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Abstract

We build and publicize the Open Bandit Dataset to facilitate scalable and re-
producible research on bandit algorithms. It is especially suitable for off-policy
evaluation (OPE), which attempts to estimate the performance of hypothetical
policies using data generated by a different policy. We construct the dataset based
on experiments and implementations on a large-scale fashion e-commerce plat-
form, ZOZOTOWN. The data contain the ground-truth about the performance of
several bandit policies and enable fair comparisons of different OPE estimators.
We also build a Python package called the Open Bandit Pipeline to streamline
implementations of bandit algorithms and OPE estimators. Our open data and
pipeline will allow researchers and practitioners to easily evaluate and compare
their bandit algorithms and OPE estimators with others in a large, real-world
setting. Using our data and pipeline, we provide extensive benchmark experi-
ments of existing OPE estimators. The latest version of the paper can be found at
https://arxiv.org/abs/2008.07146. Moreover, our pipeline and example data are
available at https://github.com/st-tech/zr-obp.

1 Introduction

Interactive bandit and reinforcement learning systems (e.g. personalized medicine, ad/recommen-
dation/search platforms) produce log data valuable for evaluating and redesigning the system. For
example, the logs of a news recommendation system record which news article was presented and
whether the user read it, giving the system designer a chance to make its recommendations more rele-
vant. Exploiting log data is, however, more difficult than conventional supervised machine learning:
the result is only observed for the action chosen by the system but not for all the other actions the
system could have taken. The logs are also biased in that the logs over-represent the actions favored
by the system. A potential solution to this problem is an A/B test that compares the performance of
counterfactual systems in an online environment. However, A/B testing counterfactual systems is of-
ten difficult, since deploying a new policy is time- and money-consuming, and entails risks of failure.
This leads us to the problem of off-policy evaluation (OPE), which aims to estimate the performance
of a counterfactual (or evaluation) policy using only log data collected by a past (or behavior) policy.
Such an evaluation allows us to compare the performance of candidate counterfactual policies without
additional online experiments.This alternative approach thus solves the above problems with the A/B
test approach. Applications range from contextual bandits [2, 39, 18, 19, 20, 27, 31, 33, 34, 35, 42]
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and reinforcement learning in the web industry [7, 13, 14, 15, 22, 28, 36, 37, 38, 43] to other social
domains such as healthcare [26] and education [24].

Issues with current experimental procedures. While the research community has produced
theoretical breakthroughs, the experimental evaluation of OPE remains primitive. Specifically, it
lacks a public benchmark dataset for comparing the performance of different methods. Researchers
often validate their methods using synthetic simulation environments [15, 39, 22, 41, 43]. A version
of the synthetic approach is to modify multi-class classification datasets and treat supervised machine
learning methods as bandit policies to evaluate off-policy estimators [5, 7, 40, 42]. An obvious
problem with these studies is that there is no guarantee that their simulation environment is similar
to real-world settings. To solve this issue, [8, 10, 27, 28] use proprietary real-world datasets. Since
these datasets are not public, however, it remains challenging to reproduce the results, and compare
their methods with new ideas in a fair manner. This is in contrast to other domains of machine
learning, where large-scale open datasets, such as the ImageNet dataset [4], have been pivotal in
driving objective progress [6, 12, 9, 11, 23].

Contributions. Our goal is to implement and evaluate OPE of bandit algorithms in realistic and
reproducible ways. We release the Open Bandit Dataset, a logged bandit feedback collected on a
large-scale fashion e-commerce (e-commerce) platform, ZOZOTOWN.1 ZOZOTOWN is the largest
fashion e-commerce platform in Japan with over 3 billion USD annual Gross Merchandise Value.
When the platform produced the data, it used Bernoulli Thompson Sampling (Bernoulli TS) and
uniform random (Random) policies to recommend fashion items to users. The dataset includes an
A/B test of these policies and collected over 26 million records of users’ clicks and the ground-truth
about the performance of Bernoulli TS and Random. To streamline and standardize analysis of the
Open Bandit Dataset, we also provide the Open Bandit Pipeline, a Python software including a series
of implementations of dataset preprocessing, bandit policies, and OPE estimators.

In addition to building the data and pipeline, we also perform extensive benchmark experiments on
existing estimators. Specifically, we can do this by using the log data of one of the behavior policies
to estimate the policy value of the other policy with each estimator. We then assess the accuracy of
the estimator by comparing its estimation with the ground truth obtained from the data. This is the
first experimental study comparing a variety of OPE estimators in realistic and reproducible manner.

We summarize the key findings in our benchmark experiments below:

• The estimation performance of all OPE estimators drop significantly when they are applied
to estimate the future (or out-sample) performance of a new policy.

• The estimation performances of OPE estimators heavily depend on experimental settings
and hyperparameters.

These empirical findings highlight the following future research directions: (i) improving out-
of-distribution estimation performance and (ii) developing methods to identify appropriate OPE
estimators for various settings.

Our data, pipeline, and benchmark experiments are open-sourced to advance future OPE research.
Our implementations help practitioners use logged bandit data to compare different estimators and
find an appropriate one to improve their bandit systems.

2 Off-Policy Evaluation

2.1 Setup

We consider a general contextual bandit setting. Let r ∈ [0, Rmax] denote a reward or outcome
variable (e.g., whether a fashion item as an action results in a click). We let x ∈ X be a context
vector (e.g., the user’s demographic profile) that the decision maker observes when picking an action.
Rewards and contexts are sampled from the unknown probability distributions p(r | x, a) and p(x),
respectively. Let A be a finite set of actions. We call a function π : X → ∆(A) a policy. It maps
each context x ∈ X into a distribution over actions, where π(a | x) is the probability of taking an
action a given x. We describe some examples of such decision making policies in Appendix A.

1https://corp.zozo.com/en/service/

2



Let D := {(xt, at, rt)}Tt=1 be historical logged bandit feedback with T rounds of observations. at is
a discrete variable indicating which action in A is chosen in round t. rt and xt denote the reward and
the context observed in round t, respectively. We assume that a logged bandit feedback is generated
by a behavior policy πb as follows:

{(xt, at, rt)}Tt=1 ∼
T∏
t=1

p(xt)πb(at | xt)p(rt | xt, at),

where each context-action-reward triplets are sampled independently from the product distribution.
Note that we assume at is independent of rt conditional on xt.

We let π(x, a, r) := p(x)π(a | x)p(r | x, a) be the product distribution given by a policy π. For a
function f(x, a, r), we use ED[f ] := |D|−1

∑
(xt,at,rt)∈D f(xt, at, rt) to denote its empirical expec-

tation over T observations inD. Then, for a function g(x, a), we let g(x, π) := Ea∼π(a|x)[g(x, a) | x].
We also use q(x, a) := Er∼p(r|x,a)[r | x, a] to denote the mean reward function.

2.2 Estimation Target

We are interested in using the historical logged bandit data to estimate the following policy value of
any given evaluation policy πe which might be different from πb:

V (πe) := E(x,a,r)∼πe(x,a,r)[r].

Estimating V (πe) before implementing πe in an online environment is valuable, because πe may
perform poorly and damage user satisfaction. Additionally, it is possible to select an evaluation
policy that maximizes the policy value by comparing their estimated performances without having
additional implementation costs.

2.3 Basic Estimators

Here, we summarize several standard OPE methods. We describe other advanced methods in
Appendix B.

Direct Method (DM). A widely-used method, DM [1], first learns a supervised machine learning
model, such as random forest, ridge regression, and gradient boosting, to estimate the mean reward
function. DM then plugs it in to estimate the policy value as

V̂DM(πe;D, q̂) := ED[q̂(xt, πe)],

where q̂(x, a) is the estimated mean reward function. If q̂(x, a) is a good approximation to the mean
reward function, this estimator accurately estimates the policy value of the evaluation policy. If
q̂(x, a) fails to approximate the mean reward function well, however, the final estimator is no longer
consistent. The model misspecification issue is problematic because the extent of misspecification
cannot be easily quantified from data [7].

Inverse Probability Weighting (IPW). To alleviate the issue with DM, researchers often use
another estimator called IPW [29, 31]. IPW re-weighs the rewards by the ratio of the evaluation
policy and behavior policy (importance weight) as

V̂IPW(πe;D) := ED[w(xt, at)rt],

where w(x, a) := πe(a | x)/πb(a | x) is the importance weight given x and a. When the behavior
policy is known, IPW is unbiased and consistent for the policy value. However, it can have a large
variance, especially when the evaluation policy significantly deviates from the behavior policy.

Doubly Robust (DR). DR [5] combines DM and IPW as

V̂DR(πe;D, q̂) := ED[q̂(xt, πe) + w(xt, at)(rt − q̂(xt, at))].
DR mimics IPW to use a weighted version of rewards, but it also uses the estimated mean reward
function as a control variate to decrease the variance. It preserves the consistency of IPW if either
the importance weight or the reward estimator is consistent (a property called double robustness).
Moreover, DR is semiparametric efficient [27] when the reward estimator is correctly specified. On
the other hand, when it is misspecified, this estimator can have larger asymptotic mean-squared-error
than IPW [15] and perform poorly in practice [16].
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Figure 1: Fashion items as actions displayed in ZOZOTOWN. Three fashion items are simultaneously
presented to a user in each recommendation.

Table 1: Statistics of the Open Bandit Dataset

Campaigns Behavior Policies #Data #Items Average Age CTR (V π) ±95% CI Relative-CTR

ALL
RANDOM 1,374,327

80 37.93
0.35% ±0.010 1.00

BERNOULLI TS 12,168,084 0.50% ±0.004 1.43

MEN’S
RANDOM 452,949

34 37.68
0.51% ±0.021 1.48

BERNOULLI TS 4,077,727 0.67% ±0.008 1.94

WOMEN’S
RANDOM 864,585

46 37.99
0.48% ±0.014 1.39

BERNOULLI TS 7,765,497 0.64% ±0.056 1.84

Notes: Bernoulli TS stands for Bernoulli Thompson Sampling. #Data is the total number of user impressions
observed during the 7-day experiment. #Items is the total number of items having a non-zero probability of
being recommended by each behavior policy. Average Age is the average age of users in each campaign. CTR
is the percentage of a click being observed in log data, and this is the ground-truth performance of behavior
policies for each campaign. The 95% confidence interval (CI) of CTR is calculated based on a normal
approximation of Bernoulli sampling. Relative-CTR is the CTR relative to that of the Random policy for the
“All” campaign.

3 Open-Source Dataset and Pipeline

Motivated by the paucity of real-world data and implementation enabling the evaluation of OPE,
we release the following dataset and pipeline package for research uses.

Open Bandit Dataset. Our open-source data is logged bandit feedback data provided by ZOZO,
Inc.2, the largest Japanese fashion e-commerce company with a market capitalization of over 5
billion USD (as of May 2020). The company recently started using context-free multi-armed bandit
algorithms to recommend fashion items to users in their large-scale fashion e-commerce platform
called ZOZOTOWN. We present examples of displayed fashion items in Figure 1. We collected the
data in a 7-day experiment in late November 2019 on three “campaigns,” corresponding to “all”,
“men’s”, and “women’s” items, respectively. Each campaign randomly uses either the Random policy
or the Bernoulli Thompson Sampling (Bernoulli TS) policy for each user impression.3 These policies
select three of the candidate fashion items to each user. Let I be a set of (fashion) items and K be a
set of positions. Figure 1 shows that |K| = 3 for our data. We assume that the reward (click indicator)
depends only on the item and its position, which is a general assumption on the click generative model
in the web industry [21]. Under the assumption, the action space is simply the product of the item set
and the position set, i.e., A = I × K. Then, we can apply the OPE setup and estimators in Section 2
to our dataset. We describe some statistics of the dataset in Table 1. The data is large and contains
many millions of recommendation instances. They also include the true action choice probabilities
by behavior policies computed by Monte Carlo simulations based on the policy parameters (e.g.,

2https://corp.zozo.com/en/about/profile/
3Note that we pre-trained Bernoulli TS for over a month before the data collection process and the policy

well converges to a fixed one. Thus, we suppose our data is generated by a fixed policy and apply the standard
OPE formulation that assumes static behavior and evaluation policies.
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parameters of the beta distribution used by Bernoulli TS) used during the data collection process. The
number of actions is also sizable, so this setting is challenging for bandit algorithms and their OPE.
We share the full version of our data at https://research.zozo.com/data.html.

Open Bandit Pipeline. To facilitate the usage of OPE, we also build a Python package called the
Open Bandit Pipeline. Our pipeline contains dataset module, policy module, simulator module, and
ope module. We describe the basic usage of the pipeline in its documentation page.4 This pipeline
allows researchers to focus on building their OPE estimator and easily compare it with other methods
in realistic and reproducible ways.

To our knowledge, our real-world dataset and pipeline are the first to include logged bandit datasets
collected by running multiple different policies, policy implementations used in production, and their
ground-truth policy values. These features enable the “realistic and reproducible evaluation of OPE”
for the first time. We share a part of our dataset and pipeline implementation at https://github.com/st-
tech/zr-obp.

Table 2: Comparison of Currently Available Large-scale Bandit Datasets

Criteo Data [17] Yahoo! Data [19] Open Bandit Dataset (ours)

Domain Display Advertising News Recommendation Fashion E-Commerce
#Data ≥ 103M ≥ 40M ≥ 26M (will increase)

#Behavior Policies 1 1 2 (will increase)
Random A/B Test Data % " "

Behavior Policy Code % % "

Evaluation of Bandit Algorithms " " "

Evaluation of OPE % % "

Pipeline Implementation % % "

Notes: #Data is the total number of samples included in the data. #Behavior Policies is the number of behavior
policies that were used to collect the data. Random A/B Test Data is whether the data contain a subset of data
generated by the uniform random policy. Behavior Policy Code is whether the code (production
implementation) of behavior policies is publicized along with the data. Evaluation of Bandit Algorithms is
whether it is possible to use the data to evaluate a new bandit algorithm. Evaluation of OPE is whether it is
possible to use the data to evaluate a new OPE estimator. Pipeline Implementation is whether a pipeline tool
to handle the data is available.

Table 3: Comparison of Currently Available Packages of Bandit Algorithms

contextualbandits [3] RecoGym [30] Open Bandit Pipeline (ours)

Synthetic Data Generator % " "

Support for Real-World Data % % "

Implementation of Bandit Algorithms " " "

Implementation of Basic Off-Policy Estimators " % "

Implementation of Advanced Off-Policy Estimators % % "

Evaluation of OPE % % "

Notes: Synthetic Data Generator is whether it is possible to create synthetic bandit datasets with the package.
Support for Real-World Data is whether it is possible to handle real-world bandit datasets with the package.
Implementation of Bandit Algorithms is whether the package includes implementations of online and offline
bandit algorithms. Implementation of Basic Off-Policy Estimators is whether the package includes
implementations of basic off-policy estimators such as DM, IPW, and DR described in Section 2.3.
Implementation of Advanced Off-Policy Estimators is whether the package includes implementations of
advanced off-policy estimators such as Switch Estimators and More Robust Doubly Robust. Evaluation of
OPE is whether it is possible to evaluate the accuracy of off-policy estimators with the package.

4 Related Resources

In this section, we summarize existing related resources for bandit algorithms and off-poicy evaluation.

4https://zr-obp.readthedocs.io/en/latest/
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Related Datasets. Our dataset is closely related to those of [17] and [19]. [17] introduces a
large-scale logged bandit feedback data (Criteo data) from a leading company in display advertising,
Criteo. The data contain context vectors of user impressions, advertisements (ads) as actions, and
click indicators as reward. It also provides the ex ante probability of each ad being selected by the
behavior policy. Therefore, this data can be used to compare different off-policy learning methods,
which aim to learn a new bandit policy using only log data generated by a behavior policy. In
contrast, [19] introduces a dataset (Yahoo! data) collected on a news recommendation interface of
the the Yahoo! Today Module. The data contain context vectors of user impressions, presented news
as actions, and click indicators as reward. It was collected by running the uniform random policy on
the news recommendation platform, allowing researchers to evaluate their own bandit algorithms.

We summarize key differences between our data and existing ones in Table 2.

Related Packages. There are several existing Python packages related to our Open Bandit Pipeline.
For example, contextualbandits package5 contains implementations of several contextual bandit
algorithms [3]. It aims to provide an easy procedure to compare bandit algorithms to reproduce
research papers that do not provide easily-available implementations. In addition, RecoGym6 focuses
on providing simulation bandit environments imitating the e-commerce recommendation setting [30].
This package also implements an online bandit algorithm based on epsilon greedy and off-policy
learning method based on IPW.

We summarize key differences between our pipeline and existing ones in Table 3.

5 Benchmark Experiments

We perform benchmark experiments of off-policy estimators using our Open Bandit Dataset and
Pipeline. We first describe an experimental protocol to evaluate OPE estimators and use it to compare
a wide variety of existing estimators. We then discuss our initial findings in the experiments and
indicate future research directions. We share the code for running the benchmark experiments at
https://github.com/st-tech/zr-obp/tree/master/benchmark/ope.

5.1 Experimental Protocol

We can empirically evaluate OPE estimators’ performances by using two sources of logged ban-
dit feedback collected by two different policies π(he) (hypothetical evaluation policy) and π(hb)

(hypothetical behavior policy). We denote log data generated by π(he) and π(hb) as D(he) :=

{(x(he)
t , a

(he)
t , r

(he)
t )}Tt=1 and D(hb) := {(x(hb)

t , a
(hb)
t , r

(hb)
t )}Tt=1, respectively. By applying the fol-

lowing protocol to several different OPE estimators, we can compare their estimation performances:

1. Define the evaluation and test sets as

• in-sample case: Dev := D(hb)
1:T , Dte := D(he)

1:T

• out-sample case: Dev := D(hb)

1:t̃
, Dte := D(he)

t̃+1:T

where Da:b := {(xt, at, rt)}bt=a.

2. Estimate the policy value of π(he) using Dev by an estimator V̂ . We can represent an
estimated policy value by V̂ as V̂ (π(he);Dev).

3. Estimate V (π(he)) by the on-policy estimation and regard it as the ground-truth as7

Von(π(he);Dte) := EDte
[r

(he)
t ].

4. Compare the off-policy estimate V̂ (π(he);Dev) with its ground-truth Von(π(he);Dte). We
can evaluate the estimation accuracy of V̂ by the following relative estimation error (relative-

5https://github.com/david-cortes/contextualbandits
6https://github.com/criteo-research/reco-gym
7Note that Table 1 presents Von(π

(he);Dte) for each pair of behavior policies and campaigns, and the small
confidence intervals ensure that the on-policy estimation of the ground-truth is accurate.
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EE):

relative-EE(V̂ ;Dev) :=
∣∣∣ V̂ (π(he);Dev)−Von(π(he);Dte)

Von(π(he);Dte)

∣∣∣ .
5. To estimate standard deviation of relative-EE, repeat the above process several times with dif-

ferent bootstrap samples of the logged bandit data created by sampling data with replacement
from Dev.

We call the problem setting without the sample splitting by time series as in-sample case. In contrast,
we call that with the sample splitting as out-sample case where OPE estimators aim to estimate the
policy value of an evaluation policy in the test data. Algorithm 1 in Appendix C describes the detailed
experimental protocol to evaluate OPE estimators.

5.2 Estimators Compared

We use our protocol and compare the following OPE estimators: Direct Method (DM) [1], Inverse
Probability Weighting (IPW) [29], Self-Normalized Inverse Probability Weighting (SNIPW) [34],
Doubly Robust (DR) [5], Self-Normalized Doubly Robust (SNDR), Switch Doubly Robust (Switch-
DR) [42], and More Robust Doubly Robust (MRDR) [7]. We describe DM, IPW, and DR in
Section 2.3. We define the other estimators in Appendix B. We test different values of hyperparameters
for Switch-DR (the details about their hyperparameters are in Appendix B). These above estimators
have not yet been compared in a large, realistic setting.

For estimators except for DM, we use the true action choice probabilities by behavior policies
contained in the Open Bandit Dataset. For estimators except for IPW and SNIPW, we need to obtain a
reward estimator q̂. We do so by using Logistic Regression (implemented in scikit-learn) and training
it using 30% of Dev. We then use the rest of the data to estimate the policy value of an evaluation
policy.

Table 4: Comparing Relative-Estimation Errors of OPE Estimators (All Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

Estimators Compared in-sample out-sample in-sample out-sample

DM 0.23433 ±0.02131 0.25730 ±0.02191 0.34522 ±0.01020 0.29422 ±0.01199

IPW 0.05146 ±0.03418 0.09169 ±0.04086 0.02341 ±0.02146 0.08255 ±0.03798

SNIPW 0.05141 ±0.03374 0.08899 ±0.04106 0.05233 ±0.02614 0.13374 ±0.04416

DR 0.05269 ±0.03460 0.09064 ±0.04105 0.06446 ±0.03001 0.14907 ±0.05097

SNDR 0.05269 ±0.03398 0.09013 ±0.04122 0.04938 ±0.02645 0.12306 ±0.04481

Switch-DR (τ = 5) 0.15350 ±0.02274 0.16918 ±0.02231 0.26811 ±0.00780 0.21945 ±0.00944

Switch-DR (τ = 10) 0.09932 ±0.02459 0.12051 ±0.02203 0.21596 ±0.00907 0.16532 ±0.01127

Switch-DR (τ = 50) 0.05269 ±0.03460 0.09064 ±0.04105 0.09769 ±0.01515 0.04019 ±0.01349

Switch-DR (τ = 100) 0.05269 ±0.03460 0.09064 ±0.04105 0.05938 ±0.01597 0.01310 ±0.00988

Switch-DR (τ = 500) 0.05269 ±0.03460 0.09064 ±0.04105 0.02123 ±0.01386 0.06564 ±0.02132

Switch-DR (τ = 1000) 0.05269 ±0.03460 0.09064 ±0.04105 0.02840 ±0.01929 0.05347 ±0.03330

MRDR 0.05458 ±0.03386 0.09232 ±0.04169 0.02511 ±0.01735 0.08768 ±0.03821

Notes: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different
bootstrapped iterations are reported. We describe the method to estimate the standard deviations in Appendix C.
π(hb) → π(he) represents the OPE situation where the estimators aim to estimate the policy value of π(he)

using logged bandit data collected by π(hb). The red and green fonts represent the best and the second best
estimators. The blue fonts represent the worst estimator for each setting.

5.3 Results and Discussions

The results of the benchmark experiments on “All" campaign are given in Table 4 (We report
experimental results on the other campaigns in Appendix C). We describe Random→ Bernoulli
TS to represent the OPE situation where we use Bernoulli TS as a hypothetical evaluation policy
and Random as a hypothetical behavior policy. Similary, we use Bernoulli TS → Random to
represent the situation where we use Random as a hypothetical evaluation policy and Bernoulli TS as
a hypothetical behavior policy.
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Performance comparisons. First, DM fails to estimate the policy values in all settings. The failure
of DM likely comes from the bias of the reward estimator. We observe that the reward function
estimations do not improve upon a naive estimation using the mean CTR for every estimation in the
binary cross-entropy measure (We present the performance of the reward estimator in Appendix C).
The problem with DM leads us to expect that the other estimators may perform better because they
do not rely on correct specifications of the reward estimator. We confirm this expectation in Table 4,
where the others drastically outperform DM. Among the other estimators, IPW, SNDR, and MRDR
reveal stable estimation performances across different settings, and thus we can use these estimators
safely. In the Bernoulli TS → Random situation, Switch-DR performs the best with a proper
hyperparameter. Its performance, however, largely depends on the choice of hyperparameter, as we
discuss later in detail. Note here that the performances of Switch-DR with some large hyperparameters
are the same as that of DR. This is a natural observation, as their definitions are the same when the
importance weights of all samples are lower than a given hyperparameter.

Out-sample generalization of OPE. Next, we compare the estimation accuracies of each estimator
between the in-sample and out-sample situations. Table 4 shows that estimators’ performances drop
significantly in almost all situations when they attempt to generalize their OPE results to the out-
sample or future data. The result suggests that the current OPE methods may fail to evaluate
the performance of a new policy in the future environment, as they implicitly rely on the critical
assumption of the same train-test distributions. Moreover, the results demonstrate that our Open
Bandit Dataset is a suitable real-world dataset to evaluate the robustness of off-policy evaluation
methods to the distributional changes.

Performance of each estimator across different settings. Finally, we compare the estimation
accuracies of each estimator under different experimental conditions and with different hyperpa-
rameters. We observe in Table 4 that estimation accuracies can change significantly depending on
the experimental conditions. In particular, we tested several values for the hyperparameter τ of
Switch-DR. We observe that its estimation performance largely depends on the choice of τ . For
example, the performance of Switch-DR is significantly better with large values of τ on our data.
This observation suggests that practitioners have to choose an appropriate OPE estimator or to tune
estimators’ hyperparameters carefully for their specific application. It is thus necessary to develop
a reliable method to choose and tune OPE estimators in a data-driven manner [41]. Specifically,
in many cases, we have to tune estimators’ hyperparameters (including the choice of the reward
estimator) without the ground-truth policy value of the evaluation policy.

6 Conclusion and Future Work

To enable realistic and reproducible evaluation of off-policy evaluation, we have publicized the Open
Bandit Dataset–a benchmark logged bandit dataset collected on a large-scale fashion e-commerce
platform. The data comes with the Open Bandit Pipeline, a collection of implementations that makes it
easy to evaluate and compare different OPE estimators. We expect them to facilitate the understanding
of the empirical properties of the OPE techniques and address experimental inconsistencies in the
literature. In addition to building the data and pipeline, we have presented extensive benchmark
experiments on OPE estimators. Our experiments highlight that the current OPE methods are not
accurate for estimating out-of-distribution performance of a new policy. It is also evident from the
results that it is necessary to develop a data-driven method to tune or select an appropriate estimator
for each environment.

As future work, we aim to constantly expand and improve the Open Bandit Dataset to include
more data and tasks. For example, we will add additional log data generated by contextual policies
on the platform (while the current open data contain only log data generated by the context-free
policies). Moreover, we assume that the reward of an item at a position does not depend on other
simultaneously presented items. This assumption might not hold, as an item’s attractiveness can have
a significant effect on the expected reward of another item in the same recommendation list [21].
Thus, it is valuable to compare the standard OPE estimators and those for other settings such as the
slate recommendation [25, 35]. We plan to allow our pipeline to implement bandit policies and OPE
estimators for the slate recommendation setting. You can follow the updates of the whole project at
https://groups.google.com/g/open-bandit-project.
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A Examples

Our setup allows for many popular multi-armed bandit algorithms, as the following examples
illustrate.
Example 1 (Random A/B testing). We always choose each action uniformly at random:

πUniform(a | x) =
1

m+ 1

always holds for any given a ∈ A and x ∈ X .

Example 2 (Bernoulli Thompson Sampling). When x is given, we sample the potential reward
r̃(a) from the beta distribution Beta(Sta + α, Fta + β) for each action in A, where Sta :=∑t−1
t′=1 rt, Fta := (t − 1) − Sta. (α, β) are the parameters of the prior Beta distribution. We

then choose the action with the highest sampled potential reward, a :∈ argmax
a′∈A

r̃(a′) (ties are broken

arbitrarily). As a result, this algorithm chooses actions with the following probabilities:

πBernoulliTS(a | x) = Pr{a ∈ argmax
a′∈A

r̃(a′)}

for any given a ∈ A and x ∈ X .

Example 3 (IPW Learner). When D is given, we can train a deterministic policy πdet : X → A by
maximizing the IPW estimator as follows:

πdet(x) ∈ argmax
π∈Π

V̂IPW(π;D)

= argmax
π∈Π

ED
[
I {π (xt) = at}
πb (at | xt)

rt

]
= argmin

π∈Π
ED
[

rt
πb (at | xt)

I {π (xt) 6= at}
]

, which is equivalent to the cost-sensitive classification problem.
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B Definitions of Advanced Off-Policy Estimators

Here we define advanced OPE estimators other than the basic ones, including DM, IPW, and DR,
which we describe in Section 2.3.

Self-Normalized Estimators. Self-Normalized Inverse Probability Weighting (SNIPW) is an ap-
proach to address the variance issue with the original IPW. It estimates the policy value by dividing
the sum of weighted rewards by the sum of importance weights as:

V̂SNIPW(πe;D) :=
ED[w(xt, at)rt]

ED[w(xt, at)]
.

SNIPW is more stable than IPW, because policy value estimated by SNIPW is bounded in the
support of rewards and its conditional variance given action and context is bounded by the conditional
variance of the rewards [15]. IPW does not have these properties. We can define Self-Normalized
Doubly Robust (SNDR) in a similar manner as follows.

V̂SNDR(πe;D) := ED
[
q̂(xt, πe) +

w(xt, at)(rt − q̂(xt, at))]
ED[w(xt, at)]

]
.

Switch Estimators. The DR estimator can still be subject to the variance issue, particularly when
the importance weights are large due to low overlap. Switch-DR aims to reduce the effect of the
variance issue by using DM where importance weights are large as:

V̂SwitchDR(πe;D, q̂, τ) := ED [q̂(xt, πe) + w(xt, at)(rt − q̂(xt, at))I{w(xt, at) ≤ τ}] ,
where I{·} is the indicator function and τ ≥ 0 is a hyperparameter. Switch-DR interpolates between
DM and DR. When τ = 0, it coincides with DM, while τ →∞ yields DR. This estimator is minimax
optimal when τ is appropriately chosen [42].

We can define the Switch-IPW estimator in a similar manner as

V̂SwitchIPW(πe;D, q̂, τ) := ED

[
(
∑
a∈A

q̂(xt, a)πe(a | xt)I{w(xt, a) > τ}) + w(xt, at)rtI{w(xt, at) ≤ τ}

]
,

which interpolates between DM and IPW.

More Robust Doubly Robust (MRDR). MRDR uses a specialized reward estimator (q̂MRDR) that
minimizes the variance of the resulting policy value estimator [7]. This estimator estimates the policy
value as:

V̂MRDR(πe;D, q̂MRDR) := V̂DR(πe;D, q̂MRDR),

where q̂MRDR is derived by minimizing the (empirical) variance objective:

q̂MRDR := argmin
q̂∈Q

VD(V̂DR(πe;D, q̂)),

where Q is a function class for the reward estimator. When Q is well-specified, then q̂MRDR = q.
Here, even if Q is misspecified, the derived reward estimator is expected to behave well since the
target function is the resulting variance.

Doubly Robust with Shrinkage (DRs). [32] proposes DRs based on a new weight function wo :
X ×A → R+ that directly minimizes sharp bounds on the MSE of the resulting estimator. DRs is
defined as

V̂DRs(πe;D, q̂, λ) := ED[q̂(xt, πe) + wo(xt, at;λ)(rt − q̂(xt, at))],
where λ ≥ 0 is a hyperparameter and the new weight is

wo(x, a;λ) :=
λ

w2(x, a) + λ
w(x, a).

When λ = 0, wo(x, a;λ) = 0 leading to the standard DM. On the other hand, as λ → ∞,
wo(x, a;λ) = w(x, a) leading to the original DR.
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Algorithm 1 Experimental Protocol for Evaluating Off-Policy Estimators

Input: a policy π(he); two different logged bandit feedback datasets D(he) =

{(x(he)
t , a

(he)
t , r

(he)
t )}Tt=1 and D(hb) = {(x(hb)

t , a
(hb)
t , r

(hb)
t )}Tt=1 where D(he) is collected by

π(he) and D(hb) is collected by a different one π(hb); an off-policy estimator to be evaluated V̂ ;
split-point t̃; a number of bootstrap iterations B

Output: the mean and standard deviations of relative-EE(V̂ )
1: S ← ∅
2: Define the evaluation set: Dev := D(hb)

1:T (in-sample case), Dev := D(hb)

1:t̃
(out-sample case)

3: Define the test set: Dte := D(he)
1:T (in-sample case), Dte := D(he)

t̃+1:T
(out-sample case)

4: Approximate V (π(he)) by its on-policy estimation using Dte, i.e, Von(π(he);Dte) = EDte
[r

(he)
t ]

5: for b = 1, . . . , B do
6: Sample data from Dev with replacement and construct b-th bootstrapped samples D(b,∗)

ev

7: Estimate the policy value of π(he) by V̂ (π(he);D(b,∗)
ev )

8: S ← S ∪ {relative-EE (V̂ ;D(b,∗)
ev )}

9: end for
10: Estimate the mean and standard deviations of relative-EE(V̂ ) using S

Table 5: Estimation Performances of Reward Estimator (q̂)

Random→ Bernoulli TS Bernoulli TS→ Random

Campaigns Metrics in-sample out-sample in-sample out-sample

All
AUC 0.56380 ±0.00579 0.53103 ±0.00696 0.57139 ±0.00176 0.51900 ±0.00706

RCE 0.00217 ±0.00133 -0.00853 ±0.00272 0.00588 ±0.00026 -0.01162 ±0.00271

Men’s
AUC 0.58068 ±0.00751 0.54411 ±0.01025 0.57569 ±0.00264 0.56528 ±0.00272

RCE -0.00019 ±0.00316 -0.01767 ±0.00600 0.00588 ±0.00038 0.00329 ±0.00084

Women’s
AUC 0.55245 ±0.00588 0.51900 ±0.00706 0.54642 ±0.00157 0.53387 ±0.00249

RCE -0.00100 ±0.00196 -0.01162 ±0.00271 0.00307 ±0.00018 0.00140 ±0.00031

Notes: This table presents the area under the ROC curve (AUC) and relative cross-entropy (RCE) of the reward
estimator on a validation set for each campaign. The averaged results and their unbiased standard deviations
estimated using 30 different bootstrapped samples are reported. π(hb) → π(he) represents the OPE situation
where the estimators aim to estimate the policy value of π(he) using logged bandit data collected by π(hb),
meaning that q̂ is trained on data collected by π(hb).

C Additional Experimental Settings and Results

We describe detailed protocols for evaluating OPE estimators in Algorithm 1. Table 5 reports the
estimation accuracies of the reward estimator. Table 6 and 7 show the results of the benchmark
experiments on Men’s and Women’s compaigns.

C.1 Estimation Performance of Reward Estimator

We evaluate the performance of the reward estimator by using the following two evaluation metrics
in classification.

Relative Cross Entropy (RCE). RCE is defined as the improvement of an estimation performance
relative to the naive estimation, which predicts the mean CTR for every data. We calculate this metric
using a size n of validation samples {(xt, yt)}nt=1 as:

RCE (q̂) := 1−
∑n
t=1 yt log(q̂(xt)) + (1− yt) log(1− q̂(xt))∑n
t=1 yt log(q̂naive) + (1− yt) log(1− q̂naive)

where q̂naive := n−1
∑n
t=1 yt is the naive estimation. A larger value of RCE means better perfor-

mance of a predictor.
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Table 6: Comparing Relative-Estimation Errors of OPE Estimators (Men’s Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

Estimators Compared in-sample out-sample in-sample out-sample

DM 0.24311 ±0.03128 0.29088 ±0.03440 0.24332 ±0.01661 0.12275 ±0.01791

IPW 0.11060 ±0.04173 0.19521 ±0.04533 0.02908 ±0.02413 0.08407 ±0.02471

SNIPW 0.09343 ±0.04170 0.17499 ±0.04611 0.07301 ±0.03406 0.19564 ±0.04117

DR 0.09727 ±0.04091 0.18073 ±0.04519 0.14994 ±0.05710 0.28765 ±0.07703

SNDR 0.09447 ±0.04139 0.17794 ±0.04629 0.11218 ±0.04287 0.23546 ±0.05585

Switch-DR (τ = 5) 0.23820 ±0.01950 0.27584 ±0.02035 0.17478 ±0.01145 0.06573 ±0.01204

Switch-DR (τ = 10) 0.16504 ±0.02665 0.20912 ±0.03873 0.17381 ±0.01215 0.05575 ±0.01489

Switch-DR (τ = 50) 0.22290 ±0.04091 0.18073 ±0.04519 0.13706 ±0.02529 0.02666 ±0.01919

Switch-DR (τ = 100) 0.09727 ±0.04091 0.18073 ±0.04519 0.11114 ±0.02864 0.02139 ±0.01596

Switch-DR (τ = 500) 0.09727 ±0.04091 0.18073 ±0.04519 0.05424 ±0.03006 0.05825 ±0.02440

Switch-DR (τ = 1000) 0.09727 ±0.04091 0.18073 ±0.04519 0.05199 ±0.02997 0.06140 ±0.02461

MRDR 0.09173 ±0.04145 0.17754 ±0.04673 0.04385 ±0.03299 0.07649 ±0.02900

Notes: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different
bootstrapped iterations are reported. π(hb) → π(he) represents the OPE situation where the estimators aim to
estimate the policy value of π(he) using logged bandit data collected by π(hb). The red and green fonts
represent the best and the second best estimators. The blue fonts represent the worst estimator for each setting.

Table 7: Comparing Relative-Estimation Errors of OPE Estimators (Women’s Campaign)

Random→ Bernoulli TS Bernoulli TS→ Random

Estimators Compared in-sample out-sample in-sample out-sample

DM 0.21719 ±0.03274 0.25428 ±0.02940 0.31762 ±0.01011 0.21892 ±0.01346

IPW 0.02827 ±0.02418 0.03957 ±0.02779 0.03992 ±0.01997 0.09295 ±0.02527

SNIPW 0.02827 ±0.02383 0.04221 ±0.02976 0.07564 ±0.02578 0.11461 ±0.02646

DR 0.02835 ±0.02420 0.04200 ±0.02952 0.09244 ±0.03063 0.12652 ±0.02904

SNDR 0.02833 ±0.02415 0.04280 ±0.02973 0.07659 ±0.02582 0.11809 ±0.02661

Switch-DR (τ = 5) 0.15483 ±0.02355 0.20191 ±0.02660 0.24993 ±0.00614 0.16243 ±0.00919

Switch-DR (τ = 10) 0.05966 ±0.03183 0.10547 ±0.03843 0.21151 ±0.00827 0.12292 ±0.00950

Switch-DR (τ = 50) 0.02835 ±0.02420 0.04200 ±0.02952 0.12182 ±0.01416 0.02639 ±0.01515

Switch-DR (τ = 100) 0.02835 ±0.02420 0.04200 ±0.02952 0.08990 ±0.01381 0.01129 ±0.00921

Switch-DR (τ = 500) 0.02835 ±0.02420 0.04200 ±0.02952 0.01838 ±0.01793 0.05898 ±0.02007

Switch-DR (τ = 1000) 0.02835 ±0.02420 0.04200 ±0.02952 0.01644 ±0.01352 0.07120 ±0.02171

MRDR 0.02809 ±0.02388 0.04354 ±0.03060 0.02800 ±0.01758 0.08990 ±0.01898

Notes: The averaged relative-estimation errors and their unbiased standard deviations estimated over 30 different
bootstrapped iterations are reported. π(hb) → π(he) represents the OPE situation where the estimators aim to
estimate the policy value of π(he) using logged bandit data collected by π(hb). The red and green fonts
represent the best and the second best estimators. The blue fonts represent the worst estimator for each setting.

Area Under the ROC Curve (AUC). AUC is defined as the probability that positive samples are
ranked higher than negative items by a classifier under consideration.

AUC (q̂) :=
1

nposnneg

npos∑
t=1

nneg∑
j=1

I{q̂(xpos
t ) > q̂(xneg

j )}

where I{·} is the indicator function. {xpos
t }n

pos

t=1 and {xneg
j }n

neg

j=1 are sets of positive and negative
samples in the validation set, respectively. A larger value of AUC means better performance of a
predictor.
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C.2 Estimating Mean and Standard Deviation of Performance Measures

To estimate means and standard deviations of relative-EE in the benchmark experiment, we first
construct an empirical cumulative distribution function F̂K of the evaluation set of the logged bandit
feedback (Dev). Then, we draw bootstrap samples D(1,∗)

ev , . . . ,D(B,∗)
ev from F̂K and compute the

relative-EE of a given estimator V̂ with each set. Finally, we estimate the mean and its standard
deviation (Std) of the V̂ ’s relative-EE by

Mean(relative-EE(V̂ ;Dev)) :=
1

B

B∑
b=1

relative-EE(V̂ ;D(b,∗)
ev ),

Std(relative-EE(V̂ ;Dev)) :=

√√√√ 1

B − 1

B∑
b=1

(relative-EE(V̂ ;D(b,∗)
ev )−Mean(relative-EE(V̂ )))2,

where we use B = 30 for all experiments.
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D Open Bandit Pipeline (OBP) Package

As described in Section 3, Open Bandit Pipeline contains implementations of dataset preprocessing,
several policy learning methods, and a variety of OPE estimators.

Below, we show an example of conducting an offline evaluation of the performance of BernoulliTS
using IPW as an OPE estimator and the Random policy as a behavior policy. We see that only ten
lines of code are sufficient to complete the standard OPE procedure from scratch (Code Snippet 1).

# a case for implementing OPE of BernoulliTS using log data generated by the Random
policy

>>> from obp.dataset import OpenBanditDataset
>>> from obp.policy import BernoulliTS
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data loading and preprocessing
>>> dataset = OpenBanditDataset(behavior_policy="random", campaign="all")
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

# (2) Off-Policy Learning
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate the policy in the ZOZOTOWN production
campaign="all",
random_state=12345

)
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

# (3) Off-Policy Evaluation
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback,

ope_estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

# estimate the performance improvement of BernoulliTS over the Random policy
>>> ground_truth_random = bandit_feedback["reward"].mean()
>>> print(estimated_policy_value["ipw"] / ground_truth_random)
1.198126...

Code Snippet 1: Overall Flow of Off-Policy Evaluation using Open Bandit Pipeline

In the following subsections, we explain some important features in the example flow.

D.1 Data Loading and Preprocessing

We prepare easy-to-use data loader for Open Bandit Dataset. The
obp.dataset.OpenBanditDataset class will download and preprocess the original Open
Bandit Dataset.

# load and preprocess raw data in "All" campaign collected by the Random policy
>>> dataset = OpenBanditDataset(behavior_policy="random", campaign="all")
# obtain logged bandit feedback generated by the behavior policy
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

Code Snippet 2: Data Loading and Preprcessing

Users can implement their own feature engineering in the pre_process method of
OpenBanditDataset class. Moreover, by following the interface of BaseBanditDataset in the
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dataset module, one can handle future open datasets for bandit algorithms. The dataset module also
provide a class to generate synthetic bandit datasets.

D.2 Off-Policy Learning

After preparing the logged bandit data, we now compute the action choice probability by BernoulliTS
in the ZOZOTOWN production. Then, we can use it as the evaluation policy.

# define evaluation policy (the Bernoulli TS policy here)
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate BernoulliTS in the ZOZOTOWN production
campaign="all",
random_state=12345

)
# compute the action choice probability by the evaluation policy by running

simulation
# action_dist is an array of shape (n_rounds, n_actions, len_list)
# representing the action choice probability made by the evaluation policy
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

Code Snippet 3: Off-Policy Learning

The compute_batch_action_distmethod of BernoulliTS computes the action choice probabilities
based on given hyperparameters of the beta distribution. By activating the is_zozotown_prior argu-
ment of BernoulliTS, one can replicate BernoulliTS used in ZOZOTOWN production. action_dist
is an array representing the distribution over actions made by the evaluation policy.

D.3 Off-Policy Evaluation

Our final step is OPE, which attempts to estimate the performance of bandit algorithms using log
data generated by a behavior policy. Our pipeline also provides an easy procedure for doing OPE as
follows.

# estimate the policy value of BernoulliTS using its action choice probability
# it is possible to set multiple OPE estimators to the ‘ope_estimators‘ argument
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback,

ope_estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> print(estimated_policy_value)
{"ipw": 0.004553...} # dictionary containing policy values estimated by each

estimator

# compare the estimated performance of BernoulliTS
# with the ground-truth performance of the Random policy
# our OPE procedure suggests that BernoulliTS improves the Random policy by 19.81%
>>> ground_truth_random = bandit_feedback["reward"].mean()
>>> print(estimated_policy_value["ipw"] / ground_truth_random)
1.198126...

Code Snippet 4: Off-Policy Evaluation

Users can implement their own OPE estimator by following the interface of
BaseOffPolicyEstimator class. OffPolicyEvaluation class summarizes and compares the
policy values estimated by several off-policy estimators. bandit_feedback["reward"].mean()
is the empirical mean of factual rewards (on-policy estimate of the policy value) in the log and thus is
the ground-truth performance of the behavior policy (the Random policy).
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