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Abstract

Reinforcement learning is difficult to apply to real world problems due to high
sample complexity, the need to adapt to frequent distribution shifts and the com-
plexities of learning from high-dimensional inputs, such as images. Over the last
several years, meta-learning has emerged as a promising approach to tackle these
problems by explicitly training an agent to quickly adapt to new tasks. However,
such methods still require huge amounts of data during training and are difficult to
optimize in high-dimensional domains. One potential solution is to consider offline
or batch meta-reinforcement learning (RL) - learning from existing datasets without
additional environment interactions during training. In this work we develop the
first offline model-based meta-RL algorithm that operates from images in tasks
with sparse rewards. Our approach has three main components: a novel strategy
to construct meta-exploration trajectories from offline data, which allows agents
to learn meaningful meta-test time task inference strategy; representation learning
via variational filtering and latent conservative model-free policy optimization. We
show that our method completely solves a realistic meta-learning task involving
robot manipulation, while naive combinations of previous approaches fail.

1 Introduction

There are several difficulties in applying reinforcement learning (RL) to the real world: 1) sample
complexity tends to be prohibitively high, with even simple low-dimensional tasks requiring millions
of interactions, 2) in some setups online exploration and data collection could be difficult, costly
and unsafe for humans or the hardware, 3). the agents need to be robust to potential distributional
shifts that regularly happen in the real world, 4). the agents need to operate from high-dimensional
observations, such as camera images and 5). reward specification can be difficult in realistic domains.
Our goal in this work is to develop an agent that can learn from previously collected datasets from
realistic robotic tasks, without additional rollouts that can successfully adapt to new tasks and
distribution shifts at test time.

Although such an approach has clear utility, as it would allow us to reuse previously collected data and
train robot agents that can efficiently generalize to new domains, it has so far been understudied. Prior
works in offline meta-reinforcement learning [19], [3] consider only simple tasks in low-dimensional
domains and are hard to scale to longer range problems with high-dimensional observations and
sparse rewards. More realistic robot tasks were considered before in online settings [28], however
naive application of such inference models in the offline domain fails.
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We identify three key challenges in this setting. Spurious correlations between tasks and the specific
task data prevent the agent from learning inference models that are robust to test-time distribution
shifts and new task specifications. If the induced state-action distributions in each task buffer are
sufficiently disjoint across tasks, then an inference-based meta-RL agent can easily pinpoint the task
simply by memorizing the action distributions of the offline data during training, which yields poor
policy performance at test time. Furthermore, high-dimensional observations and sparse rewards
present significant difficulty for reinforcement learning with task uncertainty, and finally classical
reinforcement learning algorithms are not robust to test time distribution shifts when trained with
limited data.

This work has two main contributions: First, we propose a new method to construct synthetic
exploration strategies from fixed datasets of task-specific interactions. We also develop a method
explicitly targeted to offline meta-learning from high-dimensional observations and sparse rewards,
which is the first such approach to our knowledge.

2 Related Work

In the last several years meta-reinforcement learning [4, 5, 22] has emerged as a promising approach
to build broadly generalizing intelligent agents that are capable of quickly adapting to novel tasks
with small amounts of additional data. However, such methods still require huge amounts of data
at meta-train time, making training them impractical in realistic domains. Meta-reinforcement
learning methods fall in two broad-categories: optimization-based models such as MAML [5] use
on-policy training in combination with a bi-level optimization scheme that aims to learn initial policy
parameters, such that with only a few additional gradient steps the agent can achiever high rewards on
novel tasks. These are inherently difficult to apply to the offline domain due to the need for on-policy
data and the difficult optimization procedure. Previous attempts [19] have only focused on tasks with
low-dimensional observation spaces and continuous smooth rewards.

The second broad category casts meta-RL as learning in a POMDP setup, in which the task itself is a
hidden variable sampled from some task distribution [10]. Successful methods in this framework
use recurrent policies [4] or specific task-embedding schemes [22, 29] in a combination with a
task-conditioned policy. One significant benefit of the second class of approaches is that it’s amenable
to off-policy training. Previous works [3] have successfully adapted such methods to the offline
setting, however they also only focus on relatively simple tasks. Due to their complex training regimes
both optimization-based and inference-based approaches are difficult to train from high-dimensional
observations, such as images. To tackle this issue [28] adopts the task inference view of meta-learning
and trains a deep variational filter with image and reward reconstruction, which jointly models
uncertainty over the agent’s environment state and task. Although the authors report state of the
art performance, this method still requires millions of environment steps to achieve expert-level
performance in the online setting. On the other hand, recently batch or offline reinforcement learning
has emerged as alternative in addressing sample complexity issues with online reinforcement learning
[18]. In this setting the agent has access to a fixed dataset of environment interactions and does not
carry out additional exploration. The goal of this framework is to reuse previously collected datasets,
which could come from a variety of distributions, such as unsupervised exploration, previous runs of
agent training and expert level demonstrations. These approaches are especially relevant to real-world
scenarios, such as autonomous driving, medical applications and financial systems. There have been
efforts to scale these methods to more realistic visual domains [21, 27, 15], but these works only
focus on a single task approach and do not consider transfer to new tasks or distribution shifts.

3 Preliminaries

We begin by reviewing necessary preliminaries from meta-learning and offline reinforcement learning.

3.1 Meta Reinforcement Learning as Task Inference

A Markov Decision Process (MDP) is a tuple T = (S,A,P, R, γ) , where s ∈ S is the state space,
A is the action space, P(s′|s, a) is the transition model, R : S × A → R is a reward function
and γ is a discount factor. The meta-RL problem assumes a distribution over MDPs - p(T ) with
samples from the distribution referred to as tasks. At train time we can sample training tasks from the
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distribution and the goal is to learn an agent that can quickly adapt to a new task sampled from the
same distribution. Several works [10, 22, 29] cast this problem in the frame of partially observed
MDPs (POMDP). A POMDP is a 7-tuple (S,A,P, R,Ω,O, γ), where in addition to the components
of an MDP, we have the observation space o ∈ Ω and the observation model O(o|s). We can
then consider meta-learning as learning in the POMDP, with state (s, w), where w are some task
parameters and the observation model is O(s, w) = s. Several methods have deployed techniques
from POMDP training to the meta-learning setting, such as recurrent policies, which integrate agent
observations and build an internal task representation [4] or explicitly construct a task inference
network that produces a task embedding in combination with a task-conditioned feedforward policy
[22, 29]. State of-the art inference-based algorithms have so-far outperformed optimization based
ones, both in sample efficiency and asymptotic performance.

3.2 Variational Model Training

A separate line of work considers sample-efficient reinforcement learning from images using vari-
ational models. The main idea is to cast image-based RL in the POMDP setup and learn a low-
dimensional state-based representation, which can then efficiently be used for model-free learning
[17]. This is generally cast as a deep Bayesian filter and with standard variational methods [12, 28], we
can introduce the variational network q(st|o≤t, a<t) and obtain the evidence lower bound (ELBO):

logP (o1:T |a1:T ) ≥ Êqθ
[ T∑
t=1

log Ôθ(ot|st)︸ ︷︷ ︸
reconstruction

−DKL(qθ(st|ot, st−1,at−1)||P̂θ(st|st−1,at−1))︸ ︷︷ ︸
forward model

]
.

(1)

In practice, we can iterate between model training, off-policy agent training and sample collection,
which is the approach taken by [17]. Alternatively, other works [9, 8], have used the forward
prediction model for model-based policy training. However, since these models depend on posterior
sampling, which could make learning exploration strategies sub-optimal [29], and since we do not
concern ourselves with sample efficiency (we’re working in the fully offline case) we only use the
learned model for representation purposes.

3.3 Offline Reinforcement Learning

Offline RL is the setting where we have access only to a fixed dataset D = {(s,a, r, s′)}, which
consists of transition tuples from trajectories collected using a behavior policy . In other words, the
dataset D is sampled from d(s,a)d(s)(a|s). In the offline setting, even in the limit of an infinite size
dataset, it may not be possible to find the optimal policy for the underlying MDP [2, 11]. Thus, we
typically forgo the goal of finding the optimal policy, and instead aim to find the best possible policy
using the fixed offline dataset.

One popular class of approaches for solving MDPs involves the use of dynamic programming and
actor-critic schemes [24, 1], which do not explicitly require the learning of a dynamics model. To
capture the long term behavior of a policy without a model, we define the action value function as

Qπ(s,a) := E

[ ∞∑
t=0

γt r(st,at) | s0 = s,a0 = a

]
, (2)

where future actions are sampled from π(·|) and state transitions happen according to the MDP
dynamics. Consider the following Bellman operator:

BπQ(s,a) := r(s,a) + γEs′∼P(·|s,a),a′∼π(·|s′) [Q(s′,a′)] ,

and its sample based counterpart:

B̂πQ(s,a) := r(s,a) + γQ(s′,a′),

associated with a single transition (s,a, s′) and s′ ∼ π(·|s′). The action-value function satisfies
the Bellman consistency criterion given by BπQπ(s,a) = Qπ(s,a) ∀(s,a). When given an offline
dataset D, standard approximate dynamic programming (ADP) and actor-critic methods use this
criterion to learn by alternating between the following steps [20].
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1. Policy Evaluation: The Q function associated with the current policy π is approximated by
repeatedly applying the Bellman operator:

Qk+1 ← arg min
Q

ED
[(
Q(s,a)− B̂πQk(s,a)

)2]
.

The approximate value Q̂π is obtained after several steps of the above recursion.

2. Policy Improvement: After approximating the Q function as Q̂π, the policy is improved
as:

π ← arg max
π′

Es∼D,a∼π′(·|s)

[
Q̂π(s,a)

]
Actor-critic schemes with parameterized policies and Q functions approximate the arg max
and arg min in above equations with a few steps of gradient descent.

A number of prior works have observed that such a direct extension of ADP and actor-critic schemes
to offline RL leads to poor results due to distribution shift over the course of learning and over-
estimation bias in the Q function [7, 13, 25]. To address these drawbacks, prior works have proposed
a number of modifications aimed towards regularizing the policy or value function. In this work, we
primarily focus on CQL [16], which modifies the action-value learning step as:

Qk+1 ← argmin
Q

β
(
Es∼D,a∼µ(·|s) [Q(s,a)]− Es,a∼D [Q(s,a)]

)
+
1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQk(s,a))

)2]
, (3)

where µ(·|s) is a wide sampling distribution such as the uniform distribution over action bounds.
CQL effectively penalizes the Q function at states in the dataset for actions not observed in the
dataset. This enables a conservative estimation of the value function for any policy [16], mitigating
the challenges of over-estimation bias and distribution shift.

3.4 Offline Meta-Reinforcement Learning

Similarly to [3, 19], we consider the standard meta-RL problem in an offline setup. We have a set of
N fixed training tasks Ti, i = 1 : N . Each training task comes with an offline buffer of visual data Bi
in the form of trajectories, generated by a behavior policy πβi and we do not have access to additional
data collection in the meta-training environments. Here we consider the case where each behavior
policy πβi is task-specific, i.e. operates in the MDP of Ti, rather than the POMDP induced by the
meta-learning problem.

One major challenge of such offline meta-RL set-up is that the agent needs to learn coherent
exploration policies at test time. Inference-based meta-RL approaches allow off-policy learning,
but suffers poor performance in our particular setting: if the agent can easily infer the tasks from
offline replay buffers based on spurious correlations, then it would fail to learn a coherent meta-test
exploration strategy. This is especially prevalent in the case when individual replay buffers hold
more narrow, task-specific data, which can be very disjoint. In this work, we tackle the spurious
memorization issue using a strategy for generating synthetic exploration rollouts from offline data only.
Furthermore, we use a recurrent deep variational filter method, which jointly infers environment and
task state from sequences of images, actions and rewards from the synthetic exploration distribution
and train an offline RL agent using conservative Q-learning [16] on top of the learned latent space.
We describe each step in detail in the following three subsections.

3.5 Synthetic Exploration

If each offline replay buffer Bi contains only task-specific data, then a naive combination of
meta-learning and offline learning methods would fail to learn a coherent task-inference method
and would thus fail at test time. In order to avoid this phenomenon we create extended syn-
thetic exploration rollouts by mixing offline rollouts from different tasks. In particular, we
create a K-extended rollout by randomly sampling K indices (with replacement) i1, . . . , iK
from {1, . . . , N}. We then sample random trajectories from the corresponding replay buffers:
τ ij = [o

ij
1 , . . . , o

ij
T , a

ij
1 , . . . , a

ij
T , r

ij
1 , . . . , r

ij
T ] ∼ Bij , j = 1, . . . ,K and an additional target task

4



Figure 1: Illustration of our synthetic exploration construction. The setup consists of two drawers,
the goal of Task 1 is to open the left drawer, while the goal of Task 2 is to open the right drawer. The
agent receives reward of 1 for successfully completing a task and 0 otherwise. During deployment
the agent does not have a direct indication of which is the target drawer to open and needs to carry out
exploration in the environment. We randomly concatenate rollouts from different tasks together to
create extended exploration runs. Furthermore, for each meta-trajectory we choose a particular task
and zero out rewards for all trajectories that do not carry out that task. We then train a policy using
offline reinforcement learning on the constructed meta-trajectories with the augmented sequence of
rewards.

index i∗ ∼ [N ]. We then create synthetic rewards in rollout τ ij using [r̂
ij
1 , . . . , r̂

ij
T ] = [I{ij =

i∗}rij1 , . . . , I{ij = i∗}rijT ]. We then concatenate the trajectories together to obtain a single meta-
exploration rollout τ = [o1, . . . , oKT , a1, . . . , aKT , r̂1, . . . , r̂KT ]. We denote the resulting meta-
rollout distribution asMK(B1, . . . ,BN ) or simplyMK for brevity. An illustration of our synthetic
exploration approach is shown in Figure 1. Since we consider realistic settings with sparse rewards,
this process does not fundamentally alter the reward distribution encountered by the agent during
exploration at test time. Furthermore, since we sample the "ground-truth" target task randomly
after constructing the extended rollouts, this approach fundamentally removes spurious correlations
between the state-action distribution and the task distribution. In this case the inference model is
forced to integrate not only the environment interactions, but the rewards as well, which matches the
inference problem at test time.

3.6 Variational Model Training

We follow [28] in training a high-dimensional variational model in order to build the belief distribution
for the associated meta-learning POMDP. The procedure closely follows the methods outlined in
Section 3.1 , however we operate on batches of meta-exploration trajectories, constructed using the
method from Section 4.1. In addition, since task identification depends on the obtained rewards, in
order to build a belief representation over tasks, we also include the sequence of rewards as both an
input to the inference model, as well as a reconstruction term. Our final optimization objective, is an
extended version of the Evidence Lower Bound:

max
θ

Ê
s1:TK∼qθ

[
TK∑
t=1

log Ôθ(ot|st) + β log R̂θ(r̂t|st)−

TK−1∑
t=0

DKL[qθ(st+1|ot+1, r̂t+1, st,at)||P̂θ(st+1|st,at)]

]
where the empirical expectation is computed using batches fromMK and samples from the belief
distribution qθ. Here β is a parameter we use to weigh reward prediction (indicative of task prediction)
over image-reconstruction, which is task-agnostic. Since the model is optimized using supervised
training to predict rewards, the inference network needs to aggregate long-term evidence based on
environment interactions and rewards in order to identify the corresponding ground-truth task. Note
that we do not reset the model states between episodes in the meta-exploration rollout, since it’s
crucial to maintain information across the rollout in order to identify the task.
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Figure 2: Left: This environment consist of a Sawyer robot arm and two drawers. The agent receives
a reward of 1 for successfully opening the correct drawer, however it does not not which one that
is apriori and needs to carry out extended exploration to verify the particular task. Right: Results
on the two-drawer domain The x− axis shows number of exploration rollouts, while the y− axis
shows success rate of opening the correct drawer. We see that after a single exploration rollout our
method (labeled "Ours") successfully identifies the correct drawer to open, while a naive combination
of offline training and meta-learning methods (labeled "No Expl" as it does not use our synthetic
exploration procedure) fails to reliably succeed in the task. Naive application of online learning
methods ("No CQL") completely fails to learn meaningful behaviours.

3.7 Policy Training

We choose to use CQL [16] as our model-free optimization method, as it achieves good results on
offline RL benchmarks [6]. In addition our synthetic exploration approach creates multi-modal data
distributions, which policy constraint-based methods [14, 26] tend to struggle with. We optimize our
policy using Eq. 3 on top of the learned belief representation. In particular, we compute belief states
b1:TK = qθ(M) over batches of trajectories from the meta-exploration distributionMK and using
the belief network qθ. In practice qθ is usually parameterized as a diagonal Gaussian distribution and
we represent the belief state as a concatenation of the mean and variance vectors of the distribution.
Finally we use the following TD learning objective:

Qj+1 ← arg min
Q

β(Eb∼qθ(MK),a∼µ(·|b) [Q(b,a)]− Eb,a∼qθ(MK) [Q(b,a)])

+
1

2
Eb,a,b′∼qθ(MK)

[(
Q(b,a)− B̂πQj(b,a))

)2]
.

The policy is then optimized in the standard way

max
ψ

Eb∼qθ(MK)Ea∼πψ(a|b)[Qθ(b,a)]

In [29] the authors make connections between this approach and BAMDPs and show significant
improvements in exploration efficiency over posterior sampling methods used in previous works [22].

4 Experiments

Environment: Our evaluation environment is shown in Fig. 2 on the left. The environment consist
of a Sawyer robot arm and two drawers. The agent receives a reward of 1 for successfully opening
the correct drawer, however it does not not which one that is apriori and needs to carry out extended
exploration to verify the particular task. Following [21], the agent has access to 1000 training rollouts
for each individual task. This environment very clearly demonstrates the issues with naively using
offline methods to train meta-RL agents. In particular it shows two main issues:
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1. The task being performed in a rollout from the dataset can be correctly inferred from the
first few frames, simply by the direction of the robot arm. At test time this yields a very poor
exploration performance as obviously the task is independent of the robot motion.

2. The dataset contains reltively narrow data that does not explore other tasks. In particular at
test time, the robot can still end up opening the wrong drawer and receive a reward of 0. This
is an out-of-distribution event, since drawer opening always results in positive reward in the
offline dataset, but the agent fails to include rewards in the task-based inference process.

Results: The above problems are clearly visible in the results shown in Fig. 2 on the right. We
observe that after a single exploration rollout our method (labeled "Ours") successfully identifies
the correct drawer to open, while a naive combination of offline training and meta-learning methods
(labeled "No Expl" as it does not use our synthetic exploration procedure) fails to reliably succeed
in the task. In essence this approach learns to always open the left drawer, as during training any
drawer opening results in the same reward, and the left one is closer to the initial position of the
arm. However, since at test time we randomly sample between the two tasks, this method ends up
achieving only 50% success rate. Finally, naive application of online learning methods ("No CQL")
completely fail to learn meaningful behaviours, due to test-time distribution shift, which the policy is
not equipped to handle.

5 Conclusion

In this work we presented a method for offline meta-learning from images in tasks with sparse rewards,
which significantly outperforms naive combinations of meta-learning and offline-RL methods on a
realistic meta-learning task involving robot manipulation. Our frameworks allows us to add additional
data and new tasks and seamless expand the capabilities of meta-RL agents without the need for
additional environmental interactions. Currently we’re working towards deploying this algorithm
on more complex robotic manipulation domains from [23] that involve both qualitative and visual
generalization to new objects and tasks. We also believe that our approach has significant potential
for real-world applications and are currently evaluating it on a real-world multi-task desk setup.
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