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Abstract

Interactive recommender systems (IRS) have received growing attention due to
its awareness of long-term engagement and dynamic preference. Although the
long-term planning perspective of reinforcement learning (RL) naturally fits the
IRS setup, RL methods require a large amount of online user interaction, which is
restricted due to economic considerations. To train agents with limited interaction
data, previous works often count on building simulators to mimic user behaviors in
real systems. This poses potential challenges to the success of sim-to-real transfer.
In practice, such transfer easily fails as user dynamics is highly unpredictable and
sensitive to the type of recommendation task. To address the above issue, we
propose a novel method, S2R-Rec, to bridge the sim-to-real gap via off-dynamics
RL. Generally, we expect the policy learned by only interacting with the simulator
can perform well in the real environment. To achieve this, we conduct dynamics
adaptation to calibrate the difference of state transition using reward correction.
Furthermore, we align representation discrepancy of items by representation adapta-
tion. Instead of separating the above into two stages, we propose to jointly adapt the
dynamics and representations, leading to a unified learning objective. Experiments
on real-world datasets validate the superiority of our approach, which achieves
about 33.18% improvements compared to the baselines.

1 Introduction

Recent years have featured a trend towards building interactive recommender systems (IRS) [3, 4, 32,
17, 27]. Compared with traditional recommender systems, IRS consider a more realistic scenario
where the current user preference drifts over time dynamically. To implement IRS, previous works
mainly focus on Multi-armed Bandit (MAB) and Reinforcement Learning (RL). However, the MAB
approaches [16, 25, 26] assume little drift of user preferences over time, which may fail to model
the dynamics in IRS [3, 32]. An alternative formulation of IRS is Markov Decision Process (MDP),
which explicitly models state transition along with the planning procedure. In IRS, RL techniques
have been recently gaining attention, showing their advantages in accommodating dynamic user
preferences [33, 5]. To train agents with limited interaction data, existing RL models in IRS often
assume that the simulation task and the real task are the same recommendation task, and count on
building simulators to mimic user behaviors in real systems. However, the assumption may not hold
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Figure 1: Dynamics adaptation in the sim-to-real IRS. In training on simulators, the Movie recom-
mender and TV recommender interact with two user simulators. By learning the dynamics difference
between interacting with the two simulators, the dynamics adaptation module is trained. In testing on
real users, the predicted ratings are adjusted with reward offsets by the dynamics adaptation module.

in practice and, without any explicit dynamics adaptation considered, the trained models can easily
achieve poor performances when recommending to new users.

The above issue of sim-to-real dynamics adaptation brings critical challenges to the success of
applying RL for IRS. While many applications have met the difficulties in adapting model’s dynamics
from simulation to realistic tasks [20, 22, 1], this sim-to-real dynamics adaptation problem can be
even more severe in IRS. Conventionally, simulation of robotic tasks is designed to imitate the same
in the real world [29, 7]. In IRS, however, when new businesses are established, the new products in
the real task may have never appeared to any users in the simulation. More importantly, consumer
buying behaviors in different categories of goods can be hugely varied. For example, in a simple
IRS use session in Figure 1, the IRS simulates on the movie recommendation task and is required to
perform real recommendation for newly released TV series. By detecting invariant representations
from movies and TVs, the user may express a consistent preference from training on simulators to
testing on real users. However, we can also observe user dynamics differences between interacting
with the movie simulator and the TV simulator. In Movie IRS to a simulator, the user expresses
stronger preferences over movies with either high ratings or low ratings, while the ratings regarding
TVs are less polarized. This indicates that the user may have a more indifferent taste to TVs, but
more personalized inclination to certain movies. Such differences in rating dynamics, caused by the
nature of different recommendation tasks in simulation and real-world, cannot be easily mitigated
through user representation adaptation.

To explicitly solve the dynamics adaptation problem in sim-to-real IRS, we propose S2R-Rec. Inspired
by [7], we imitate the real user dynamics by adjusting the reward objectives in simulation, and thus
let the transition to be more smoothly adapted. Unlike tasks in robotics or games that can rely on
simulators guided by explicit physical laws and game rules, IRS are usually faced with dynamics
that only exist in latent spaces of user preference and item representations. Furthermore, as normally
no items shared between sim-to-real, representation adaptation is also required to extract shared
item features between simulation and real tasks. We introduce a representation adaptation method
to extract invariant item representations. In order to recognize the patterns in item representations
more relevant to user dynamics, we propose a collaborative adaptation method to jointly adapt the
dynamics and item representations.

This paper makes three major contributions. (i) We propose a dynamics adaptation recommendation
method by aligning sim-to-real MDPs with reward offsets. This mitigates user interactive behaviour
differences between training on the simulators and testing on the real users. (ii) We introduce
a representation adaptation method to extract shared item features between simulation and real
tasks, which is critical for dynamics adaption since items from two tasks may have no overlap.
(iii) We propose a joint adaptation method S2R-Rec to jointly align interactive dynamics and item
representations. This improves traditional item representations adaptation by taking consideration of
the user dynamics difference between simulation and real tasks.

2 Related Work
RL for Interactive Recommender Systems To capture the interactive nature of IRS, extensive
effort [6, 30, 12] has been made to model the recommendation environment as a Markov Decision

2



Process (MDP) and then utilize RL algorithms to deliver the optimal policy. Previous works have
proposed various kinds of RL approaches to maximize the expected recommendation reward in
the long run. Deep Q-Network (DQN) is proposed for news recommendation [31]. Actor-critic
approaches with a state representation module are developed to explicitly model user-item interactions
[17]. REINFORCE is utilized to get rid of problems with regard to a large corpus of items [4]. In [10],
the problem of learning to rank is formulated via an MDP and the agent learns by deterministic policy
gradient. The auxiliary tasks such as user response prediction to construct useful representations and
augment the training process in [5] . Nevertheless, previous works usually rely on simulators for
policy training, which poses challenges to the success of sim-to-real transfer. Therefore, we aim to
address the discrepancy between the simulation and real environment to boost RL methods.

Sim-to-Real Gap and Off-Dynamics RL To construct a more accurate simulation environment
for robotics, a previous work [23] develops an accurate actuator and simulate latency via thorough
system identification. Another work [2] interleaves real-world roll-outs with simulation samples to
adapt the simulation parameter distribution. In [24, 14, 19], domain randomization techniques are
leveraged to produce a robust controller, training policies on a large variety of simulated scenarios. To
further bridge the sim-to-real gap of dynamics, an intuitive approach is proposed to adapt to dynamics
changing when conducting sim-to-real transfer [7]. Cycle-GAN is developed to provide sim-to-real
translation [13, 20, 29]. For IRS, a number of prior works explore the importance of configurable
simulators. RecoGym [21] supports environment configuration for sequential interaction but lacks the
support for user state transition. An authoring simulation platform is also designed to mimic specific
aspects of user behavior [11]. While previous works in IRS provide opportunity to create stylized
environments, none of these address the gap between the simulation and real-world environment.

3 Problem Formulation
Let U be a set of users (|U| = m) and V be a set of items (|V| = n). The essence of interactive
recommendation for user u ∈ U is a multi-step decision-making process, which can be naturally
formulated as a MDPM = (S,A, P, r, ρ, γ) where

• S is a continuous state space which captures the interaction characteristics of the user;
• A is a discrete action space including all available items, i.e., A = V;
• P : S ×A× S → R is the probability of state transition, defining the user dynamics;
• r : S × A → R is the reward function, where r(s,a) is the immediate reward when

performing action a at state s;
• ρ is the initial user state distribution;
• γ is the discount rate which determines the present value of future rewards.

At each step t, the system selects an item at ∈ A to recommend based on the interaction history, and
then receives feedback (e.g., click or purchase behavior) as the reward. The target of the recommender
system is to learn the optimal policy π∗ : S → A which can maximize the cumulative reward in the
long run: π∗ = arg maxπ∈Π Eτ∼π

[∑|τ |
t=0 γ

tr (st,at)
]
, where τ = (s0,a0, s1, . . . ) represents an

interaction trajectory obtained via s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ P (·|st,at).

What we really desire is a policy that performs well in the real world, while the potentially expensive
trial-and-error experimentation prohibits us to directly train the policy by interacting with the users.
In other words, the realMreal is usually not accessible. To circumvent the issue, we desire to leverage
available interaction history to construct a simulation environmentMsim from which we can train a
policy that also achieves good performance inMreal. In practice, we only have access to explicit
rating feedback. Therefore, we consider the following problem:
Definition 3.1. Given a large amount of interaction history from the simulation environment
Dsim = {(uSi , vSj , ySi,j)k}

Nsim

k=1 as well as a small fraction of data from the real environment
Dreal = {(uRi , vRj , yRi,j)k}

Nreal

k=1 where Nreal � Nsim, we want to acquire a policy π∗ that achieves
high rewards in the real environmentMreal by only interacting with the simulatorMsim.

4 Methodology
To bridge the gap between simulation and real world, the user dynamics and the item representations
are two main components which need to be aligned. Thus, we propose an IRS consisting of two
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Figure 2: Our model mainly consists of the dynamics adaptation and representation adaptation
module to bridge the sim-to-real gap. The movie IRS and TV IRS interact with the user simulators to
collect the data trajectory to train the dynamics adaptation module in Figure 1. The representation
adaptation, the recommender policy network and the dynamics adaptation modules are jointly trained.

adaptation methods, dynamics adaptation and representation adaptation. In the dynamics adaptation
module, the simulation user trajectory data and the real user trajectory data are interleaved to train the
dynamics classifiers Dsas, Dsa. We construct ∆r from the output of those two classifiers and modify
the simulation rewards to align with the real user dynamics. In the representation adaptation module,
the raw representations of users and items, uS ,uR,vS ,vR, are extracted by the feature extractor and
then mapped into sim-real invariant representations via adversarial training.

The training process can be divided into two stages: representation adaptation and joint adaptation.
First, the representation adaptation stage aims to produce invariant item representations via adversarial
supervised learning. Loss Ldom and Lpred are designed to learn the sim-real classifiers and to achieve
better prediction accuracy respectively. By applying a gradient inverse layer Φ, we modify the
min-max optimization objective of Ldom and transform it into a new minimization objective with
loss function L̃dom. Second, in the process of RL-based interactive learning, the RL model learns
behavioral policies with reward correction in dynamics adaptation while the representations updated
with adversarial learning. Apart from L̃dom and Lpred in updating user representations, the RL-based
model is trained with its own loss Lrl and reward correction guided by Lsa and Lsas.

Dynamics Adaptation To capture the user preference based on the historical interaction, we can
extract user states from the user’s interacted items as well as the responses. However, user preference
is usually unpredictable and user dynamics varies drastically in different recommendation tasks. This
poses serious challenges to precisely model state transition for the simulator. In other words, we need
to take state transition into account, narrowing user behavior difference between the simulator and
the real world by calibrating Psim with Preal. Inspired by the work in robotics [7], we propose to
align the user dynamics in two environments from the perspective of probabilistic inference [15].

Specifically, the desired distribution over trajectories in the real-world environment is: preal(τ) ∝
ρ
(∏|τ |

t Preal (st+1 | st,at)
)

exp
(∑|τ |

t rreal (st,at)
)

, and psim(τ) is the distribution over interac-

tion trajectories in the simulation environment: psim(τ) = ρ
∏|τ |
t Psim (st+1 | st,at)π (at | st).

If psim is close to preal, policies learned by interacting with the simulator can achieve high rewards
and behave under similar user dynamics in the real environment. Thus, we aim to minimize the
distance between two distributions with the metric of KL divergence:

min
π
DKL(psim‖preal) = −EPsim

 |τ |∑
t

rsim (st,at) + ∆r(st,at, st+1)

 ,
where ∆r (st,at, st+1) , log preal (st+1 | st,at)− log psim (st+1 | st,at).

From the above objective, we can reduce the difference of user dynamics between two environments
via reward correction. In practice, ∆r can be estimated by learning two classifiers Dsas and Dsa:
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preal (st+1 | st,at) ∝ p (real | st,at, st+1)︸ ︷︷ ︸
Dsas

/ p (real | st,at)︸ ︷︷ ︸
Dsa

.

Given trajectory data from the simulation environment τsim =
{

(sSt , a
S
t , s

S
t+1)

}|τsim|−1

t=0
and those

from the real environment τreal =
{

(sRt , a
R
t , s

R
t+1)

}|τreal|−1

t=0
, we learn Dsas and Dsa to predict

whether the transitions come from the simulation or real data:

Lsas (Dsas) =− E(sRt ,a
R
t ,s

R
t+1)∼τreal

[
logDsas(s

R
t , a

R
t , s

R
t+1)

]
− E(sSt ,a

S
t ,s

S
t+1)∼τsim

[
log
(
1−Dsas(s

S
t , a

S
t , s

S
t+1)

)]
,

Lsa (Dsa) = −E(sRt ,a
R
t )∼τreal

[
logDsa(sRt , a

R
t )
]
− E(sSt ,a

S
t )∼τsim

[
log
(
1−Dsa(sSt , a

S
t )
)]
.

The intuition behind ∆r is that, for the task of predicting whether a transition came from the
simulation or real interaction data, how much better we can perform after observing st+1. For
transitions that are likely in the simulation environment but are unlikely in the real environment,
∆r < 0, the agent is penalized for “exploiting” inaccuracies or discrepancies in the simulation task
by taking these transitions. As a result, we can calibrateMsim with r̃sim = rsim + α∆r to mimic
the user dynamics in the real environment, where α controls the impact of reward offset. This leads
to competitive policies forMreal with solely the practice underMsim.

Representation Adaptation Another issue that is critical when performing sim-to-real transfer is the
discrepancy of item representation. We begin by extracting pretrained user and item representations
via Singular Value Decomposition (SVD). Assume Dsim and Dreal contain rating data from mS

users to nS items and mR users to nR items respectively. We reconstruct both rating matrices Y S =[
ySi,j
]
, Y R =

[
yRi,j
]

from Dsim,Dreal by US , V S = SVD(Y S) and UR, V R = SVD(Y R), where
US =

[
uS1 , · · · ,uSmS

]
and V S =

[
vS1 , · · · ,vSnS

]
denote user and item features in the simulation

environment. In the real environment, users and items are represented as UR =
[
uR1 , · · · ,uRmR

]
and

V R =
[
vR1 , · · · ,vRnR

]
respectively. Given pretrained item embeddings vS ∈ V S , vR ∈ V R, two

mappings FSV and FRV can be learned with a classifier DV with the adversarial objective, where the
mappings aim to produce invariant item representations from sim to real, whileDV tries to distinguish
FSV (vS) from FRV (vR). The same procedures also apply for user embeddings with FSU , FRU and
DU , leading to the mappings for both item and user representations: ũS = FSU (uS), ṽS = FSV (vS),
ũR = FRU (uR), and ṽR = FRV (vR). When training, the adversarial learning objective is then:

min
DU ,DV

max
FS

U ,FS
V ,FR

U ,FR
V

Ldom

(
DU , DV ,FSU ,FSV ,FRU ,FRV

)
=−

mR∑
i=1

[
logDU

(
ũRi
)]
−

mS∑
i=1

[
log
(
1−DU

(
ũSi
))]
−

nR∑
j=1

[
logDV

(
ṽRj
)]
−

nS∑
j=1

[
log
(
1−DV

(
ṽSj
))]

.

(1)

To retain sufficient information, we introduce the prediction loss to reconstruct the rating patterns for
two environments separately:

min
FS

U ,FS
V ,FR

U ,FR
V

Lpred

(
FSU ,FSV ,FRU ,FRV

)
=

mS∑
i=1

nS∑
j=1

∥∥〈ũSi , ṽSj 〉 − ySi,j∥∥O +

mR∑
i=1

nR∑
j=1

∥∥〈ũRi , ṽRj 〉 − yRi,j∥∥O ,
(2)

where ‖ · ‖O is the norm ‖ · ‖l2 only on the observed data.

Recommendation Policy Network We apply deep RL algorithms to learn a recommendation policy
by interacting with the simulator. We use the LSTM model [9] to distill the user state st. At each time
step t, the system recommends item at to the user and receives reward rt = r(st,at). To aggregate
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No
Dataset User Item Rating

Name Sim Real Train Test Train Test Train Test
Sim-only Shared Real Sim Real Real Sim Real Real

1

Movielens

Adventure Crime 24,948 200 22,633 652 508 508 2,865,694 14,568 1,699,513
2 Drama Comedy 38,984 200 35,265 1,356 1,035 1,035 4,955,437 19,402 3,617,467
3 Thriller Action 18,148 200 16,513 548 544 544 1,461,082 20,248 1,648,370
4

ANIME
Movie TV 16,361 200 14,904 227 969 969 446,470 32,316 2,341,984

5 TV OVA 15,072 200 13,744 969 145 145 2,502,212 2,825 186,889
6 OVA Movie 2,353 200 2,297 145 227 227 77,539 12,058 136,340

Table 1: Statistics of all datasets used in our experimental evaluation.

historical user behaviors, the representation of the delivered item and the reward are concatenated
as the input of LSTM. The state is updated recursively as st+1,ht+1 = F ([at, rt];ht), where F
denotes an LSTM cell which updates the hidden state h and outputs s. We implement a vanilla Deep
Q-Network (DQN), which aims to find the optimal policy via iterating the estimation of state-action
value Q(s,a) parameterized by neural networks. The state-action value function estimates the long-
term user engagement after acting a at state s and then following the learned policy, which leads to a
deterministic recommendation strategy: π(s) = arg maxa∈ÂQ(s,a), where Â denotes the action
space with items that have already delivered masked to explicitly avoid repeated recommendation.

Joint Training for Joint Adaptation Furthermore, we propose a joint adaptation strategy by collab-
oratively optimizing the task-specified losses and finetuning the representation adaptation module
under a unified objective. Different from [7] in which the simulation task and the real task are in
the same environment, our sim-to-real setup contains two completely different recommendation
tasks with no shared items. Thus, joint training is essential to adapt dynamics and representations
simultaneously. Besides, joint training can further help to capture the shared dynamics patterns
through backpropagation from downstream tasks, which is not viable by applying common domain
adaptation methods like [28]. Finally, we formulate

min
Dsas,Dsa,F,Q,FS

V ,FR
V

max
DV

Ljoint = Lrl

(
F,Q,FSV ,FRV

)
+ Lsa

(
Dsa,FSV ,FRV

)
+ Lsas

(
Dsas,FSV ,FRV

)
+ Ldom

(
DU , DV ,FSU ,FSV ,FRU ,FRV

)
,

as the overall joint training objective.

5 Experiment
Datasets We conduct experiments on Movielens-25M2 and ANIME3. The sim-real dataset split is
across different genres. To split the datasets, we collect rating data from 90% of users shown in the
real environment as the test set. Along the remaining users in the real environment, 20% of users are
randomly selected as the validation set for hyperparameter tuning, while 200 other users are sampled
for training. All ratings from the simulation data are also served as the training set. To evaluate the
effectiveness of sim-to-real adaptation, we choose pairs of unrelated categories within the dataset for
the simulation and real-world tasks. The statistics for the datasets are summarized in Table 1.

Metrics To evaluate the long-term performance, we use the average cumulative reward over each
user session for each user in the real task as one metric. Additionally, we adopt three other metrics,
Precision@T , Recall@T and F1@T , that are commonly used in traditional IRS tasks. Specifically,
we set the length of each user session as T = 32. On Movielens-25M, the item ratings are ranged
from 1.0 to 5.0 and those higher than 3.0 are regarded as the relevant items. On ANIME, the item
ratings are ranged from 0.0 to 10.0 and those higher than 5.0 are regarded as the relevant items.

Baselines We evaluate the following baselines in our experiments. (i) MF: a simple matrix factoriza-
tion method via conducting singular value decomposition on the rating patterns. When interacting
with users, the model greedily selects the item with highest predicted rating to recommend in the real
task. (ii) DARec [28]: a cross-domain model which regards items of simulation and real tasks are
from two domains and trains a domain classifier via adversarial training to produce domain-invariant
item representation. (iii) DQN-R [31]: a DQN-based method which learns by interacting with the
simulator without any adaptation and recommends the item with highest Q-value when evaluation.
To understand the importance of different components in our algorithm, we also compare our algo-
rithm with three variants of our algorithm S2R-Rec. (i) S2R-Rec w/o DynAda: A variant of our

2https://grouplens.org/datasets/movielens/
3https://www.kaggle.com/CooperUnion/anime-recommendations-database
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Adventure (sim)→ Crime (real) Drama (sim)→ Comedy (real) Thriller (sim)→ Action (real)
Reward P@32 R@32 F1@32 Reward P@32 R@32 F1@32 Reward P@32 R@32 F1@32

MF 0.1554 0.2266 0.1032 0.1331 0.1325 0.1991 0.0729 0.0977 0.1671 0.2553 0.0883 0.1258
DARec 0.2325 0.3210 0.1530 0.1951 0.1572 0.2275 0.0876 0.1161 0.2140 0.3066 0.1098 0.1551
DQN-R 0.2909 0.4010 0.1927 0.2450 0.1879 0.2726 0.1051 0.1393 0.3002 0.4235 0.1527 0.2153
S2R-Rec w/o DynAda 0.3320 0.4507 0.2158 0.2756 0.2182 0.3093 0.1196 0.1585 0.3211 0.4513 0.1634 0.2300
S2R-Rec w/o RepAda 0.3103 0.4243 0.2016 0.2580 0.2181 0.3108 0.1207 0.1595 0.3109 0.4424 0.1602 0.2256
S2R-Rec w/o JntTrn 0.3363 0.4579 0.2208 0.2809 0.2264 0.3232 0.1269 0.1671 0.3336 0.4705 0.1697 0.2394
S2R-Rec 0.3413 0.4654 0.2261 0.2867 0.2359 0.3370 0.1312 0.1734 0.3399 0.4777 0.1722 0.2430

Table 2: Experimental results on three sim-2-real combinations from Movielens-25M.

Movie (sim)→ TV (real) TV (sim)→ OVA (real) OVA (sim)→Movie (real)
Reward P@32 R@32 F1@32 Reward P@32 R@32 F1@32 Reward P@32 R@32 F1@32

MF 0.1509 0.2464 0.0527 0.0839 0.0498 0.0974 0.2321 0.1217 0.1448 0.2568 0.1414 0.1745
DARec 0.2550 0.3576 0.0809 0.1277 0.0539 0.1039 0.2537 0.1306 0.2025 0.3292 0.1839 0.2260
DQN-R 0.2286 0.3453 0.0774 0.1225 0.0597 0.1125 0.2932 0.1428 0.2471 0.3940 0.2186 0.2700
S2R-Rec w/o DynAda 0.3194 0.4560 0.1045 0.1647 0.0695 0.1259 0.3340 0.1611 0.2590 0.4078 0.2273 0.2802
S2R-Rec w/o RepAda 0.2518 0.3881 0.0864 0.1371 0.0669 0.1201 0.3125 0.1529 0.2521 0.4000 0.2232 0.2747
S2R-Rec w/o JntTrn 0.3373 0.4818 0.1102 0.1738 0.0725 0.1299 0.3374 0.1655 0.2855 0.4449 0.2484 0.3062
S2R-Rec 0.3396 0.4868 0.1122 0.1767 0.0756 0.1306 0.3493 0.1672 0.2905 0.4505 0.2529 0.3108

Table 3: Experimental results on three sim-2-real combinations from ANIME.

algorithm which only conducts representation adaptation via domain-adversarial training [8], while
user dynamics is misaligned. (ii) S2R-Rec w/o RepAda: A variant that only adapt user dynamics
with reward correction. (iii) S2R-Rec w/o JntTrn: A variant that performs both dynamics adaptation
and representation adaptation, but in a separate procedure.

Implementation Details For MF, we use SVD to extract the user representations from the simulation
training data and extract item representations from the real training data. The size of the representation
vectors is Drep = 128. For DARec, we use the same way as MF to first extract the original represen-
tations. Following the method in [28], we apply linear projections to the original representations and
learn the invariant user and item representations by adversarial learning. DARec predicts the user
ratings in the test data similar to MF but uses the adapted representations. For RL-based models,
DQN-R, S2R-Rec and its variants, the agent is trained on the batch size of Nbatch = {32, 64}. The
batches are randomly sampled from both simulation and real data. Since the size of real data is
significantly smaller, we sample from the real data in every Kinterval = {2, 3, 4} iterations. Except
for S2R-Rec, for methods involving representation adaptation, we use the same item representations
from DARec. Otherwise, we use the same item representations from MF. For methods involving
dynamics adaptation, the coefficient for ∆r is set to αdyn = {0.6, 0.7, 0.8, 0.9}. For S2R-Rec, the
item representations are fine-tuned in the training of the IRS. Without the joint training, the item
representations are fixed and the same as in DARec.

Research Questions We seek to answer the following research questions: RQ1: How does S2R-Rec
perform compared with the baseline methods? RQ2: How is the effectiveness of dynamics adaptation
for aligning sim-to-real user behaviour differences? RQ3: How is the effectiveness of joint learning
to achieve representation-dynamics collaborative adaptation?

Performance of S2R-Rec (RQ1) We compare our approach to the baselines. The results are reported
in Table 2 and 3. There are several observations. First, comparing S2R-Rec w/o RepAda with DQN-R,
the improvements brought by dynamics adaptation are consistent. On the Movielens-25M dataset,
improvement of reward is 6.67%, 16.07%, and 3.56% on Adventure and Crime, Drama and Comedy,
Thriller and Action respectively. Meanwhile, on the ANIME dataset, the S2R-Rec w/o RepAda
achieves improvements of 10.15%, 12.06% and 2.02% on Movie and TV, TV and OVA, OVA and
Movie. Second, shared item features can be transferred to better identify some shared user preferences
to the items in the sim-to-real scenario. Consequently, S2R-Rec w/o DynAda performs 14.13%,
16.13%, and 6.96% on reward improvement as expected on the Movielens-25M. In addition, the
improvement of the aligning item representations is 39.72%, 16.42% and 4.82% on the ANIME
dataset. By learning shared item features related to user preferences in sim-to-real environments,
the effects of dynamics adaptation can be further boosted. Compared with DQN-R, S2R-Rec w/o
JntTrn achieves improvement 15.61%, 20.49%, and 11.13% in Movielens, while performs 47.55%,
21.44% and 15.54% more than DQN-R on reward. Third, the joint training helps to better extract
item features relevant to the dynamics patterns existing in both simulation and real recommendation
processes. We observe further improvements, S2R-Rec performs 17.32%, 25.55%, and 13.22%
(48.56%, 26.63%, and 17.56%) better than DQN-R on the Movielens-25M (ANIME) dataset.
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Figure 3: The effectiveness of the dynamics adaptation is in (a) (b). Figure (b) shows the improvement
of S2R-Rec w/o DynAda, S2R-Rec w/o RepAda, over DQN-R. The effectiveness of the joint
adaptation is in (c) (d). Figure (d) shows the improvement of S2R-Rec over S2R-Rec w/o JntTrn.

Effectiveness of the Dynamics Adaptation (RQ2) To evaluate the dynamics adaptation in aligning
sim-to-real user behaviors, we conduct this experiment to recommend the same item pool but to let
the system adapt between different groups of users. We choose movies in the category Thriller from
the MovieLens-25M dataset as the item pool. By the clustering method k-means [18], we categorize
all users’ first 32 rating behaviors to 10 clusters, indicating 10 different user groups with different
patterns of interaction. We choose the cluster with the most users as the user group existing in the
real-world task. By calculating the euclidean distances between the centroids of all other clusters
and the centroid of the chosen one, we are able to measure the distances of user behaviors between
clusters. We order the clusters by the distances from small to large and then get the ordered user
indexes, which indicate the sim-to-real gaps of dynamics that increase.

Compared with the DQN-R in Figure 3(b), in general, dynamics adaptation plays a part in S2R-Rec
w/o RepAda, while the representation adaptation in S2R-Rec w/o DynAda has a negative impact.
As we can observe in Figure 3(a), from the group 1 to group 4, with the sim-to-real gaps increasing,
the performances of DQN-R and S2R-Rec w/o DynAda decrease constantly. Remarkably, S2R-Rec
w/o RepAda always achieves higher performance than DQN-R, and is less affected by the sim-
to-real gaps increasing. It implies the representation alignment is no longer needed in S2R-Rec
w/o DynAda and the user dynamics could be catch up with the dynamics adaptation as S2R-Rec
w/o RepAda. Furthermore, from the group 1 to group 4, both the dynamics adaptation achieves
higher improvements while the performance of DQN-R declining. It is largely explained by both
representation adaptation and dynamics adaptation align the user between different groups.

Effectiveness of the Joint Adaptation (RQ3) We further evaluate the effectiveness of the joint
adaptation. We choose the same sim-to-real tasks to adapt from the category Thriller to the category
Action on the MovieLens-25M dataset. Also with the clustering method k-means, we divide all
users’ first 32 rating behaviors in both categories into 10 clusters. We measure each user’s sim-to-real
difference by calculating the euclidean distance between each user’s trajectory centroids in those
two categories. By ordering this distance of each user from large to small, we are able to choose the
first 4000 users and equally assign them to 4 experiments in this order. In this way, we simulate 4
experiments with descending difficulties in sim-to-real adaptation.

We observe significant improvements by applying joint training in S2R-Rec. Moreover, the improve-
ment with the joint train in Figure 3(d) reveals the effective of S2R-Rec w/o JntTrn and S2R-Rec
are related to the distance of users. When the distance of user behaviours in sim-to-real is closer,
S2R-Rec provides improvement ratio of the 4th group reduces to 1.241%. It reflects that representa-
tion initialized with S2R-Rec w/o DynAda is sufficient in providing the information when the user’s
distance is small. On the contrary, when the distance of user is greater in the first 1000 users, the joint
learning in collaboration adaptation plays the leading role while the improvement achieves 4.52%. It
is because that from group 2 to group 3, as the user representation is getting closer, S2R-Rec w/o
JntTrn receives greater improvement with respect to reward.

6 Conclusion

In this paper, we present a unified framework towards sim-to-real interactive recommender system
(IRS). Concretely, we first devise to calibrate the difference between state transitions of the simulation
and real environment via reward correction. Next, we align item representations to further remove
discrepancy. These two stages of adaptation are then unified via a joint optimization target, which
further boosts the performance of our proposed approach. By bridging the sim-to-real gap in IRS, we
can promisingly perform policy training for IRS by only interacting with the simulators.
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