
Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

DEPLOYMENT-EFFICIENT REINFORCEMENT LEARN-
ING VIA MODEL-BASED OFFLINE OPTIMIZATION

Tatsuya Matsushima∗ Hiroki Furuta∗ Yutaka Matsuo
The University of Tokyo
{matsushima, furuta, matsuo}@weblab.t.u-tokyo.ac.jp

Ofir Nachum Shixiang Shane Gu
Google Research
{ofirnachum, shanegu}@google.com

ABSTRACT

Most reinforcement learning (RL) algorithms assume online access to the environ-
ment, in which one may readily interleave updates to the policy with experience
collection using that policy. However, in many real-world applications such as
health, education, dialogue agents, and robotics, the cost or potential risk of deploy-
ing a new data-collection policy is high, to the point that it can become prohibitive
to update the data-collection policy more than a few times during learning. With
this view, we propose a novel concept of deployment efficiency, measuring the
number of distinct data-collection policies that are used during policy learning.
We observe that naïvely applying existing model-free offline RL algorithms re-
cursively does not lead to a practical deployment-efficient and sample-efficient
algorithm. We propose a novel model-based algorithm, Behavior-Regularized
Model-ENsemble (BREMEN), that not only performs better than or comparably
as the state-of-the-art dynamic-programming-based and concurrently-proposed
model-based offline approaches on existing benchmarks, but can also effectively op-
timize a policy offline using 10-20 times fewer data than prior works. Furthermore,
the recursive application of BREMEN achieves impressive deployment efficiency
while maintaining the same or better sample efficiency, learning successful poli-
cies from scratch on simulated robotic environments with only 5-10 deployments,
compared to typical values of hundreds to millions in standard RL baselines.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have recently demonstrated impressive success in learning
behaviors for a variety of sequential decision-making tasks (Barth-Maron et al., 2018; Hessel et al.,
2018; Nachum et al., 2019). Virtually all of these demonstrations have relied on highly-frequent
online access to the environment, with the RL algorithms often interleaving each update to the policy
with additional experience collection of that policy acting in the environment. However, in many
real-world applications of RL, such as health (Murphy et al., 2001), education (Mandel et al., 2014),
dialog agents (Jaques et al., 2019), and robotics (Gu et al., 2017a; Kalashnikov et al., 2018), the
deployment of a new data-collection policy may be associated with a number of costs and risks. If
we can learn tasks with a small number of data collection policies, we can substantially reduce them.

Based on this idea, we propose a novel measure of RL algorithm performance, namely deployment
efficiency, which counts the number of changes in the data-collection policy during learning, as illus-
trated in Figure 1. This concept may be seen in contrast to sample efficiency or data efficiency (Precup
et al., 2001; Degris et al., 2012; Gu et al., 2017b; Haarnoja et al., 2018; Lillicrap et al., 2016; Nachum
et al., 2018), which measures the amount of environment interactions incurred during training, without
regard to how many distinct policies were deployed to perform those interactions. Even when the
data efficiency is high, the deployment efficiency could be low, since many on-policy and off-policy
algorithms alternate data collection with each policy update (Schulman et al., 2015; Lillicrap et al.,

∗Equal contribution.

1

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Offline RL

Env.

Policy Update
Dataset

Policy

𝑠! , 𝑟!

𝑠! , 𝑎! , 𝑟!

‥‥‥

Collect 𝐵 Transitions

‥‥‥

‥‥‥

Deployment EfficiencyHigh Low
of Deployments (𝐼) 1 5~10 100Ks~1Ms≈

Add
Dataset

100s~1000s

Deploy

𝑎!
Data Collection

Policy

Deploy Deploy

TRPO, PPO, ME-TRPO,… DDPG, SAC,…BCQ, BRAC,… BREMEN
Ours Online RL

Figure 1: Deployment efficiency is defined as the number of changes in the data-collection policy (I), which
is vital for managing costs and risks of new policy deployment. Online RL algorithms typically require
many iterations of policy deployment and data collection, which leads to extremely low deployment efficiency.
In contrast, most pure offline algorithms consider updating a policy from a fixed dataset without additional
deployment and often fail to learn from a randomly initialized data-collection policy. Interestingly, most
state-of-the-art off-policy algorithms are still evaluated in heavily online settings. For example, SAC (Haarnoja
et al., 2018) collects one sample per policy update, amounting to 100,000 to 1 million deployments for learning
standard benchmark domains.

2016; Gu et al., 2016; Haarnoja et al., 2018). Such dependence on high-frequency policy deployments
is best illustrated in the recent works in offline RL (Fujimoto et al., 2019; Jaques et al., 2019; Kumar
et al., 2019; Levine et al., 2020; Wu et al., 2019), where baseline off-policy algorithms exhibited poor
performance when trained on a static dataset. These offline RL works, however, limit their study to
a single deployment, which is enough for achieving high performance with data collected from a
sub-optimal behavior policy, but often not from a random policy. In contrast to those prior works, we
aim to learn successful policies from scratch in a manner that is both sample and deployment-efficient.

Many existing model-free offline RL algorithms (Levine et al., 2020) are tuned and evaluated on
massive datasets (e.g., one million transitions). In order to develop an algorithm that is both sample
and deployment-efficient, each iteration of the algorithm between successive deployments has to
work effectively on much smaller dataset sizes. We believe model-based RL is better suited to
this setting due to its higher demonstrated sample efficiency than model-free RL (Kurutach et al.,
2018; Nagabandi et al., 2018). Although the combination of model-based RL and offline or limited-
deployment settings seems straight-forward, we find this naïve approach leads to poor performance.
This problem can be attributed to extrapolation errors (Fujimoto et al., 2019) similar to those observed
in model-free methods. Specifically, the learned policy may choose sequences of actions which
lead it to regions of the state space where the dynamics model cannot predict properly, due to poor
coverage of the dataset. This can lead the policy to exploit approximation errors of the dynamics
model and be disastrous for learning. In model-free settings, similar data distribution shift problems
are typically remedied by regularizing policy updates explicitly with a divergence from the observed
data distribution (Jaques et al., 2019; Kumar et al., 2019; Wu et al., 2019), which, however, can overly
limit policies’ expressivity (Sohn et al., 2020).

In order to better approach these problems arising in limited deployment settings, we propose
Behavior-Regularized Model-ENsemble (BREMEN), which learns an ensemble of dynamics models
in conjunction with a policy using imaginary rollouts while implicitly regularizing the learned policy
via appropriate parameter initialization and conservative trust-region learning updates. We evaluate
BREMEN on standard offline RL benchmarks of high-dimensional continuous control tasks, where
only a single static dataset is used. In this fixed-batch setting, our experiments show that BREMEN
can not only achieve performance competitive with state-of-the-art when using standard dataset sizes
but also learn with 10-20 times smaller datasets, which previous methods are unable to attain. Enabled
by such stable and sample-efficient offline learning, we show that BREMEN can learn successful
policies with only 5-10 deployments in the online setting, significantly outperforming existing
off-policy and offline RL algorithms in deployment efficiency while keeping sample efficiency.

2 PRELIMINARIES

We consider a Markov Decision Process (MDP) setting, characterized by the tuple M =
(S,A, p, r, γ), where S is the state space, A is the action space, p(s′|s, a) is the transition prob-

2

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

ability distribution or dynamics, r(s) is the reward function and γ ∈ (0, 1) is the discount factor. A
policy π is a function that determines the agent behavior, mapping from states to probability distribu-
tions over actions. The goal is to obtain the optimal policy π∗, which maximizes the expectation of
discounted sum of rewards. The transition probability p(s′|s, a) is usually unknown, and estimated
with a parameterized dynamics model fφ (e.g. a neural network) in model-based RL. For simplicity,
we assume that the reward function r(s) is known, and the reward can be computed for any arbitrary
state, but we may extend to the unknown setting and predict it using a parameterized function.

On-policy vs Off-policy, Online vs Offline At a high-level, most RL algorithms alternate many
times between collecting a batch of transitions (deployments) and optimizing the policy (learning).
If the algorithms discard data after each policy update, they are on-policy (Schulman et al., 2015;
2017), while if they accumulate data in a buffer D, i.e. experience replay (Lin, 1992), they are
off-policy (Mnih et al., 2015; Lillicrap et al., 2016; Gu et al., 2016; 2017b; Haarnoja et al., 2018;
Fujimoto et al., 2019; Fakoor et al., 2019) because not all the data in buffer comes from the current
policy. However, we consider all these algorithms to be online RL algorithms, since they involve
many deployments during learning, ranging from hundreds to millions. On the other hand, in pure
offline RL, one does not assume direct interaction and learns a policy from only a fixed dataset,
which effectively corresponds to a single deployment allowed for learning. Classically, interpolating
these two extremes were semi-batch RL algorithms (Lange et al., 2012; Singh et al., 1995), which
improve the policy through repetitions of collecting a large batch of transitions D = {(s, a, s′, r)}
and performing many or full policy updates. While these semi-batch RL also realize good deployment
efficiency, they have not been extensively studied with neural network function approximators or in
off-policy settings with experience replay for scalable sample-efficient learning. In our work, we aim
to have both high deployment efficiency and sample efficiency by developing an algorithm that can
solve the tasks with minimal policy deployments as well as transition samples.

3 DEPLOYMENT EFFICIENCY

Deploying a new policy for data collection can be associated with a number of costs and risks for
many real-world applications like medicine, dialogue systems, or robotic control (Murphy et al., 2001;
Mandel et al., 2014; Gu et al., 2017a; Kalashnikov et al., 2018; Nachum et al., 2019; Jaques et al.,
2019). While there are abundant works on safety for RL (Chow et al., 2015; Eysenbach et al., 2018;
Chow et al., 2018; Ray et al., 2019; Chow et al., 2019), they often do not provide guarantees in practice
when combined with neural networks and stochastic optimization. It is therefore necessary to verify
each policy before deployment (e.g. measuring the variance of rewards or checking out-of-bounds
actions). Due to such costs associated with each deployment, it is desirable to minimize the number
of distinct deployments needed during the learning process. Even ignoring safety considerations,
frequent updates to a deployed policy can exacerbate communication bottlenecks in large-scale
distributed RL systems, which are becoming more prevalent (Nair et al., 2015; Espeholt et al.,
2018; 2019). We additionally discuss on the importance of the deployment efficiency in real-world
applications. See Appendix C.

In order to focus research on these practical bottlenecks, we propose a novel measure of RL algorithms,
namely, deployment efficiency, which counts how many times the data-collection policy has been
changed during improvement from random policy to solve the task. For example, if an RL algorithm
operates by using its learned policy to collect transitions from the environment I times, each time
collecting a batch of B new transitions, then the number of deployments is I , while the total number
of samples collected is I × B. The lower I is, the more deployment-efficient the algorithm is; in
contrast, sample efficiency looks at I × B. Online RL algorithms, whether they are on-policy or
off-policy, typically update the policy and acquire new transitions by deploying the newly updated
policy at every iteration. This corresponds to performing hundreds to millions of deployments during
learning on standard benchmarks (Haarnoja et al., 2018), which is severely deployment inefficient.
On the other hand, offline RL literature only studies the case of 1 deployment. A deployment-efficient
algorithm would stand in the middle of these two extremes and ideally learn a successful policy from
scratch while deploying only a few distinct policies, as illustrated in Figure 1.

Recent deep RL literature seldom emphasizes deployment efficiency, with few exceptions in specific
applications (Kalashnikov et al., 2018) where such a learning procedure is necessary. Deployment-
inefficient algorithms will fail in scenarios where the deployment of each new policy is exorbitantly
expensive, such as safety-critical robotics or user-facing products. Although current state-of-the-art

3

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

algorithms on continuous control have substantially improved sample or data efficiency, they have
not optimized for deployment efficiency. For example, SAC (Haarnoja et al., 2018), an efficient
model-free off-policy algorithm, performs half a million to one million policy deployments during
learning on MuJoCo (Todorov et al., 2012) benchmarks. ME-TRPO (Kurutach et al., 2018), a
model-based algorithm, performs a much lower 100-300 policy deployments, although this is still
relatively high for practical settings.1 In our work, we demonstrate successful learning on standard
benchmark environments with only 5-10 deployments.

4 BEHAVIOR-REGULARIZED MODEL-ENSEMBLE

To achieve a favorable combination of both high deployment and sample efficiency, we propose
Behavior-Regularized Model-ENsemble (BREMEN). BREMEN incorporates Dyna-style (Sutton,
1991; Kurutach et al., 2018) model-based RL, learning an ensemble of dynamics models in conjunc-
tion with a policy using imaginary rollouts and behavior regularization via conservative trust-region
updates.

4.1 IMAGINARY ROLLOUT FROM MODEL ENSEMBLE

As in recent Dyna-style model-based RL methods (Kurutach et al., 2018; Wang et al., 2019), BRE-
MEN uses an ensemble of K deterministic dynamics models f̂φ =

{
f̂φ1

, . . . , f̂φK

}
to alleviate the

problem of model bias. Each model f̂φi is parameterized by φi and trained by the following objective,
which minimizes mean squared error between the prediction of next state f̂φi(st, at) and true next
state st+1 over a dataset D:

min
φi

1

|D|
∑

(st,at,st+1)∈D

1

2

∥∥∥st+1 − f̂φi (st, at)
∥∥∥2
2
. (1)

During training of a policy πθ, imagined trajectories of states and actions are generated sequentially,
using a dynamics model f̂φi that is randomly selected at each time step:

at ∼ πθ(·|ŝt), ŝt+1 = f̂φi(ŝt, at) where i ∼ {1 · · ·K}. (2)

4.2 POLICY UPDATE WITH BEHAVIOR REGULARIZATION

In order to manage the discrepancy between the true dynamics and the learned model caused by
the distribution shift in batch settings, we propose to use iterative policy updates via a trust-region
constraint, re-initialized with a behavior-cloned policy after every deployment. Specifically, after
each deployment, we are given an updated dataset of experience transitions D. With this dataset,
we approximate the true behavior policy πb through behavior cloning (BC), utilizing a neural
network π̂β parameterized by β, where we implicitly assume a fixed variance, a common practice in
BC (Rajeswaran et al., 2017):

min
β

1

|D|
∑

(st,at)∈D

1

2
‖at − π̂β (st)‖22 . (3)

After obtaining the estimated behavior policy, we initialize the target policy πθ as a Gaussian policy
with mean from π̂β and standard deviation of 1. This BC initialization in conjunction with gradient
descent based optimization may be seen as implicitly biasing the optimized πθ to be close to the
data-collection policy (Nagarajan & Kolter, 2019), and thus works as a remedy for the distribution
shift problem (Ross et al., 2011). To further bias the learned policy to be close to the data-collection
policy, we opt to use a KL-based trust-region optimization (Schulman et al., 2015). Therefore, the
optimization of BREMEN becomes

θk+1 = argmax
θ

E
s,a∼πθk ,f̂φi

[
πθ(a|s)
πθk(a|s)

Aπθk (s, a)

]
(4)

s.t. E
s∼πθk ,f̂φi

[DKL (πθ(·|s)‖πθk(·|s))] ≤ δ, πθ0 = Normal(π̂β , 1),

1We examined the number of deployments by checking their original implementations, while the frequency
of data collection is a tunable hyper-parameter.

4

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Algorithm 1 BREMEN for Deployment-Efficient RL

Input: Empty dataset Dall, D, Initial parameters φ = {φ1, · · · , φK}, β, Number of policy optimization T ,
Number of deployments I .

1: Randomly initialize the target policy πθ .
2: for deployment i = 1, · · · , I do
3: Collect B transitions in the true environment using πθ and add them to dataset

Dall ← Dall ∪ {st, at, rt, st+1}, D ← {st, at, rt, st+1}.
4: Train K dynamics models f̂φ using Dall via Equation 1.
5: Train estimated behavior policy π̂β using D by behavior cloning via Equation 3.
6: Re-initialize target policy πθ0 = Normal(π̂β , 1).
7: for policy optimization k = 1, · · · , T do
8: Generate imaginary rollout via Equation 2.
9: Optimize target policy πθ satisfying Equation 4 with the rollout.

where Aπθk (s, a) is the advantage of πθk computed using model-based rollouts in the learned
dynamics model and δ is the maximum step size.

The combination of BC for initialization and finite iterative trust-region updates serves as an implicit
KL regularization. This is in contrast to many previous offline RL algorithms that augment the value
function with a penalty of explicit KL divergence (Siegel et al., 2020; Wu et al., 2019) or maximum
mean discrepancy (Kumar et al., 2019). Empirically, we found that our regularization technique
outperforms the explicit KL penalty (Section 5.3). Furthermore, we provide a mathematical intuition
explaining how our methods works as an implicit regularization of distributional shift in Appendix A.

By recursively performing offline procedure, BREMEN can be used for deployment-efficient learning
as shown in Algorithm 1, starting from a randomly initialized policy, collecting experience data, and
performing offline policy updates.

5 EXPERIMENTS

In order to realize a deployment-efficient RL algorithm, the batch policy optimizer has to be stable
and sample-efficient. We first evaluate BREMEN in the offline setting, where the algorithm learns
the policy from a static dataset. Standard benchmarks of MuJoCo physics simulator shown in (Wu
et al., 2019) and more recent datasets (Fu et al., 2020) are used in the evaluation, and we compared
the asymptotic performance of BREMEN with other offline RL methods including the concurrent
model-based approaches. We then tested the sample-efficiency of offline algorithms using smaller
datasets. We lastly extend the experiment to deployment-efficient settings, where the algorithms learn
their policies from scratch via a limited number of deployments and perform some ablations to see
how components in BREMEN affect performance. See Appendix G for further details.

5.1 EVALUATING OFFLINE RL PERFORMANCES

Standard Benchmarks We evaluate BREMEN on standard offline RL benchmarks following and
identical protocol as in Wu et al. (2019): We first train online SAC to a certain cumulative reward
threshold, 4,000 in HalfCheetah, 1,000 in Ant, Hopper, and Walker2d, and collect offline datasets. We
evaluate agents with the offline dataset of one million (1M) transitions, which is standard for BCQ and
BRAC. Table 1 (top) shows that BREMEN can achieve performance competitive with state-of-the-art
model-free offline RL algorithms when using the standard dataset size of 1M. We also test BREMEN
with more recent benchmarks of D4RL (Fu et al., 2020) and compared the performance with the
existing model-free and model-based methods. See Appendix D for the results.

Evaluating Sample-Efficiency We then evaluate the sample-efficiency by making much smaller
datasets of 50k and 100k transitions (5∼10 % of Wu et al. (2019)). Surprisingly, Table 1 (middle and
bottom) shows that BREMEN can also learn with smaller datasets, where BCQ and BRAC are unable
to exceed even BC baseline. This is a novel evaluation protocol we proposed, and our BREMEN’s
superior performance here is exactly what enables recursive BREMEN in the next section to be an
effective algorithm in deployment-constrained settings.

5

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Table 1: Comparison of BREMEN to the existing offline methods on static datasets. Each cell shows the average
cumulative reward and their standard deviation, where the number of samples is 1M, 100K, and 50K, respectively.
The maximum steps per episode is 1,000. BRAC applies a primal form of KL value penalty, and BRAC (max Q)
means its variant of sampling multiple actions and taking the maximum according to the learned Q function.

1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1191 4126 1128 1376
BC 1321±141 4281±12 1341±161 1421±147
BCQ 2021±31 5783±272 1130±127 2153±753
BRAC 2072±285 7192±115 1422±90 2239±1124
BRAC (max Q) 2369±234 7320±91 1916±343 2409±1210
BREMEN (Ours) 3328±275 8055±103 2058±852 2346±230
ME-TRPO (offline) 1258±550 1804±924 518±91 211±154

100,000 (100K) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1191 4066 1128 1376
BC 1330±81 4266±21 1322±109 1426±47
BCQ 1363±199 3915±411 1129±238 2187±196
BRAC -157±383 2505±2501 1310±70 2162±1109
BRAC (max Q) -226±387 2332±2422 1422±101 2164±1114
BREMEN (Ours) 1633±127 6095±370 2191±455 2132±301
ME-TRPO (offline) 974±4 2±434 307±170 10±61

50,000 (50K) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1191 4138 1128 1376
BC 1270±65 4230±49 1249±61 1420±194
BCQ 1329±95 1319±626 1178±235 1841±439
BRAC -878±244 -597±73 1277±102 976±1207
BRAC (max Q) -843±279 -590±56 1276±225 903±1137
BREMEN (Ours) 1347±283 5823±146 1632±796 2280±647
ME-TRPO (offline) 938±32 -73±95 152±13 176±343

5.2 EVALUATING DEPLOYMENT EFFICIENCY IN ONLINE RL BENCHMARKS

We compare BREMEN to ME-TRPO, SAC, BCQ, and BRAC applied to limited deployment settings.
To adapt offline methods (BCQ, BRAC) to this setting, we simply apply them in a recursive fashion;2
at each deployment iteration, we collect a batch of data with the most recent policy and then run the
offline update with this dataset. As for SAC, we simply change the replay buffer to update only at
specific deployment intervals. For the sake of comparison, we align the number of deployments and
the amount of data collection at each deployment (either 100k or 200k) for all methods.3

Figure 2 shows the results with 200k (top) and 100k (bottom) batched transitions per deployment.
Regardless of the environments and the batch size per update, BREMEN achieves remarkable
performance while existing online and offline RL methods struggle to make any progress. As a point
of comparison, we also include results for online SAC and ME-TRPO without deployment-limits but
using the same number of transitions. We additionally compare BREMEN to the model-based offline
RL methods with uncertainty-based penalties. See Appendix E for further details. In addition to
experiments shown above, we extensively evaluate our algorithm on more realistic robotics simulator
environments in Appendix F.

5.3 ABLATION: EVALUATING EFFECTIVENESS OF IMPLICIT KL CONTROL

In this section, we present an experiment to better understand the effect of BREMEN’s implicit
regularization. Figure 3 shows the KL divergence of learned policies from the last deployed policy.
We compare BREMEN to variants of BREMEN that use an explicit KL penalty on value instead of BC
initialization (conservative KL trust-region updates are still used). We find that the explicit KL without
behavior initialization variants learn policies that move farther away from the last deployed policy
than behavior initialized policies. This suggests that the implicit behavior regularization employed by
BREMEN is more effective as a conservative policy learning protocol. In addition, to assess the effect
of repeated behavior cloning initialization, we also evaluate a variant of BREMEN without behavior

2Recursive BCQ and BRAC also do behavioral cloning-based policy initialization after each deployment.
3We evaluate the trade-off between sample and deployment efficiency in Appendix B.

6

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0

2000

4000

6000

HalfCheetah

2 4 6 8 10
Deployment

0

1000

2000

3000

Hopper

2 4 6 8 10
Deployment

0

1000

2000

3000

4000
Walker2d

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Ba
tc

h=
10

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0

2000

4000

6000

HalfCheetah

2 4 6 8 10
Deployment

0

1000

2000

3000

Hopper

2 4 6 8 10
Deployment

0

1000

2000

3000

4000
Walker2d

BREMEN Explicit KL ME-TRPO SAC BCQ BRAC BRAC(max Q) ME-TRPO(online) SAC(online)

Figure 2: Evaluation of BREMEN with the existing methods (ME-TRPO, SAC, BCQ, BRAC) under deployment
constraints (to 5-10 deployments with batch sizes of 200k and 100k). The average cumulative rewards and their
standard deviations with 5 random seeds are shown. Vertical dotted lines represent where each policy deployment
and data collection happen. BREMEN is able to learn successful policies with only 5-10 deployments, while the
state-of-the-art off-policy (SAC), model-based (ME-TRPO), and recursively-applied offline RL algorithms (BCQ,
BRAC) often struggle to make any progress. For completeness, we show ME-TRPO(online) and SAC(online)
which are their original optimal learning curves without deployment constraints, plotted with respect to samples
normalized by the batch size. While SAC(online) substantially outperforms BREMEN in sample efficiency, it
uses 1 deployment per sample, leading to 100k-500k deployments required for learning. Interestingly, BREMEN
achieves even better performance than the original ME-TRPO(online), suggesting the effectiveness of implicit
behavior regularization. For SAC and ME-TRPO under deployment-constrained evaluation, their batch size
between policy deployments differs substantially from their standard settings, and therefore we performed
extensive hyper-parameter search on the relevant parameters such as the number of policy updates between
deployments, as discussed in Appendix G.2.1.

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Cu
m

ul
at

iv
e

re
wa

rd

Ant

1 2 3 4 5 6
Deployment

0

2000

4000

6000

8000
HalfCheetah

2 4 6 8 10
Deployment

0
500

1000
1500
2000
2500
3000

Hopper

2 4 6 8 10
Deployment

0

1000

2000

3000

4000
Walker2d

1 2 3 4 5 6
Deployment

0

5000

10000

15000

20000

KL
 d

iv
er

ge
nc

e

Ant

1 2 3 4 5 6
Deployment

0

5000

10000

15000

20000

25000

30000
HalfCheetah

2 4 6 8 10
Deployment

0

5000

10000

15000

20000

Hopper

2 4 6 8 10
Deployment

0

5000

10000

15000

20000

Walker2d

BREMEN BREMEN(w/o BC re-initialization) ME-TRPO(=0) Explicit KL(=1e-2) =1e-4 =1e-6

Figure 3: We examine average cumulative rewards (top) and corresponding KL divergence between the last
deployed policy and the target policy (bottom) with batch size 200K in limited deployment settings. The behavior
initialized policy remains close to the last deployed policy during improvement without explicit value penalty
−αDKL(πθ‖π̂β). The explicit penalty is controlled by a coefficient α.

cloning re-initialization (grey). This variant works in easier environments (Ant, Halfcheetah), but
does not show remarkable progress in more challenging ones with termination (Hopper, Walker2d).
This result empirically supports the need for repeated behavior initialization after each deployment.
The results of further experiments are shown in Appendix H

6 RELATED WORK

Deployment Efficiency and Offline RL Although we are not aware of any previous works which
explicitly proposed the concept of deployment efficiency, its necessity in many real-world applications
has been generally known. One may consider previously proposed semi-batch RL algorithms (Ernst
et al., 2005; Lange et al., 2012; Singh et al., 1994; Roux, 2016) or theoretical analysis of switching
cost under the tabular PAC-MDP settings (Bai et al., 2019; Guo & Brunskill, 2015) as approaching this
issue. More recently, a related but distinct problem known as offline RL has gained popularity (Levine
et al., 2020; Wu et al., 2019; Agarwal et al., 2019; Kumar et al., 2020). These works consider an
extreme version of 1 deployment, and typically collect the static batch with a partially trained policy
rather than a random policy. While offline RL has shown promising results for a variety of real-world

7

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

applications, such as robotics (Mandlekar et al., 2019), dialogue systems (Jaques et al., 2019), or
medical treatments (Gottesman et al., 2018), these algorithms struggle when learning a policy from
scratch or when the dataset is small. Nevertheless, common themes of many offline RL algorithms
– regularizing the learned policy to the behavior policy (Fujimoto et al., 2019; Kumar et al., 2019;
Siegel et al., 2020; Wu et al., 2019) and utilizing ensembles to handle uncertainty (Kumar et al.,
2019; Wu et al., 2019) – served as inspirations for the proposed our algorithm. A major difference
of BREMEN from prior works is that the target policy is not explicitly forced to stick close to
the estimated behavior policy through the policy update except for the initial iteration. Rather,
BREMEN employs a more implicit regularization by initializing the learned policy with a behavior
cloned policy and then applying conservative trust-region updates. Another major difference is
the application of model-based approaches to fully offline settings, which has not been extensively
studied in prior works (Levine et al., 2020), except the two concurrent works (Kidambi et al., 2020;
Yu et al., 2020) that study pessimistic or uncertainty penalized MDPs with guarantees – closely
related to Liu et al. (2019). By contrast, our work shows that a simple technique can already enable
model-based offline algorithms to significantly outperform the prior model-free methods, and is, to
the best of our knowledge, the first to define and extensively evaluate deployment efficiency with
recursive experiments.

Model-Based RL There are many types of model-based RL algorithms (Sutton, 1991; Deisenroth
& Rasmussen, 2011; Heess et al., 2015). A simple algorithmic choice is Dyna-style (Sutton, 1991),
which uses a parameterized model to estimate the true MDP transition function, stochastically
mapping states and actions to next states. The dynamics model can then serve as a simulator of the
environment during policy updates. Dyna-style algorithms often suffer from the distributional shift,
also known as model bias, which leads RL agents to exploit regions where the data is insufficient, and
significant performance degradation. A variety of remedies have been proposed to relieve the issue of
model bias, such as the use of multiple dynamics models as an ensemble (Chua et al., 2018; Kurutach
et al., 2018; Janner et al., 2019), meta-learning (Clavera et al., 2018), energy-based regularizer (Boney
et al., 2019), game-theoretic framework (Rajeswaran et al., 2020), and explicit penalty for unknown
states (Kidambi et al., 2020; Yu et al., 2020). Notably, we have employed a subset of these remedies –
model ensembles and trust-region updates (Kurutach et al., 2018) – for BREMEN. Compared to prior
works, our work is notable for using BC initialization in conjunction with trust-region updates to
alleviate the distribution shift of the learned policy from the dataset used to train the dynamics model.

7 CONCLUSION

In this work, we introduced deployment efficiency, a novel measure for RL performance that counts the
number of changes in the data-collection policy during learning. To enhance deployment efficiency,
we proposed a novel model-based offline algorithm, Behavior-Regularized Model-ENsemble (BRE-
MEN), combining model-ensembles with trust region updates from model-based RL literature (Kuru-
tach et al., 2018), and policy initialization with behavior cloning from offline RL literature (Fujimoto
et al., 2019; Wu et al., 2019). Crucially, BREMEN can improve policies offline sample-efficiently
even when the batch size is 10-20 times smaller than prior works, allowing BREMEN to achieve
impressive results in limited deployment settings, obtaining successful policies from scratch in only
5-10 deployments. Not only can this help alleviate costs and risks in real-world applications, but it
can also reduce the amount of communication required during distributed learning and could form the
basis for communication-efficient large-scale RL in contrast to prior works (Nair et al., 2015; Espeholt
et al., 2018; 2019). Most critically, we show that under deployment efficiency constraints, most prior
algorithms – model-free or model-based, online or offline – fail to achieve successful learning. One
possible direction for future work is to incorporate verification efficiency into consideration, since a
stochastic multi-modal policy could collect more diverse transitions while it takes more trajectories to
be verified for safety than a uni-modal policy. While we presented promising results on some realistic
simulated environments, validating BREMEN on real robots is another direction. We hope our work
can gear the research community to value deployment efficiency as an important criterion for RL
algorithms, and to eventually achieve similar sample efficiency and asymptotic performance as the
state-of-the-art algorithms like SAC (Haarnoja et al., 2018) while having the deployment efficiency
well-suited for safe and practical real-world reinforcement learning.

8

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

REFERENCES

Fabian Abel, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf. Recsys challenge 2017: Offline
and online evaluation. In ACM Conference on Recommender Systems, 2017.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. arXiv preprint arXiv:1907.04543, 2019.

Christopher G. Atkeson, Benzun P. Wisely Babu, Nandan Banerjee, Dmitry Berenson, Christoper P.
Bove, Xiongyi Cui, Mathew DeDonato, Ruixiang Du, Siyuan Feng, Perry Franklin, Michael
Gennert, Joshua P. Graff, Peng He, Aaron Jaeger, Joohyung Kim, Kevin Knoedler, Lening Li,
Chenggang Liu, Xianchao Long, Taskin Padir, Felipe Polido, G. G. Tighe, and X Xinjilefu. No
falls, no resets: Reliable humanoid behavior in the darpa robotics challenge. In International
Conference on Humanoid Robots, 2015.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning with low
switching cost. In Advances in Neural Information Processing Systems, 2019.

Gabriel Barth-Maron, Matthew Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In International Conference on Learning Representations, 2018.

Rinu Boney, Juho Kannala, and Alexander Ilin. Regularizing model-based planning with energy-based
models. In Conference on Robot Learning, 2019.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushova, Scott Reed, Rae
Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David Barker,
Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu Wang. Scaling data-driven robotics
with reward sketching and batch reinforcement learning. In Robotics: Science and Systems, 2020.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. In Advances in Neural Information Processing Systems,
2015.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. In Advances in neural information processing
systems, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In Conference on Robot
Learning, 2018.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning, 2011.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 2005.

9

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine
Learning, 2018.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. SEED RL:
Scalable and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591,
2019.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. International Conference on Learning
Representations, 2018.

Rasool Fakoor, Pratik Chaudhari, and Alexander J. Smola. P3o: Policy-on policy-off policy opti-
mization. arXiv preprint arXiv:1905.01756, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan,
Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher Mosch,
Li wei H. Lehman, Matthieu Komorowski, Matthieu Komorowski, Aldo Faisal, Leo Anthony
Celi, David Sontag, and Finale Doshi-Velez. Evaluating reinforcement learning algorithms in
observational health settings. arXiv preprint arXiv:1805.12298, 2018.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning, 2016.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In International Conference on
Robotics and Automation, 2017a.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, and Sergey Levine. Q-Prop:
Sample-efficient policy gradient with an off-policy critic. In International Conference on Learning
Representations, 2017b.

Zhaohan Guo and Emma Brunskill. Concurrent pac rl. In AAAI Conference on Artificial Intelligence,
2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, 2015.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, 2019.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. In Conference on
Robot Learning, 2018.

10

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL : Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2014.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-Ensemble
Trust-Region Policy Optimization. In International Conference on Learning Representations,
2018.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 1992.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. Offline policy eval-
uation across representations with applications to educational games. In International Conference
on Autonomous Agents and Multiagent Systems, 2014.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-Fei, Animesh Garg, and Dieter Fox. IRIS: Im-
plicit reinforcement without interaction at scale for learning control from offline robot manipulation
data. arXiv preprint arXiv:1911.05321, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct Problems Prevention Re-
search Group. Marginal mean models for dynamic regimes. Journal of the American Statistical
Association, 2001.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems, 2018.

Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, and Vikash Kumar. Multi-agent manipulation
via locomotion using hierarchical sim2real. In Conference on Robot Learning, 2019.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural Network Dynamics
for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. International
Conference on Robotics and Automation, 2018.

Vaishnavh Nagarajan and J Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arXiv preprint arXiv:1901.01672, 2019.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

11

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning with
function approximation. In International Conference on Machine Learning, 2001.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. arXiv preprint arXiv:2004.07804, 2020.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In International conference on artificial intelligence and
statistics, 2011.

Nicolas Le Roux. Efficient iterative policy optimization. arXiv preprint arXiv:1612.08967, 2016.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin A. Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. In International Conference on Learning
Representations, 2020.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning without state-estimation in
partially observable markovian decision processes. In Machine Learning Proceedings. Elsevier,
1994.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning with soft state
aggregation. In Advances in Neural Information Processing Systems, 1995.

Sungryull Sohn, Yinlam Chow, Jayden Ooi, Ofir Nachum, Honglak Lee, Ed Chi, and Craig Boutilier.
BRPO: Batch residual policy optimization. arXiv preprint arXiv:2002.05522, 2020.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 1991.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement Learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. MOPO: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239,
2020.

12

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

APPENDIX

A IMPLICIT KL CONTROL FROM A MATHEMATICAL PERSPECTIVE

We can intuitively understand that behavior cloning initialization with trust-region updates works as
a regularization of distributional shift, and this can be supported by theory. Following the notation
of Janner et al. (2019), we denote the generalization error of a dynamics model on the state distribution
under the true behavior policy as εm = maxt Es∼dπbt DTV (p(st+1|st, at)||pφ(st+1|st, at)), where
DTV represents the total variation distance between true dynamics p and learned model pφ. We also
denote the distribution shift on the target policy as maxsDTV (πb||π) ≤ επ. A bound relating the
true returns η[π] and the model returns η̂[π] on the target policy is given in Janner et al. (2019) as,

η[π] ≥ η̂[π]−
[
2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
(1− γ)

]
. (5)

This bound guarantees the improvement under the true returns as long as the improvement under
the model returns increases by more than the slack in the bound due to εm, επ (Janner et al., 2019;
Levine et al., 2020).

We may relate this bound to the specific learning employed by BREMEN, which includes dynamics
model learning, behavior cloning policy initialization, and conservative KL-based trust-region policy
updates. To do so, we consider an idealized version of BREMEN, where the expectations over states
in equations Equation 1, 3, 4 are replaced with supremums and the dynamics model is set to have
unit variance.
Proposition 1 (Policy and model error bound). Suppose we apply the idealized BREMEN on a
dataset D, and define εβ , εφ in terms of the behavior cloning and dynamics model losses as,

εβ := sup
s

Ea∼D(−|s)[‖a− π̂β (s)‖
2
2 /2]−H(πb(−|s))

εφ := sup
s,a

Es′∼D(−|s,a)

[
‖s′ − f̂φ(s, a)‖22/2

]
−H(p(−|s, a)),

whereH denotes the Shannon entropy. If one then applies T KL-based trust-region steps of step size
δ (Equation 4) using stochastic dynamics models with mean f̂φ and standard deviation 1, then

επ =

√
1

2
εβ +

da
4

log 2π + T

√
1

2
δ ; εm ≤

√
1

2
εφ +

ds
4

log 2π,

where da and ds denotes the dimension of action and state space.

Proof. We first consider επ . The behavior cloning objective in its supremum form is,

εβ = sup
s∈D

Ea∼D(−|s)[‖a− π̂β (s)‖
2
2 /2]−H(πb(−|s))

= sup
s∈D

Ea∼D(−|s) [− log πθ0(a|s)]−H(πb(−|s))−
da
2

log 2π

= sup
s∈D

DKL(πb(−|s)||πθ0(−|s))−
da
2

log 2π.

We apply Pinsker’s inequality to the true and estimated behavior policy to yield

sup
s
DTV (πb(−|s)||πθ0(−|s)) ≤

√
1

2
εβ +

da
4

log 2π.

By the same Pinsker’s inequality, we have,

sup
s
DTV (πθk(−|s)||πθk+1

(−|s)) ≤
√
δ/2.

Therefore, by triangle inequality, we have

sup
s
DTV (πb(−|s)||πθT (−|s)) ≤

√
1

2
εβ +

da
4

log 2π + T

√
1

2
δ = επ,

13

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

as desired.

We perform similarly for εm. The model dynamics loss is

εφ = sup
s,a

Es′∼D(−|s,a)

[
‖s′ − f̂φ(s, a)‖22/2

]
−H(p(−|s, a))

= sup
s,a

Es′∼D(−|s,a) [− log pφ(s
′|s, a)]−H(p(−|s, a))− ds

2
log 2π

= sup
s,a

DKL(p(−|s, a)||pφ(−|s, a))−
ds
2

log 2π.

We apply Pinsker’s inequality to the true dynamics and learned model to yield

εm ≤ sup
s,a

DTV (p(−|s, a)||pφ(−|s, a)) ≤
√

1

2
εφ +

ds
4

log 2π,

as desired.

B TRADE-OFF BETWEEN SAMPLE AND DEPLOYMENT EFFICIENCY

An important aspect of deployment efficiency is the trade-off between sample and deployment
efficiency. To collect multiple data points per experiment and show this trade-off, we run recursive
BREMEN with different batch sizes, and record how many samples are required to cross different
reward thresholds.

HalfCheetah (Reward 7,000 result) and other results from Figure 4 generally show that high deploy-
ment efficiency lowers sample efficiency, confirming the inherent trade-off. However, in rare cases,
e.g. Ant (Reward 5,000 result), it could be possible to achieve both high deployment efficiency and
high sample efficiency through the right choice of the batch size hyper-parameter.

2 4 6 8 10 12 14 16
Number of Samples (100k)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f D
ep

lo
ym

en
ts

1000

2000

2000 2000

3000

3000

4000

4000
4000

5000

5000

5000

Ant (BREMEN)
25k
50k
100k
200k

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of Samples (100k)

5

10

15

20

25

30

Nu
m

be
r o

f D
ep

lo
ym

en
ts

4000

5000
5000

5000 5000

6000

6000
6000

7000

7000

7000

HalfCheetah (BREMEN)
10k
25k
50k
100k
200k

Figure 4: From the view of both sample and deployment efficiency at certain cumulative reward threshold, we
evaluate BREMEN in Ant (left) and HalfCheetah (right). x and y axes respectively represent the number of
samples and the number of deployments.Each data point comes from running BREMEN with different reward
thresholds and batch sizes. The numbers above the points (e.g. 1000, 2000, ...) represent the reward threshold.
The results (especially, reward 7,000 threshold in HalfCheetah) generally show that high deployment efficiency
lowers sample efficiency, confirming the inherent trade-off.

14

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

C DISCUSSION: IMPORTANCE OF DEPLOYMENT EFFICIENCY IN
REAL-WORLD APPLICATIONS

Our notion of deployment-efficiency is necessitated by cost and safety constraints typical in many real
world scenarios. Namely, a common approach to real-world applications (Cabi et al., 2020; Dulac-
Arnold et al., 2019; Kalashnikov et al., 2018) is the following iterative training and data-collection
paradigm:

1. Aggregate past previous dataset from worker(s)
2. Update policy based on the collected data
3. Deploy the policy to the worker(s)
4. Monitor the policy works as expected e.g. checking if it does not violate safety criterion

(this safety verification step may alternatively happen before step 3)
5. Let the worker(s) collect experiences with the latest policy

It is easy to see that the number of deployments is a critical bottleneck, as it involves both monitoring
of the policy (Step 4) and communication to the workers (Step 3), and both of these steps can incur
significant cost. Specifically, Step 4 requires evaluating the policy for safety, and often requires
human monitors (Atkeson et al., 2015). As for Step 3, communication to workers can also be a
bottleneck, especially in highly-parallelized distributed RL systems (Nair et al., 2015; Espeholt et al.,
2018; 2019). Every policy deployment requires a potentially expensive communication between
different machines/processes, and this can be a bottleneck on the whole system.

As a concrete example of the necessity of good deployment efficiency, consider optimization of
personalization in web apps or recommender systems (Abel et al., 2017). Once a policy is learned on
a batch of past experiences, it is deployed to a collection of web-hosting servers. In this scenario,
both safety and communication concerns are relevant: Safety of the new policy is typically ensured
by initially deploying the policy to a small percentage of users; after monitoring the results for some
length of time (e.g. the newly deployed policy does not deteriorate user experiences), one can expand
the target user set. As for communication, deploying a new policy to web-hosting servers can be time
intensive, especially in large-scale web applications where the policy must be deployed to a network
of servers around the world. Thus, in this setting, it is clear that online updating of the policy is
infeasible due to both safety and communication constraints. Accordingly, the deployment-efficiency
of any candidate RL algorithm is of tantamount importance.

The safe exploration might be mentioned as a potential alternative to deployment-efficiency. While
safe exploration can arguably tackle the first concern above (safety risks of the policy), it does nothing
to mitigate the latter (the engineering or communication costs associated with online deployment
of a policy). Furthermore, this still ignores the fact that in many scenarios the ability to do safe
exploration is not a given. While some safe RL algorithms can provide guarantees in tabular cases,
these guarantees no longer hold when using function approximation with neural networks (Chow
et al., 2018). In these cases, it can be much more difficult to perform “safe exploration” than it is to
develop a deployment-efficient algorithm.

15

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

D EVALUATING OFFLINE PERFORMANCES ON D4RL DATASETS

We compare BREMEN to MOPO (Yu et al., 2020), concurrently proposed model-based offline
methods penalized by model epistemic uncertainty, and state-of-the-art model-free offline algorithms,
namely, CQL (Kumar et al., 2020), BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019), AWR (Peng
et al., 2019) and BCQ (Fujimoto et al., 2019), on the D4RL MuJoCo locomotion datasets (Fu et al.,
2020), used as standard offline RL benchmarks (Kumar et al., 2020; Nair et al., 2020). They have
several types of offline data collected with different strategies. We choose the hyper parameters of
BREMEN in Section 5.1 and G.2.2. Table 2 shows BREMEN beats recent state-of-the-art algorithms
with the highest normalized score (around 100 corresponds to an expert) in several tasks, while none
of the methods consistently achieves the best performance. This result suggests that the implicit
regularization with the model-based method performs surprisingly well in offline settings despite of
its simplicity.

Task Name BC BREMEN MOPO CQL BEAR BRAC-v AWR BCQ
halfcheetah-random 2.1 36.9 31.9 35.4 25.1 31.2 2.5 2.2
walker2d-random 1.6 3.7 13.0 7.0 7.3 1.9 1.5 4.9
hopper-random 9.8 12.2 13.3 10.8 11.4 12.2 10.2 10.6
halfcheetah-medium 36.1 55.0 40.2 44.4 41.7 46.3 37.4 40.7
walker2d-medium 6.6 59.6 14.0 79.2 59.1 81.1 17.4 53.1
hopper-medium 29.0 69.3 26.5 58.0 52.1 31.1 35.9 54.5
halfcheetah-medium-replay 38.4 47.2 54.0 46.2 38.6 47.7 40.3 38.2
walker2d-medium-replay 11.3 7.6 42.7 26.7 19.2 0.9 15.5 15.0
hopper-medium-replay 11.8 24.1 92.5 48.6 33.7 0.6 28.4 33.1
halfcheetah-medium-expert 35.8 53.3 57.9 62.4 53.4 41.9 52.7 64.7
walker2d-medium-expert 6.4 55.2 55.0 98.7 40.1 81.6 53.8 57.5
hopper-medium-expert 111.9 64.6 51.7 111.0 96.3 0.8 27.1 110.9

Table 2: Evaluation on D4RL MuJoCo locomotion datasets. The normalized score of BREMEN are averaged
over 4 random seeds. We refer the score of MOPO (Yu et al., 2020) and CQL (Kumar et al., 2020) from their
original papers. Other results are cited from Fu et al. (2020). BREMEN achieves the best and competitive score
in several domains, while none of the algorithms beats all other methods.

E INCORPORATING PESSIMISTIC MODEL-BASED OFFLINE METHODS INTO
BREMEN

The concurrent model-based offline RL methods prescribe the use of uncertainty-based penalties (Ki-
dambi et al., 2020; Yu et al., 2020), which can be incorporated into BREMEN. We therefore
augmented BREMEN with either a hard (MOReL-like, green) or soft (MOPO-like, orange) reward
penalty according to model uncertainty. MOReL quantifies the uncertainty measuring the maximum
discrepancy of the prediction across the ensembles of the models and receives constant negative
reward (-5.0 in our experiments) if the discrepancy is larger than the threshold (we set 3.0). MOPO
measures the uncertainty by the maximum standard deviation of the model ensembles and uses this
as a reward penalty with a coefficient (0.1 in our experiments). Evaluations in Figure 5 reveal that
the soft reward penalty has notable results in Hopper and Walker2d, where model uncertainty is
more crucial due to the episode’s termination. Hard reward penalty seems overly pessimistic in
deployment-efficient settings.

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0

2000

4000

6000

8000
HalfCheetah

2 4 6 8 10
Deployment

0

500

1000

1500

2000

2500

3000

Hopper

2 4 6 8 10
Deployment

0

1000

2000

3000

4000

Walker2d
ME-TRPO MOReL MOPO BREMEN

Figure 5: Comparison to the pessimistic reward shaping incorporated into BREMEN. Soft reward
penalty (MOPO-like, orange) performs well in the environments where the incomplete models appear to
be fatal.

16

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

F EVALUATING DEPLOYMENT EFFICIENCY IN MORE REALISTIC SIMULATORS

Following the motivation of deployment efficiency, obtaining a successful policy under data-collection
constraint conditions in the real application, we extensively evaluate our algorithm on more realistic
robotics environments in OpenAI Gym. The experimental procedure is the same as section 5.2, while
we limit the batch size at each deployment as only 25k. Figure 6 presents the reaching tasks with
Fetch robot and 20-DoF shadow hand (Plappert et al., 2018), and the experimental results in both
environments. Only BREMEN shows stable improvement and high performance, while other offline
and online algorithms fail to learn. These results suggest that a model-based method is a desirable
approach for satisfying practical requirements in robotics, i.e. sample and deployment efficiency.

(a) FetchReach (b) HandReach

2 4 6 8 10
Deployment

10.0

7.5

5.0

2.5

0.0

Ba
tc

h=
25

,0
00

cu
m

ul
at

iv
e

re
wa

rd
s FetchReachDense

2 4 6 8 10
Deployment

7

6

5

4

3

2
HandReachDense

BREMEN ME-TRPO SAC BCQ SAC(online)

(c) Results

Figure 6: Robotics environments and the results under deployment constraints (10 deployments with batch sizes
of 25k). The performances are averaged over 5 seeds. BREMEN seems the only method that shows both stable
improvement and solving tasks without large degradation or sub-optimal convergence.

17

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

G DETAILS OF EXPERIMENTAL SETTINGS

G.1 IMPLEMENTATION DETAILS

For our baseline methods, we use the open-source implementations of SAC, BC, BCQ, and BRAC
published in Wu et al. (2019). SAC and BRAC have (300, 300) Q-Network and (200, 200) policy
network. BC has (200, 200) policy network, and BCQ has (300, 300) Q-Network, (300, 300) policy
network, and (750, 750) conditional VAE. As for online ME-TRPO, we utilize the codebase of
model-based RL benchmark (Wang et al., 2019). BREMEN and online ME-TRPO use the policy
consisting of two hidden layers with 200 units. The dynamics model also consists of two hidden
layers with 1,024 units. We use Adam (Kingma & Ba, 2014) as the optimizer with the learning
rate of 0.001 for the dynamics model, and 0.0005 for behavior cloning in BREMEN. Especially in
BREMEN and online ME-TRPO, we adopt a linear feature value function to stabilize the training.
BREMEN in deployment-efficient settings takes about two or three hours per deployment on an
NVIDIA TITAN V.

To leverage neural networks as Dyna-style (Sutton, 1991) dynamics models, we modify reward and
termination function so that they are not dependent on the internal physics engine for calculation,
following model-based benchmark codebase (Wang et al., 2019); see Table 3. Note that the score of
baselines (e.g., BCQ, BRAC) is slightly different from Wu et al. (2019) due to this modification of
the reward function. We re-run each algorithm in our environments and got appropriate convergence.

The maximum length of one episode is 1,000 steps without any termination in Ant and HalfCheetah;
however, termination function is enabled in Hopper and Walker2d. The batch size of transitions for
policy update is 50,000 in BREMEN and ME-TRPO, following Kurutach et al. (2018). The batch
size of BC and BRAC is 256, and BCQ is 100, also following Wu et al. (2019).

(a) Ant (b) HalfCheetah (c) Hopper (d) Walker2d

Figure 7: Four standard MuJoCo benchmark environments used in our experiments.

Environment Reward function Termination in rollouts
Ant ẋt − 0.1‖at‖22 − 3.0× (zt − 0.57)2 + 1 False

HalfCheetah ẋt − 0.1‖at‖22 False
Hopper ẋt − 0.001‖at‖22 + 1 True

Walker2d ẋt − 0.001‖at‖22 + 1 True

Table 3: Reward function and termination in rollouts in the experiments. We remove all contact information
from observation of Ant, basically following Wang et al. (2019).

18

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

G.2 HYPER PARAMETERS

In this section, we describe the hyper-parameters in both deployment-efficient RL (Section G.2.1)
and offline RL (Section G.2.2) settings. We run all of our experiments with five random seed, and the
results are averaged.

G.2.1 DEPLOYMENT-EFFICIENT RL

Table 4 shows the hyper-parameters of BREMEN. The rollout length is searched from {250, 500,
1000}, and max step size δ is searched from {0.001, 0.01, 0.05, 0.1, 1.0}. As for the discount factor γ
and GAE λ, we follow Wang et al. (2019).

Parameter Ant HalfCheetah Hopper Walker2d
Iteration per batch 2,000 2,000 6,000 2,000
Deployment 5 5 10 10
Total iteration 10,000 10,000 60,000 20,000
Rollouts length 250 250 1,000 1,000
Max step size δ 0.05 0.1 0.05 0.05
Discount factor γ 0.99 0.99 0.99 0.99
GAE λ 0.97 0.95 0.95 0.95
Stationary noise σ 0.1 0.1 0.1 0.1

Table 4: Hyper-parameters of BREMEN in deployment-efficient settings.

Number of Iterations for Policy Optimization To achieve high deployment efficiency, the number
of iterations for policy optimization between deployments is one of the important hyper-parameters
for fast convergence. In the existing methods (BCQ, BRAC, SAC), we search over three values:
{10,000, 50,000, 100,000}, and choose 10,000 in BCQ and BRAC, and 100,000 in SAC (Figure 8).
For BREMEN, we also search over three values: {2,000, 4,000, 6,000}. Figure 9 shows the results of
iteration search, and we choose 2,000 in Ant, HalfCheetah, and Walker2d, and 6,000 in Hopper.

1 2 3 4 5 6
Deployment

0

200

400

600

800

1000

1200

1400

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0

2000

4000

6000

8000

10000
HalfCheetah

2 4 6 8 10
Deployment

200

0

200

400

600

800

1000

1200

1400
Hopper

2 4 6 8 10
Deployment

0

500

1000

1500

2000
Walker2d

10K 50K 100K

Figure 8: Search on the number of iterations for SAC policy optimization between deployments. The number of
transitions per one data-collection is 200K.

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0
1000
2000
3000
4000
5000
6000
7000
8000

HalfCheetah

2 4 6 8 10
Deployment

0

500

1000

1500

2000

2500

3000

Hopper

2 4 6 8 10
Deployment

0
500

1000
1500
2000
2500
3000
3500
4000

Walker2d
2K 4K 6k

Figure 9: Search on the number of iterations for BREMEN policy optimization between deployments. The
number of transitions per one data-collection is 200K.

19

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Stationary Noise in BREMEN To achieve effective exploration, the stochastic Gaussian policy
is a good choice. We found that adding stationary Gaussian noise to the policy in the imaginary
trajectories and data collection led to the notable improvement. Stationary Gaussian policy is written
as,

at = tanh(µθ(st)) + ε, ε ∼ N (0, σ2).

Another choice is a learned Gaussian policy, which parameterizes not only µθ but also σθ. Learned
gaussian policy is also written as,

at = tanh(µθ(st)) + σθ(st)� ε, ε ∼ N (0, σ2).

We utilize the zero-mean GaussianN (0, σ2), and tune up σ in Figure 10 with HalfCheetah, comparing
stationary and learned strategies. From this experiment, we found that the stationary noise, the scale
of 0.1, consistently performs well, and therefore we used it for all our experiments.

1 2 3 4 5 6
Deployment

0

2000

4000

6000

Ba
tc

h=
20

0,
00

0
Cu

m
ul

at
iv

e
re

wa
rd

HalfCheetah

= 0.05
= 0.1

= 0.5
= 0.1(learned)

= 0.5(learned)
= 1.0(learned)

ME-TRPO(online)

Figure 10: Search on the Gaussian noise parameter σ in HalfCheetah. The number of transitions per one
data-collection is 200K.

Other Hyper-parameters in the Existing Methods As for online ME-TRPO, we collect 3,000
steps through online interaction with the environment per 25 iterations and split these transitions into
a 2-to-1 ratio of training and validation dataset for learning dynamics models. In batch size 100,000
settings, we collect 2,000 steps and split with 1-to-1 ratio. Totally, we iterate 12,500 times policy
optimization, which is equivalent to 500 deployments of the policy. Note that we carefully tune up
the hyper-parameters of online ME-TRPO, and the performance is improved from Wang et al. (2019).

Table 5 and Table 6 shows the tunable hyper-parameters of BCQ and BRAC, respectively. We
refer Wu et al. (2019) to choose these values. In this work, BRAC applies a primal form of KL value
penalty, and BRAC (max Q) means sampling multiple actions and taking the maximum according to
the learned Q function.

Parameter Ant HalfCheetah Hopper Walker2d
Policy learning rate 3e-05 3e-04 3e-06 3e-05
Perturbation range Φ 0.15 0.5 0.15 0.15

Table 5: Hyper-parameters of BCQ.

Parameter Ant HalfCheetah Hopper Walker2d
Policy learning rate 1e-4 1e-3 3e-5 1e-5
Divergence penalty α 0.3 0.1 0.3 0.3

Table 6: Hyper-parameters of BRAC.

20

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

G.2.2 OFFLINE RL

In the offline experiments, we apply the same hyper-parameters as in the deployment-efficient settings
described above, except for the iteration per batch. Algorithm 2 is pseudocode for BREMEN in
offline RL settings where policies are updated only with one fixed batch dataset. The number of
iteration T is set to 6,250 in BREMEN, and 500,000 in BC, BCQ, and BRAC.

The datasets for 50k or 100k experiments are sliced from the beginning of the 1M batched datasets
without shuffling, but we observed that the distribution of rewards in 50k or 100k is not different
from 1M.

Algorithm 2 BREMEN for Offline RL

Input: Offline dataset D = {st, at, rt, st+1}, Initial parameters φ = {φ1, · · · , φK}, β, Number of policy
optimization T .

1: Train K dynamics models f̂φ using D via Equation 1.
2: Train estimated behavior policy π̂β using D by behavior cloning via Equation 3.
3: Initialize target policy πθ0 = Normal(π̂β , 1).
4: for policy optimization k = 1, · · · , T do
5: Generate imaginary rollout.
6: Optimize target policy πθ satisfying Equation 4 with the rollout.

21

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 PERFORMANCE ON THE DATASET WITH DIFFERENT NOISE

Following Wu et al. (2019) and Kidambi et al. (2020), we additionally compare BREMEN in offline
settings to the other baselines (BC, BCQ, BRAC) with five datasets of different exploration noise.
Each dataset has also one million transitions.

• eps1: 40 % of the dataset is collected by data-collection policy (partially trained SAC policy)
πb, 40 % of the dataset is collected by epsilon greedy policy with ε = 0.1 to take a random
action, and 20 % of dataset is collected by an uniformly random policy.
• eps3: Same as eps1, 40 % of the dataset is collected by πb, 40 % is collected by epsilon

greedy policy with ε = 0.3, and 20 % is collected by an uniformly random policy.
• gaussian1: 40 % of the dataset is collected by data-collection policy πb, 40 % is collected

by the policy with adding zero-mean Gaussian noise N (0, 0.12) to each action sampled
from πb, and 20 % is collected by an uniformly random policy.
• gaussian3: 40 % of the dataset is collected by data-collection policy πb, 40 % is collected by

the policy with zero-mean Gaussian noiseN (0, 0.32), and 20 % is collected by an uniformly
random policy.
• random: All of the dataset is collected by an uniformly random policy.

Table 7 shows that BREMEN can also achieve performance competitive with state-of-the-art model-
free offline RL algorithm even with noisy datasets. The training curves of each experiment are shown
in Appendix H.4.

H.2 COMPARISON AMONG DIFFERENT NUMBER OF ENSEMBLES

To deal with the distribution shift during policy optimization, also known as model bias, we introduce
the dynamics model ensembles. We validate the performance of BREMEN with a different number of
dynamics models K. Figure 11 and Figure 12 show the performance of BREMEN with the different
number of ensembles in deployment-efficient and offline settings. Ensembles with more dynamics
models resulted in better performance due to the mitigation of distributional shift except for K = 10,
and then we choose K = 5.

1 2 3 4 5 6
Deployment

1000

2000

3000

4000

5000

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s Ant

1 2 3 4 5 6
Deployment

0
1000
2000
3000
4000
5000
6000
7000
8000

HalfCheetah

2 4 6 8 10
Deployment

0

500

1000

1500

2000

2500

3000

Hopper

2 4 6 8 10
Deployment

0
500

1000
1500
2000
2500
3000
3500
4000

Walker2d
K=1 K=3 K=5 K=10

Figure 11: Comparison of the number of dynamics models in deployment-efficient settings.

0 1000 2000 3000 4000 5000 6000
Iteration

1000

1500

2000

2500

3000

3500

n=
1,

00
0,

00
0

cu
m

ul
at

iv
e

re
wa

rd
s Ant

0 1000 2000 3000 4000 5000 6000
Iteration

5000

6000

7000

8000

HalfCheetah

0 1000 2000 3000 4000 5000 6000
Iteration

1000

1500

2000

2500

3000

Hopper

0 1000 2000 3000 4000 5000 6000
Iteration

500

1000

1500

2000

2500

3000

Walker2d
K=1 K=3 K=5 K=10

Figure 12: Comparison of the number of dynamics models in offline settings.

22

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Table 7: Comparison of BREMEN to the existing offline methods in offline settings, namely, BC, BCQ (Fujimoto
et al., 2019), and BRAC (Wu et al., 2019). Each cell shows the average cumulative reward and their standard
deviation with 5 seeds. The maximum steps per episode is 1,000. Five different types of exploration noise are
introduced during the data collection, eps1, eps3, gaussian1, gaussian3, and random. BRAC applies a primal
form of KL value penalty, and BRAC (max Q) means sampling multiple actions and taking the maximum
according to the learned Q function.

Noise: eps1, 1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1077 2936 791 815
BC 1381±71 3788±740 266±486 1185±155
BCQ 1937±116 6046±276 800±659 479±537
BRAC 2693±155 7003±118 1243±162 3204±103
BRAC (max Q) 2907±98 7070±81 1488±386 3330±147
BREMEN (Ours) 3519±129 7585±425 2818±76 1710±429
ME-TRPO (offline) 1514±503 1009±731 1301±654 128±153

Noise: eps3, 1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 936 2408 662 648
BC 1364±121 2877±797 519±532 1066±176
BCQ 1938±21 5739±188 1170±446 1018±1231
BRAC 2718±90 6434±147 1224±71 2921±101
BRAC (max Q) 2913±87 6672±136 2103±746 3079±110
BREMEN (Ours) 3409±218 7632±104 2803±65 1586±139
ME-TRPO (offline) 1843±674 5504±67 1308±756 354±329

Noise: gaussian1, 1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1072 3150 882 1070
BC 1279±80 4142±189 31±16 1137±477
BCQ 1958±76 5854±498 475±416 608±416
BRAC 2905±81 7026±168 1456±161 3030±103
BRAC (max Q) 2910±157 7026±168 1575±89 3242±97
BREMEN (Ours) 2912±165 7928±313 1999±617 1402±290
ME-TRPO (offline) 1275±656 1275±656 909±631 171±119

Noise: gaussian3, 1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 1058 2872 781 981
BC 1300±34 4190±69 611±467 1217±361
BCQ 1982±97 5781±543 1137±582 258±286
BRAC 3084±180 3933±2740 1432±499 3253±118
BRAC (max Q) 2916±99 3997±2761 1417±267 3372±153
BREMEN (Ours) 3432±185 8124±145 1867±354 2299±474
ME-TRPO (offline) 1237±310 2141±872 973±243 219±145

Noise: random, 1,000,000 (1M) transitions
Method Ant HalfCheetah Hopper Walker2d
Dataset 470 -285 34 2
BC 989±10 -2±1 106±62 108±110
BCQ 1222±114 2887±242 206±7 228±12
BRAC 1057±92 3449±259 227±30 29±54
BRAC (max Q) 683±57 3418±171 224±37 26±50
BREMEN (Ours) 905±11 3627±193 270±68 254±6
ME-TRPO (offline) 2221±665 2701±120 321±29 262±13

23

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

H.3 IMPLICIT KL CONTROL IN OFFLINE SETTINGS

Similar to Section 5.3, we present offline RL experiments to better understand the effect of implicit
KL regularization. In contrast to the implicit KL regularization with Equation 4, the optimization of
BREMEN with explicit KL value penalty becomes

θk+1 = argmax
θ

E
s,a∼πθk ,f̂φi

[
πθ(a|s)
πθk(a|s)

(Aπθk (s, a)− αDKL(πθ(·|s)‖π̂β(·|s)))
]

(6)

s.t. E
s∼πθk

[DKL (πθ(·|s)‖πθk(·|s))] ≤ δ,

where Aπθk (s, a) is the advantage of πθk computed using imaginary rollouts with the learned
dynamics model and δ is the maximum step size. Note that BREMEN with explicit KL penalty does
not utilize behavior cloning initialization.

We empirically conclude that the explicit constraint −αDKL(πθ(·|s)‖π̂β(·|s)) is unnecessary and
just TRPO update with behavior-initialization as implicit regularization is sufficient in BREMEN
algorithm. Figure 13 shows the KL divergence between learned policies and the last deployed
policies (top row) and model errors measured by a mean squared error of predicted next state from
the true state (second row). We find that behavior initialized policy with conservative KL trust-region
updates well stuck to the last deployed policy during improvement without explicit KL penalty. The
policy initialized with behavior cloning also tended to suppress the increase of model error, which
implies that behavior initialization alleviates the effect of the distribution shift. In Walker2d, the
model error of BREMEN is relatively large, which may relate to the poor performance with noisy
datasets in Section H.1.

0 1000 2000 3000 4000 5000 6000
Iteration

1000

2000

3000

Cu
m

ul
at

iv
e

re
wa

rd
s Ant

0 1000 2000 3000 4000 5000 6000
Iteration

0

2000

4000

6000

8000
HalfCheetah

0 1000 2000 3000 4000 5000 6000
Iteration

0

1000

2000

3000

Hopper

0 1000 2000 3000 4000 5000 6000
Iteration

0

1000

2000

3000
Walker2d

0 1000 2000 3000 4000 5000 6000
Iteration

0

10000

20000

30000

40000

KL
 d

iv
er

ge
nc

e

Ant

0 1000 2000 3000 4000 5000 6000
Iteration

0

10000

20000

30000

40000

50000

HalfCheetah

0 1000 2000 3000 4000 5000 6000
Iteration

0

2000

4000

6000

Hopper

0 1000 2000 3000 4000 5000 6000
Iteration

0

2000

4000

6000

8000

10000

Walker2d

0 1000 2000 3000 4000 5000 6000
Iteration

0.005

0.010

0.015

0.020

M
od

el
 e

rro
r (

M
SE

)

Ant

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2 HalfCheetah

0 1000 2000 3000 4000 5000 6000
Iteration

0.000

0.002

0.004

0.006

0.008
Hopper

0 1000 2000 3000 4000 5000 6000
Iteration

0

2

4

6

8
Walker2d

BREMEN ME-TRPO(=0) Explicit KL(=1e-5)

Figure 13: Average cumulative rewards (top row) and corresponding KL divergence of learned policies from the
last deployed policy (second row) and model errors (bottom row) in offline settings with 1M dataset (no noise).
Behavior initialized policy (purple line) tends to suppress the policy and model error during training better than
no-initialization (red line) or explicit KL penalty (green line).

24

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

H.4 TRAINING CURVES FOR OFFLINE RL WITH DIFFERENT NOISES

In this section, we present training curves of our all experiments in offline settings. Figure 14 shows
the results in Section 5.1. Figure 15, 16, 17, 18, and 19 also show the results in Section H.1.

102 103 104 105

Iteration

500

1000

1500

2000

2500

3000

3500

n=
1,

00
0,

00
0

cu
m

ul
at

iv
e

re
wa

rd
s

Ant

102 103 104 105

Iteration

0

2000

4000

6000

8000

HalfCheetah

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000

3500 Hopper

102 103 104 105

Iteration

0

1000

2000

3000

Walker2d

102 103 104 105

Iteration

500

0

500

1000

1500

2000

n=
10

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s

Ant

102 103 104 105

Iteration

0

2000

4000

6000

HalfCheetah

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000
Hopper

102 103 104 105

Iteration

0

1000

2000

3000

Walker2d

102 103 104 105

Iteration
2000

1000

0

1000

2000

n=
50

,0
00

cu
m

ul
at

iv
e

re
wa

rd
s

Ant

102 103 104 105

Iteration

0

2000

4000

6000
HalfCheetah

102 103 104 105

Iteration
500

0

500

1000

1500

2000

2500

3000
Hopper

102 103 104 105

Iteration
500

0

500

1000

1500

2000

2500

3000
Walker2d

BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 14: Performance in Offline RL experiments (Table 1). (top row) dataset size is 1M, (second row) 100K,
and (bottom row) 50K, respectively. Note that x-axis is the number of iterations with policy optimization in a
log-scale.

102 103 104 105

Iteration
500

1000

1500

2000

2500

3000

3500

ep
s1

cu
m

ul
at

iv
e

re
wa

rd
s Ant

102 103 104 105

Iteration

0

2000

4000

6000

8000

HalfCheetah

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000

3500
Hopper

102 103 104 105

Iteration

0

1000

2000

3000

Walker2d
BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 15: Performance in Offline RL experiments with ε-greedy dataset noise ε = 0.1. Dataset size is 1M.

102 103 104 105

Iteration
500

1000

1500

2000

2500

3000

3500

4000

4500

ep
s3

cu
m

ul
at

iv
e

re
wa

rd
s Ant

102 103 104 105

Iteration

0

2000

4000

6000

8000
HalfCheetah

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000

3500
Hopper

102 103 104 105

Iteration

500

0

500

1000

1500

2000

2500

3000

Walker2d
BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 16: Performance in Offline RL experiments with ε-greedy dataset noise ε = 0.3. Dataset size is 1M.

25

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

102 103 104 105

Iteration

500

1000

1500

2000

2500

3000

ga
us

sia
n1

cu
m

ul
at

iv
e

re
wa

rd
s Ant

102 103 104 105

Iteration

0

2000

4000

6000

8000
HalfCheetah

102 103 104 105

Iteration
500

0

500

1000

1500

2000

2500

3000
Hopper

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000

3500

Walker2d
BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 17: Performance in Offline RL experiments with gaussian dataset noiseN (0, 0.12). Dataset size is 1M.

102 103 104 105

Iteration

500

1000

1500

2000

2500

3000

3500

4000

ga
us

sia
n3

cu
m

ul
at

iv
e

re
wa

rd
s Ant

102 103 104 105

Iteration

0

2000

4000

6000

8000

HalfCheetah

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000
Hopper

102 103 104 105

Iteration

0

500

1000

1500

2000

2500

3000

3500
Walker2d

BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 18: Performance in Offline RL experiments with gaussian dataset noiseN (0, 0.32). Dataset size is 1M.

102 103 104 105

Iteration

500

1000

1500

2000

2500

3000

ra
nd

om
cu

m
ul

at
iv

e
re

wa
rd

s Ant

102 103 104 105

Iteration

0

1000

2000

3000

4000

HalfCheetah

102 103 104 105

Iteration
0

200

400

600

800

1000

1200
Hopper

102 103 104 105

Iteration
200
100

0
100
200
300
400
500
600

Walker2d
BREMEN ME-TRPO(offline) BC BCQ BRAC BRAC(max Q)

Figure 19: Performance in Offline RL experiments with completely random behaviors. Dataset size is 1M.

26

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

H.5 DEPLOYMENT-EFFICIENT RL EXPERIMENT WITH DIFFERENT REWARD FUNCTION

In addition to the main results in Section 5.2 (Figure 2), we also evaluate BREMEN in deployment-
efficient setting with different reward function. We modified HalfCheetah environment into the one
similar to cheetah-run task in Deep Mind Control Suite.4 The reward function is defined as

rt =

{
0.1ẋt (0 ≤ ẋt ≤ 10)

1 (ẋt > 10),

and the termination is turned off. Figure 20 shows the performance of BREMEN and existing
methods. BREMEN also shows better deployment efficiency than other existing offline methods and
online ME-TRPO, except for SAC, which is the same trend as that of main results.

1 2 3 4 5 6
Deployment

0

200

400

600

800

1000

Ba
tc

h=
20

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s CheetahRun

1 2 3 4 5 6
Deployment

0

200

400

600

800

1000

Ba
tc

h=
10

0,
00

0
cu

m
ul

at
iv

e
re

wa
rd

s CheetahRun

BREMEN
Explicit KL

ME-TRPO
SAC

BCQ
BRAC

BRAC(max Q)
ME-TRPO(online)

SAC(online)

Figure 20: Performance in Deployment-Efficient RL experiments with different reward function of HalfCheetah.

4https://github.com/deepmind/dm_control/blob/master/dm_control/suite/
cheetah.py

27

https://github.com/deepmind/dm_control/blob/master/dm_control/suite/cheetah.py
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/cheetah.py

	Introduction
	Preliminaries
	Deployment Efficiency
	Behavior-Regularized Model-Ensemble
	Imaginary Rollout from Model Ensemble
	Policy Update with Behavior Regularization

	Experiments
	Evaluating Offline RL Performances
	Evaluating Deployment Efficiency in Online RL Benchmarks
	Ablation: Evaluating Effectiveness of Implicit KL Control

	Related Work
	Conclusion
	Implicit KL Control from a Mathematical Perspective
	Trade-off between Sample and Deployment Efficiency
	Discussion: Importance of Deployment Efficiency in Real-World Applications
	Evaluating Offline Performances on D4RL Datasets
	Incorporating Pessimistic Model-based Offline Methods into BREMEN
	Evaluating Deployment Efficiency in More Realistic Simulators
	Details of Experimental Settings
	Implementation Details
	Hyper Parameters
	Deployment-Efficient RL
	Offline RL

	Additional Experimental Results
	Performance on the Dataset with Different Noise
	Comparison among Different Number of Ensembles
	Implicit KL Control in Offline Settings
	Training Curves for Offline RL with Different Noises
	Deployment-Efficient RL Experiment with Different Reward Function

