We present success rates averaged over 3 seeds for each
method across the image Machine-Generated (MG) datasets. BCQ outperforms the other methods; however, it is
possible that recent batch RL methods [38, 43] that have been shown to work on pixel observations might be
able to perform even better.

Table 16 shows results on the Machine-Generated (MG) datasets with image observations. BCQ
outperforms the other methods; however, it is possible that recent batch RL methods [38, 43] that
have been shown to work on pixel observations might be able to perform even better.

H.2 Suboptimal Human Datasets

Dataset BC BC-RNN BCQ CQL

Can-Worse 54.7±2.5 70.0±3.3 - -
Can-Okay 85.3±0.9 90.0±3.3 - -
Can-Better 96.0±0.0 96.0±2.8 - -

Can-Worse-Okay 72.7±1.9 94.0±1.6 - -
Can-Worse-Better 84.0±2.8 92.7±1.9 - -
Can-Okay-Better 94.7±0.9 98.0±0.0 - -

Square-Worse 17.3±1.9 36.7±0.9 - -
Square-Okay 28.7±5.0 44.0±1.6 - -
Square-Better 49.3±1.9 60.0±2.8 - -

Square-Worse-Okay 28.7±2.5 52.7±6.2 - -
Square-Worse-Better 38.7±0.9 57.3±3.4 - -
Square-Okay-Better 47.3±2.5 62.0±5.7 - -

Can-Paired 56.7±0.9 62.0±2.8 50.0±5.9 0.0±0.0

Table 17: Results on Suboptimal Human Data (Image). We present success rates averaged over 3 seeds for
each method across different subsets of the Multi-Human datasets, corresponding to mixtures of demonstrations
from “Better”, “Adequate”, and “Worse” human operators, and finally on a diagnostic dataset with paired
success and failure human trajectories for each starting initialization. We omitted Batch RL methods (except for
Can-Paired) due to their poor performance on the other human datasets with image observations.

Table 17 shows results on our multi-human data subsets with image observations. We excluded batch
RL methods due to their poor performance on human datasets with image observations. BC-RNN
improves over BC on all datasets, especially datasets with lower quality data.
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I Additional Batch (Offline) RL Results

I.1 Hyperparameter Sensitivity

I.1.1 BCQ

Dataset Default Perturbation
Actor

Lift (PH) 100.0±0.0 72.0±4.3
Can (PH) 88.7±0.9 8.0±4.3

Square (PH) 50.0±4.9 3.3±0.9
Transport (PH) 7.3±3.3 0.0±0.0

Table 18: BCQ Hyperparameter Sensitivity - Actor. The perturbation actor causes large performance drops on
human datasets.

Dataset Default
(BCQ)

Default
(BC)

BCQ
(BC param)

Can (PH) 88.7±0.9 95.3±0.9 32.0±1.6
Square (PH) 50.0±4.9 78.7±1.9 22.7±6.6
Can (MH) 62.7±8.2 86.0±4.3 12.0±2.8

Square (MH) 14.0±4.3 52.7±6.6 4.0±0.0

Table 19: BCQ Hyperparameter Sensitivity - matching parameters to BC. We find that matching the
hyperparameters of the BCQ action sampler to the ones we used for BC is not sufficient to improve performance.

In Table 18, we show that using the BCQ perturbation actor (see Appendix C.2) can have a catastrophic
effect when training on human datasets. The results show that there is a large performance drop after
enabling the perturbation actor (over 80% on Can-PH, for example). This result showcases BCQ is
highly sensitive to the perturbation actor.

In Sec 4.1 and Sec 4.2, we empirically saw BCQ consistently underperform compared to BC. To
further investigate this problem, we tried matching the hyperparameters of the BCQ action sampler
to the BC model we used (the same learning rate, MLP architecture, and using a Gaussian Mixture
Model). We present the results in Table 19. BCQ still underperforms – since the only difference
between BC and this version of BCQ at test-time is selecting a GMM action sample uniformly at
random versus using the Q-function to select one, this indicates that the Q-function is responsible for
poor performance.

I.1.2 CQL

Dataset Default smaller
LR

no
DBackup

smaller
Batch Size

no
Lagrange

Lift (MG) 64.0±2.8 30.0±13.4 44.0±15.0 36.7±9.0 8.0±7.1
Lift (PH) 92.7±5.0 21.3±5.2 90.7±5.0 60.7±36.5 90.7±3.8

Table 20: CQL Hyperparameter Sensitivity. We find that CQL (1) is highly sensitive to learning, (2) benefits
greatly from larger batch sizes, and (3) benefits from the deterministic backup and Lagrange variants with
significant improvements on some datasets.

We investigate the effect of various hyperparameters on CQL in Table 20 for the low-dim Lift MG and
PH datasets. First, we see that a smaller learning rate (specifically 10× smaller) for the Q and policy
networks leads to a decrease in success rate of over 50%, indicating that CQL is highly sensitive
to learning rate. Next, we see that a smaller batch size (specifically 100 instead of 1024) leads to a
performance decrease of over 30%, indicating the CQL can greatly benefit from higher batch sizes.
The results for excluding the Lagrange variant and the deterministic backup also indicate that these
components can help, with substantial improvements in performance for the MG dataset yet marginal
improvements for the PH dataset.
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J GMM Policy Details

Dataset Default No
Low Noise Eval

Square (PH, ld) 84.0±0.0 84.0±3.3
Transport (PH, ld) 71.3±6.6 64.7±5.2
Square (MH, ld) 78.0±4.3 79.3±3.4

Transport (MH, ld) 65.3±7.4 54.7±4.1

Square (PH, im) 82.0±0.0 78.0±4.3
Transport (PH, im) 72.0±4.3 71.3±1.9
Square (MH, im) 76.7±3.4 68.0±0.0

Transport (MH, im) 42.0±1.6 43.3±2.5

Table 21: GMM Low Noise Evaluation Trick. This table shows the effect of sampling from the GMM instead
of using the low-noise-eval trick that we used by default.

As in Acme [88], when using Gaussian Mixture Model (GMM) policies during rollouts, we ignore
the learned standard deviations of each mode and instead set it to 1e-4. This amounts to sampling
one of the GMM modes instead of sampling from the full GMM distribution. A similar trick is often
used when learning Gaussian policies, where at test-time, the mean action of the distribution is used
instead of sampling from the distribution. In the table above, we present an ablation for not using
this "low-noise-evaluation" (LNE) trick. In most cases, the performance decreases slightly. In early
experiments (where the minimum learned std for each Gaussian mode was set to 1e-2 instead of
1e-4), this trick made a more substantial difference. We suggest using this trick by default in all
experiments involving GMM policies.
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K Additional Results on Multi-Human Datasets

This section contains additional results on Multi-Human datasets that were excluded from the main
text for space reasons. This includes conducting the Observation Space study on Multi-Human
datasets (the main text included results on the Single-Human datasets in Fig. 2a and Table 25), and
results on the Lift and Transport Multi-Human data subsets (the main text only included results on
the low-dim Can and Square subsets in Table 2, and the image subsets in Appendix H).

Dataset Default + EEF Vel + Joint - Rand - Wrist

Square(MH, ld) 78.0±4.3 16.0±3.3 15.3±0.9 - -
Transport(MH, ld) 65.3±7.4 2.0±0.0 2.0±0.0 - -
Square(MH, im) 76.7±3.4 46.7±2.5 47.3±4.1 29.3±3.8 59.3±3.4

Transport(MH, im) 42.0±1.6 10.0±3.3 16.7±0.9 18.0±1.6 28.7±6.8

Table 22: Observation Space Study (Multi-Human). This table presents the same observation space study as
conducted in Fig 2a, but on the multi-human datasets instead of the proficient-human datasets. The results and
conclusions are consistent.

Dataset BC BC-RNN BCQ CQL HBC IRIS

Lift-Worse 100.0±0.0 100.0±0.0 97.3±0.9 13.3±9.0 100.0±0.0 100.0±0.0
Lift-Okay 96.0±1.6 100.0±0.0 100.0±0.0 67.3±10.5 100.0±0.0 100.0±0.0
Lift-Better 98.7±1.9 100.0±0.0 98.0±1.6 88.0±5.9 100.0±0.0 100.0±0.0

Lift-Worse-Okay 98.7±1.9 100.0±0.0 100.0±0.0 64.7±2.5 99.3±0.9 100.0±0.0
Lift-Worse-Better 100.0±0.0 100.0±0.0 98.7±0.9 75.3±25.6 100.0±0.0 100.0±0.0
Lift-Okay-Better 99.3±0.9 100.0±0.0 100.0±0.0 86.0±6.5 100.0±0.0 100.0±0.0

Transport-Worse-Worse 0.6±0.9 4.7±0.9 0.0±0.0 0.0±0.0 4.0±1.6 6.0±0.0
Transport-Okay-Okay 0.7±0.9 6.7±0.9 0.0±0.0 0.0±0.0 7.3±1.9 7.7±1.9

Transport-Better-Better 3.3±0.9 18.7±3.8 2.0±0.0 0.0±0.0 24.0±3.3 22.0±3.3

Transport-Worse-Okay 1.3±0.9 5.3±0.9 0.0±0.0 0.0±0.0 4.0±0.0 3.3±0.9
Transport-Worse-Better 7.3±0.9 22.7±2.5 0.7±0.9 0.0±0.0 35.3±2.5 25.3±1.9
Transport-Okay-Better 2.7±0.9 7.3±2.5 0.0±0.0 0.0±0.0 10.0±1.6 11.3±3.4

Table 23: Results on Suboptimal Lift and Transport Human Data Subsets. We present success rates averaged
over 3 seeds for each method across different subsets of the Multi-Human datasets, corresponding to mixtures of
demonstrations from “Better”, “Adequate”, and “Worse” human operators.

Dataset BC BC-RNN BCQ CQL

Lift-Worse 98.0±0.0 100.0±0.0 - -
Lift-Okay 97.3±0.9 100.0±0.0 - -
Lift-Better 100.0±0.0 100.0±0.0 - -

Lift-Worse-Okay 99.3±0.9 100.0±0.0 - -
Lift-Worse-Better 100.0±0.0 100.0±0.0 - -
Lift-Okay-Better 100.0±0.0 100.0±0.0 - -

Transport-Worse-Worse 3.3±0.9 4.0±0.0 - -
Transport-Okay-Okay 8.7±0.9 6.7±0.9 - -

Transport-Better-Better 32.0±3.7 39.3±5.0 - -

Transport-Worse-Okay 5.3±0.9 4.0±0.0 - -
Transport-Worse-Better 21.3±4.1 30.7±13.6 - -
Transport-Okay-Better 4.7±2.5 8.7±2.5 - -

Table 24: Results on Suboptimal Lift and Transport Human Data Subsets (Image). We present success rates
averaged over 3 seeds for each method across different subsets of the Multi-Human datasets, corresponding to
mixtures of demonstrations from “Better”, “Adequate”, and “Worse” human operators.
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L Full Tables

This section contains more detailed tables that were excluded in the main text. These tables correspond
to the results in Fig 2, Fig. 3, and Fig 4a.

Dataset Default + EEF Vel + Joint - Rand - Wrist

Square (ld) 84.0±0.0 42.7±3.4 39.3±2.5 - -
Transport (ld) 71.3±6.6 8.7±0.9 10.0±3.3 - -
Square (im) 82.0±0.0 64.7±0.9 58.0±11.4 43.3±5.0 74.7±3.8

Transport (im) 72.0±4.3 64.7±3.8 70.7±2.5 46.7±0.9 41.3±7.5

Table 25: Observation Space Study. This table corresponds to the results presented in Fig 2a.

Dataset Default larger
LR

no
GMM

larger
MLP

Shallow
Conv

smaller
RNN dim

Square (PH, ld) 84.0±0.0 86.0±2.8 82.0±0.0 82.0±0.0 - 81.3±0.9
Transport (PH, ld) 71.3±6.6 64.0±5.9 69.3±3.4 58.7±6.8 - 47.3±2.5
Square (MH, ld) 78.0±4.3 76.7±2.5 58.0±1.6 73.3±3.4 - 58.7±7.4

Transport (MH, ld) 65.3±7.4 49.3±2.5 27.3±10.9 46.0±3.3 - 27.3±12.4

Square (PH, im) 82.0±0.0 41.3±7.7 84.0±3.3 - 50.0±2.8 74.0±3.3
Transport (PH, im) 72.0±4.3 46.7±20.4 74.0±4.3 - 54.0±3.2 65.3±5.2
Square (MH, im) 76.7±3.4 28.7±4.1 61.3±0.9 - 48.0±3.3 58.0±4.3

Transport (MH, im) 42.0±1.6 23.3±4.1 41.0±0.3 - 16.0±0.0 34.0±0.0

Table 26: BC-RNN Hyperparameter Sensitivity. This table corresponds to the results presented in Fig 2b and
Fig 2c.

Dataset 20% 50% 100%

Lift (ld) 96.7±2.5 100.0±0.0 100.0±0.0
Can (ld) 76.7±5.2 97.3±0.9 100.0±0.0

Square (ld) 38.7±6.2 67.3±7.7 84.0±0.0
Transport (ld) 6.7±0.9 44.0±5.9 71.3±6.6

Lift (im) 100.0±0.0 100.0±0.0 100.0±0.0
Can (im) 83.3±1.9 97.3±0.9 98.0±0.9

Square (im) 29.3±4.1 64.7±4.1 82.0±0.0
Transport (im) 30.7±4.1 60.1±4.1 72.0±4.3

Table 27: Proficient-Human Dataset Size Ablation. This table corresponds to the results presented in Fig 3.

Dataset 20% 50% 100%

Lift (ld) 100.0±0.0 100.0±0.0 100.0±0.0
Can (ld) 79.3±5.0 97.3±0.9 100.0±0.0

Square (ld) 32.0±3.3 60.7±0.9 78.0±4.3
Transport (ld) 7.3±2.5 33.3±7.5 65.3±7.4

Lift (im) 98.0±0.0 100.0±0.0 100.0±0.0
Can (im) 77.3±2.5 87.3±1.9 96.0±1.6

Square (im) 27.3±1.9 50.7±3.8 76.7±3.4
Transport (im) 8.0±3.3 25.3±3.8 42.0±1.6

Table 28: Multi-Human Dataset Size Ablation. This table corresponds to the results presented in Fig 3.
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Dataset Valid
(BC)

Last
(BC)

Max
(BC)

Valid
(BC-RNN)

Last
(BC-RNN)

Max
(BC-RNN)

Square (PH, ld) 20.0±10.2 65.3±0.9 78.7±1.9 7.3±5.0 74.0±7.5 84.0±0.0
Transport (PH, ld) 0.0±0.0 11.3±3.8 17.3±2.5 4.0±5.7 59.3±5.0 71.3±6.6

Square (PH, im) 20.6±14.0 44.7±4.1 62.0±4.9 35.3±10.0 64.7±9.0 82.0±0.0
Transport (PH, im) 16.0±12.3 38.7±11.5 55.3±6.2 0.0±0.0 58.7±5.7 72.0±4.3

Table 29: Effect of Policy Selection Criteria. We compare how performance decreases when choosing the
policy to evaluate by using the lowest validation loss, or when using the final trained checkpoint, compared to
the best performing policy. Corresponds to results in Fig 4a.
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