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Abstract

Reinforcement learning (RL) has shown great promise in optimizing long-term
user interest in recommender systems. However, existing RL-based recommenda-
tion methods need a large number of interactions for each user to learn a robust
recommendation policy. The challenge becomes more critical when recommending
to new users who have a limited number of interactions. To that end, in this paper,
we address the cold-start challenge in the RL-based recommender systems by
proposing a meta-level model-based reinforcement learning approach for fast user
adaptation. In our approach, we learn to infer each user’s preference with a user
context variable that enables recommendation systems to better adapt to new users
with few interactions. To improve adaptation efficiency, we learn to recover the
user policy and reward from only a few interactions via an inverse reinforcement
learning method to assist a meta-level recommendation agent. Moreover, we model
the interaction relationship between the user model and recommendation agent
from an information-theoretic perspective. Empirical results show the effectiveness
of the proposed method when adapting to new users with only a single interac-
tion sequence. We further provide a theoretical analysis of the recommendation
performance bound.

1 Introduction

Recent years have witnessed great interest in developing reinforcement learning (RL) based rec-
ommender systems [2, 7], which can effectively model and optimize user’s long-term interest. In
the RL-based recommendation methods, the policy is learned by leveraging the collected interac-
tions between users and recommender systems. As different users may have different interests,
conventional RL-based methods need to learn a separate policy for each user, which calls for large
amounts of interactions for an individual user to learn a robust recommendation policy. However,
it is very difficult and expensive to obtain enough user-recommender interactions to train a robust
recommendation policy. Such a challenge becomes even more critical for cold-start users who have a
very limited number of interactions and prominently exist in many recommender systems. Therefore,
it is crucial to learn a recommendation policy that infers the user’s preference and quickly adapts to
cold-start users with a limited number of interactions.

Although different users may have different interests and the interests may change over time, there
are some structural similarities between these interests. For example, users who like reading scientific
books may also prefer to watch science fiction films. Leveraging the structure similarity could be
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helpful for adapting recommendation policy to new users. Meta-learning [4, 11] provides a solution to
learn the structural similarities between user interests. However, it is still very challenging to combine
meta-learning with RL-based recommender systems due to the following reasons. First, a great
amount of interactions sampled from user distributions is needed to infer user preferences. It is very
difficult to get this amount of interaction for new users. Thus, it is a challenge to infer cold-start users’
preferences. Second, to meta-train a recommendation policy, traditional model-free RL methods need
a lot of interactions. Recent methods [2, 7] utilize model-based RL [8, 23] approaches to sidestep this
sample efficiency challenge by leveraging offline user data to model the environment. However, they
may still need lots of offline data from each user to build the environment model, i.e., each user model.
Moreover, how to better utilize the user model for policy adaptation is the third challenge. Existing
RL-based recommendation methods often leverage the user model as the simulated environment
to provide rewards without considering the further dependency between the user model and the
recommender system.

To address the above challenges, in this paper, we propose a meta-level model-based reinforcement
learning method for addressing the cold-start problem in RL-based recommendations. We introduce
a user context variable to represent user preference that will be learned from the user’s behavior
sequences. Conditioned on the user context variable, we construct the meta-level user model and
recommendation agent. For the meta-level user modeling, we recover user policy (i.e., the policy of
user’s decision making) and user reward function via an inverse reinforcement learning method. Then,
the meta-level recommendation agent learns the policy by utilizing the meta-level user model within
the framework of model-based RL. As the user model and recommendation agent interact alternately,
we further propose to model the dependency between the user model and recommendation agent
from an information-theoretic perspective. Specifically, we utilize mutual information between the
user policy and recommendation policy to model their relation. The primary contribution of this work
can be summarized as follows.

• We propose a novel offline meta-level model-based reinforcement learning method to address
the cold-start problem in the RL-based recommender system.

• Within our framework, we introduce a user context variable to infer user preference that
enables fast adaptation on cold-start users. We also introduce a mutual information regu-
larization within the latent policy space to capture the relation between the meta-level user
model and recommendation agent, which further improves the adaption to cold-start users.

• Empirical results compared with the state-of-the-art methods demonstrate the effectiveness
of the proposed method. A theoretical analysis of the recommendation performance bound
of the developed method in the offline setting is provided.

2 Related Work

The related work of this paper could be grouped into three categories as discussed below.

RL-based Recommender System There are mainly two kinds of RL methods for recommendation:
model-free RL methods [6, 16, 20, 21, 33] and model-based RL methods [2, 7, 34]. Model-free RL
methods assume the environment is unknown without user modeling. Model-free RL methods usually
need large amounts of interactions for policy optimization. To tackle the sample complexity challenge,
model-based RL methods are applied by considering user modeling, which can predict user behavior
and reward. For instance, the generative adversarial user model [7] learns the user behavior model
and reward function together in a unified min-max framework; then the recommendation policy is
learned with reward from the trained user model. However, this model requires a large amount of data
to estimate a particular user model, which is not feasible in the cold-start recommendation scenario.
Besides, the user model and recommendation model are trained separately, which prevents them from
benefiting from each other. Bai et al.[2] also proposed to use model-based RL for recommendation.
They introduced the discriminator with adversarial training to let the user behavior and recommenda-
tion policy imitate the policy in logged offline data. The reward to train recommendation policy is
weighted by the discriminator score. Their method can be seen as reward shaping [22, 25], which
does not recover the true user reward function. Both of the above two methods do not properly address
the cold-start challenge in the RL-based recommender system. In contrast with these methods, our
method can recover the true user behavior and reward with a small amount of data by meta-learning
user model and recommendation model with user context variable in a unified framework, and the
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mutual information regularization between the user policy and recommendation policy can benefit
each other for better policy adaptation.

Meta-learning Meta-learning aims to learn from a small amount of data and adapts quickly to
new tasks [4, 11]. In context-based meta-learning [9, 28], the approaches learn to infer the task
uncertainties by taking task experiences as input. For instance, Rakelly et al.[28] proposed to learn
the task context variables with probabilistic latent variables from past experiences. The model-free
RL policy is trained conditioned on the task variable to improve sample efficiency. In contrast, our
method learns a use context variable to infer user preference within the model-based RL framework.

Inverse Reinforcement Learning Inverse reinforcement learning (IRL) is the problem of learning
reward functions from demonstrations [24, 1, 13, 27], which can avoid the need for reward engineering.
For instance, Fu et al.[12] proposed an adversarial IRL (AIRL) framework to recover the true reward
functions from demonstrations. IRL needs a large number of expert demonstrations to infer true
reward function, which is highly expensive in the area of robotics. Recently, some works [31, 14]
try to recover reward function from a limited amount of demonstrations with the meta-IRL method
by incorporating the context-based meta-learning method into AIRL framework. Comparatively,
in our solution, we recover the user policy and reward function from offline user behavior data by
leveraging the meta-IRL method. To better capture the user context information into policy, We
utilize a variational policy network conditioned on the user context variable. Besides, the meta-IRL
learned user model serves as the environment in our meta-level model-based RL framework.

3 Problem Statement

In this paper, we focus on the cold-start problem in reinforcement learning (RL) based recommender
system. Sample efficiency is a major challenge especially when the recommender system adapts to
new users. To achieve a fast adaptation for new users, we investigate the cold-start problem of the
RL-based recommender system from a meta-learning perspective. Let us first introduce the concept of
the user context variable and then formally state the proposed meta-level model-based reinforcement
learning problem that aims to address the cold-start challenge of the RL-based recommender system.

The RL-based recommendation problem is formulated as a Markov Decision Process (MDP), where
the agent and environment corresponds to the recommender and user, respectively. A recommender
(i.e., the learning agent) generates actions Ai,t (e.g., recommending k items from an item set D) at
time t for the i-th user, then the user provide feedback xi,t (i.e., clicked item) on the recommendation
list. The reward ri,t is obtained based on the clicked items (e.g., user’s purchases of clicked items
or engagement time with clicked items). The recommender receives the reward and decides the
next actions (e.g., another k items to recommend). For each user, we have initial state, state
transition probability and reward function. We assume the distributions over users as p(U). The
context variable C denotes users’ preferences or interests over items during their decision making
process. p(C|U) denotes the distribution over context C for U . We infer user’s context variable
from the user’s behavior sequence. In this problem, we assume the i-th user’s behavior sequence
as τi = {(xi,1,Ai,1, ri,1), (xi,2,Ai,2, ri,2), · · · , (xi,n,Ai,n, ri,n)}, which can be obtained in the
offline user data.

To achieve fast adaptation, we infer a context variable for each user. Therefore, we further extend
the MDP by incorporating the context variable C. Different environments will induce different user
context variables c ∈ C. In the following notations, we omit the script of user index, which is reflected
in the user context variable c. The state of the environment is denoted by st ∈ S , which corresponds
to one user’s historical clicked item sequence before time t. We assume the users follow their policies
when making choice, which is referred as user policy πφ(xt|st,At, c). This user policy indicates that
user clicks item xt chosen from item set At based on state st with a specific user context variable c.
Then, state transition function P : C × S ×A× S → R can be modeled by user policy πφ, which
represents the probability of transferring to state st+1 given state st, recommendation list At and
the specific user context variable c. User’s reward function is denoted as rw(st, xt,At, c), which
represents the reward after the user chooses item xt from At in state st with context variable c.
For the recommender agent, the policy is defined as πθ(At|st, c), where the recommender decides
recommendation list At from item set D in state st conditioned on user context variable c. In this
problem, the user reward and recommender reward are assumed to be the same.

Now, we formally define our problem. Given a set of users sampled from user distribution p(U), we
meta-learn a user model, which recovers the user policy and user reward from offline data. Assisted
by the meta-level user model πφ, we meta-train a recommendation policy πθ to adapt to users
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conditioned on user context variable. During the meta-test stage, the recommendation policy adapts
to new users conditioned on only a single user behavior sequence.

4 Method

In this section, we present the proposed Mutual information regularized Meta-level Model-based
reinforcement learning approach for cold-start Recommendation (M3Rec).

4.1 Mutual Information Regularized Meta-level Model-based Reinforcement Learning

We tackle the cold-start problem of RL-based recommendation from a meta-learning perspective.
We propose to condition the user model and recommendation agent on the user context variable,
which can derive a context-aware user and recommendation policy as well as a user reward function.
To improve the meta-training efficiency, we further model the dependency between user policy and
recommendation policy using mutual information regularization.

Meta-level User Model as Inverse Reinforcement Learning As the conditioned user policy and
reward function are unknown, we aim to recover both the user policy and reward function from offline
data in the meta-level user model.

As the user context variable C is sampled from distribution p(C|U), it can be estimated from the
offline user’s behavior sequence τ . We infer the i-th user’s context variable ci as pf (ci|τi). To learn a
conditioned user policy πφ(xt|st,At, c), it must encode the salient information of the user context
variable c into user policy representation. To make the user policy better aware of the user context
variable, we adopt the variational inference approach [18, 29] to infer the latent user policy variable
zu with a user context variable. It can be generated from variational distribution qφ(zu|st, c). To
optimize the parameters for learning zu, we maximize the lower bound of log pφ(st|c):

log pφ(st|c) ≥ Eqφ(zu|st,c)[log pφ(st|zu, c)]− βDKL(qφ(zu|st, c)‖pφ(zu|c)), (1)

where the first term is optimized to reconstruct current state st. Empirically, we found that training
the decoder pφ(st|zu, c) to predict the next state st+1 performs better, which models the user’s
dynamics. The second term constrains the latent policy variable with a Gaussian prior. Then, the
user’s choice for item xt can be obtained as πφ(xt|zu,At).

To recover both the actual user policy and reward function, we utilize offline user data τ . Inspired by
Adversarial Inverse Reinforcement Learning (AIRL) [12], we recover both the conditioned variational
user policy and conditioned reward function from offline data by optimizing the following objective:

min
πφ

max
Dω

Ep(A,c)[Eρtrue(s,x|A,c)[logDω(s, x,A, c)] + Eρπφ (s,x|A,c)[log(1−Dω(s, x,A, c))]],

where the discriminator function is Dω(s, x,A, c) = exp(gω(s, x,A, c))/(exp(gω(s, x,A, c)) +
πφ(x|s.A, c)). gω contains the reward approximator rω and the reward shaping term hϕ:
gω(s, x,A, c) = rω(s, x,A, c) + γhϕ(s

′, c) − hϕ(s, c), where γ is the discount factor and s′

is the next state of state s. To infer a user’s context variable c, we first sample a user u from dis-
tribution p(U). Then c can be inferred using sampled true user behavior sequence τ cu by pf (c|τ cu)
as aforementioned. The tuple of state s, user choice c and recommendation list A from ρtrue is
sampled from true user behavior sequence τ trueu . {s, x,A} from ρπφ can be sampled from rollouts
τu generated by policy πφ conditioned on user context variable c.

Specifically, during training, We can alternately update parameters of user policy πφ and discriminator
Dw. The objective for training the user policy πφ is:

max
φ

Eu∼p(U),c∼pf (c|τcu),τu∼ρπφ (τu|A,c)

T∑
t=1

log(Dw(st, xt,At, c)− log(1−Dw(st, xt,At, c)),

(2)
where we can train the meta-level user policy πφ using policy gradient algorithm.
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The objective for training the discriminator is:

max
Dω

Eu∼p(U)[Ec∼pf (c|τcu),τu∼ρπφ (τu|A,c)

T∑
t=1

log(1−Dw(st, xt,At, c)+

Ec∼pf (c|τcu),τtrueu ∼ρtrue(τtrueu )

T∑
t=1

logDw(st, xt,At, c)]. (3)

Similar to AIRL in [12], when training the conditioned variational user policy and conditioned
discriminator to optimality, we can recover the true user policy and the true reward function up to a
constant, which approximate the real user model. Therefore, we can also utilize the offline data to
estimate the meta-level user model by maximizing the likelihood of log πφ(xt|st,At, c) sampling
offline data τ trueu ∼ ρtrue(τ trueu ).

Meta-level Recommendation Agent The recommendation agent aims to maximize the cumulative
user reward and adapt to new users. To facilitate fast adaptation, we condition the recommendation
policy πθ(At|st, c) on the user context variable c. Similar to the meta-level user model, we use varia-
tional recommendation policy conditioned on the user context variable to enable the recommendation
policy to be aware of the user preference. The latent recommendation policy variable is denoted as
zrec induced from variational distribution qθ(zrec|st, c) . We optimize the lower bound of pθ(st|c):

log pθ(st|c) ≥ Eqθ(zrec|st,c)[log pθ(st|zrec, c)]− βDKL(qθ(zrec|st, c)‖pθ(zrec|c)). (4)

Then, based on the latent recommendation policy variable, the agent will generate a recommendation
list of size k under policy π(A|zrec). Specifically, the probability that the user’s clicked item xt ∈ At

is π(xt|zrec). The objective for the recommendation policy is as follows:

max
θ

Eu∼p(U),c∼pf (c|τcu),τu∼ρπθ (τu|A,c)

T∑
t=1

rw(st, xt,At, c), (5)

which can be optimized by using policy gradient algorithm.

As shown above, when training the meta-user model to optimality, the reward function rw(s, x,A, c)
will recover the true reward to a constant, which reduces bias. Therefore, πθ(At|st, c) can also be
optimized by policy gradient algorithm using the true offline data τ trueu ∼ ρtrue(τ trueu ).

Mutual Information Regularization for Policy Adaptation As shown in the setting of RL-based
recommendation system, the user model and recommendation agent interact alternately. Therefore,
there is a high dependency between the user policy and recommendation policy. It is necessary to
establish influence function between these two policies. From the information-theoretic perspective,
the mutual information between the latent user policy variable zu and the latent recommendation
policy variable zrec can measure the influence relationship. We further analyze the influence of
mutual information regularization in Sec 4.2.

The mutual information between two variables is defined as:

I(zu; zrec) = DKL (Pzuzrec‖Pzu ⊗ Pzrec) , (6)

where Pzuzrec is the joint distribution. Pzu and Pzrec are marginal distributions.

we want to maximize I(zu; zrec) , which can assist the adaptation of the recommendation policy as
well as the estimation of user policy. However, mutual information is difficult to estimate in high
dimension space. Inspired by [3, 26], we maximize the lower bound of Jensen-Shannon mutual
information I(JSD)(zu; zrec) for stable training as:

I(JSD)(zu; zrec) ≥ sup
ψ∈Ψ

EPzuzrec [−sp (−Tψ(zu, zrec))]− EPzu⊗Pzrec [sp (Tψ(zu, zrec))] , (7)

where Tψ : X × Y → R is a neural network function with parameter ψ and sp(z) = log(1 + ez) is
the softplus function.

During training, we maximize the lower bound in Eq. 7 to update corresponding parameters in the
meta-level user model and meta-level recommender agent model.
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4.2 Theoretical Analysis

In this section, we provide a theoretical analysis of the performance bound of the recommender policy
when adapting to meta-test users by our meta-level model-based RL framework.

To provide our theoretical analysis, let us first introduce some notations. Here, we slightly abuse the
notation for simplicity. We denote action at time t as at, which corresponds to xt and At defined in
Section 3 for user and recommender agent respectively. We use µπθui =

1
T

∑T
t=0 P (st = s, at = a)

to denote the average state action (s, a) visitation distribution when executing recommendation policy
πθ in user model ui, where ui can be the approximated user model umi in our meta-level model-based
RL or the true user model uwi in the real world. Then for user ui, there is modeling error between
umi and uwi under state-action distribution µ: `(umi , µ) = E(s,a)∼µ[DKL(Puwi (·|s, a), Pumi (·|s, a))],
where DKL is the KL divergence. Puwi and Pumi represents user transition dynamics (i.e., user policy
πφ) in true user model uwi and approximated meta-level user model umi respectively. The performance
of recommendation policy πθ under user model ui is J(πθ, ui) = E[

∑∞
t=0 γ

trui,t], where γ is the
discount factor. Then, we can get the recommendation policy performance bound learned in our
meta-level model-based RL framework.
Theorem 1. Suppose the meta-level user model and meta-level recommendation policy is trained to
optimality on meta-training users. When adapting to a meta-test user with few behavior sequences
to infer the user context variable, the test user’s policy is obtained as πφ(x|s,A, ctest) with the
corresponding recommendation policy as πθ(A|s, ctest). Suppose the modeling error of this test
user model `(umtest, µ

πθ
uwtest

) ≤ εadaptumtest
. The performance of πθ(A|s, ctest) under this test user’s model

satisfies J(πθ, umtest) ≥ supπ′θ J(π
′
θ, u

m
test) − εadaptπθ

. Let π∗θ denotes the optimal recommendation
policy and the corresponding performance is J∗uwtest = supπ′θ J(π

′
θ, u

w
test). We also suppose the

modeling error of this test user model on the optimal recommendation policy π′θ is `(umtest, µ
π∗θ
uwtest

) ≤
εadaptumtest

as the meta-training process can help the model adapt to different recommendation policy.
Then, the performance bound between the learned recommendation policy πθ and the optimal policy
π∗θ on real meta-test users is as follows:

J (π∗θ , u
w
test)− J (πθ, u

w
test) ≤ εadaptπθ

+
4γRmax

√
εadaptumtest

(1− γ)2

Remark. In this theorem, the gap between the recommender policy performance in our model trained
on meta-training users and the optimal policy in the real-world test users comes from two error terms.

The first term is related to the sub-optimality of the meta-policy optimization as well as the gen-
eralization error of meta-level recommendation policy to the meta-test user. It can be reduced by
the sufficient training of meta-level recommendation policy. The mutual information regularization
between user policy and recommendation policy can also help reduce error εadaptπθ

.

The second term is related to the user model adaptation error εadaptumtest
on the new meta-test user

recommendation policy πθ and its optimal recommendation policy π∗θ . As our meta-level user model
learns from a distribution of users and optimize its prediction performance on different meta-level
recommendation policies, the model adaptation error εadaptumtest

can be small. Intuitively, the mutual
information regularization between meta-level user model and meta-level recommendation agent
can reduce the uncertainly of visiting out-of-distribution stat-action, which further reduce the model
estimation error in the offline setting.

Compared with recent offline reinforcement methods built on uncertainty estimation with soft or
hard constraints [32, 17], we utilize the meta-learning and mutual information regularization between
model and policy to reduce the model estimation error. Specifically, the meta-learning helps the model
to accurately simulate on a wide range of policies and the mutual information regularization provides
implicit constraint between model and policy to avoid visiting out-of- distribution state-action too
much in the offline setting.

5 Experiment

In this section, we carry out the experiments in two settings: simulated online evaluation and offline
evaluation with a real-world dataset. The proposed method is compared with state-of-the-art baselines
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Table 1: Online evaluation results of average reward with different recommendation list sizes k.

Model Meta-LSTM Meta-PG IRecGAN GAN-PG MeLU M3Rec (Ours)
k = 3 38.86±0.42 35.43±0.33 37.53±0.61 36.46±0.54 36.54±0.47 40.72±0.66

k = 5 39.01±0.61 35.54±0.54 37.76±0.91 36.74±0.94 36.64±0.99 40.80±0.50

to demonstrate the effectiveness of our solution in the cold-start recommendation problem. We
denote the proposed mutual-information regularized meta-level model-based reinforcement learning
method as M3Rec. Specifically, the selected state-of-the-art baselines are Meta-LSTM, Meta-
Policy Gradient (Meta-PG), IRecGAN [2], Generative Adversarial User Model (GAN-PG) [7],
MeLU [19].

For all the RL-based methods, REINFORCE [30] algorithm is used for policy optimization. During
meta-test stage, we utilize a single interaction sequence for each test user, which is similar to the
one-shot learning setting [5, 10].

5.1 Simulated Online Evaluation

As it is difficult to conduct the online evaluation by interacting with real users, we carry out the
online evaluation in a simulated environment by following previous works [2, 7]. To simulate
the behavior of different users, we utilized an open-sourced simulator1 [15] for recommendation
system, which provides sequential interaction with users. We first generate offline data for model
training. The offline data contains 2,500 users, where we configure the simulator with different user
parameters. After training the model using the offline data, we apply the model in the simulator by
interacting with users to test the online performance. We configure another 500 users as the test
user set, whose parameter configurations are different from users used in the offline data. Table 1
shows the average rewards of all competing methods. It can be observed that the proposed method
M3Rec outperforms the baseline methods, especially the two model-based RL methods without
meta-learning. By inferring a user context variable, our method can effectively adapt to the new users.

5.2 Offline Evaluation With Real-world Dataset

Table 2: Offline evaluation results.

Model Meta-LSTM Meta-PG IRecGAN GAN-PG MeLU M3Rec (Ours)
P@1 (%) 4.43±1.00 5.99±0.18 6.83±1.29 3.62±0.49 5.47±0.33 7.26±0.51

P@5 (%) 22.81±1.59 20.85±0.98 24.36±1.45 17.26±1.81 21.73±0.92 28.42±0.32

P@10 (%) 36.81±1.43 32.13±1.17 36.84±1.18 29.09±1.30 34.27±0.53 40.02±0.34

NDCG@5 (%) 13.75±1.25 13.61±0.70 15.60±1.39 10.42±0.96 13.81±0.38 17.89±0.09

NDCG@10 (%) 18.24±1.20 17.21±0.74 19.60±1.32 14.19±0.87 17.80±0.24 21.63±0.24

Recall@5 (%) 5.75±0.66 4.98±0.52 5.43±0.71 4.57±1.09 5.94±0.71 7.04±0.15

Recall@10 (%) 8.69±0.52 8.02±0.22 8.49±0.32 7.78±1.02 8.97±0.28 9.16±0.24

We further validate the effectiveness of our proposed method with a real-world recommendation
dataset. We utilize the dataset from CIKM CUP 2016 for offline reranking. The performance of
offline evaluation is shown in Table 2, where the Precision, Normalized Discounted Cumulative Gain
(NDCG), Recall metrics are utilized. It can be clearly observed that out proposed method significantly
outperforms all the baseline methods, which demonstrates the effectiveness of our method for the
cold-start recommendation problem.

6 Conclusion
In this paper, we proposed a novel offline meta-level model-based reinforcement learning method to
address the cold-start problem in RL-based recommendations. In the developed method, we intro-
duced a user context variable for inferring user preference and a mutual information regularization
for capturing the dependency between the proposed meta-level user model and meta-level recommen-
dation agent, both of which together enable fast adaption to cold-start users. To improve the adaption
efficiency, we proposed to recover the user policy and reward via an inverse reinforcement learning
approach. In addition to both online and offline evaluations that demonstrate the effectiveness of

1https://github.com/google-research/recsim
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our approach, we provided a theoretical analysis of the recommendation performance bound of the
developed method. Although we test the proposed offline RL method on the recommendation task, it
is a general offline RL framework and can be applied in other applications like robot control.
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