
MARS-Gym: Offline Reinforcement Learning for
Recommender Systems in Marketplaces

Marlesson R. O. Santana∗
Deep Learning Brazil

Federal University of Goiás
Goiânia, Brazil

marlessonsa@gmail.com

Luckeciano C. Melo∗
Deep Learning Brazil

Goiânia, Brazil
luckeciano@gmail.com

Fernando H. F. Camargo∗†
Deep Learning Brazil

Federal University of Goiás
Goiânia, Brazil

Bruno Brandão
Deep Learning Brazil

Federal University of Goiás
Goiânia, Brazil

brunobrandao1523@gmail.com

Anderson Soares
Deep Learning Brazil

Federal University of Goiás
Goiânia, Brazil

anderson@inf.ufg.br

Renan M. Oliveira
iFood Research

Campinas, Brazil
renan.oliveira@ifood.com.br

Sandor Caetano
iFood Research

Campinas, Brazil
sandor.caetano@ifood.com.br

Abstract

Recommender Systems are especially challenging for marketplaces since they
must maximize user satisfaction while maintaining the healthiness and fairness of
such ecosystems. In this context, we observed a lack of resources to design, train,
and evaluate agents that learn from interaction logs of these production systems,
especially in the offline setting. For this matter, we propose the MArketplace
Recommender Systems Gym (MARS-Gym), an open-source framework to empower
researchers and engineers to quickly build and evaluate Reinforcement Learning
agents for recommendations in marketplaces. MARS-Gym addresses the whole
development pipeline: data processing, model design and offline training, and
multi-sided evaluation. We also provide the implementation of a diverse set of
baseline agents, with a metrics-driven analysis of them in the Trivago marketplace
dataset, to illustrate how to conduct a holistic assessment using the available metrics
of recommendation, off-policy estimation, and fairness. With MARS-Gym, we
expect to bridge the gap between academic research and production systems, as
well as to facilitate the design of new algorithms and applications.

1 Introduction

Recommender Systems (RS) are essential tools to offering a high-quality experience to users on
online platforms. These systems become even more critical for marketplaces. In this specific scenario,
recommenders should also consider all partners, rather than assume a user-centric perspective. This
requirement is critical to the healthiness and fairness of such ecosystems. Despite the recent progress
in building successful recommendation models to real-world applications [5, 29], and, in special,
∗denotes equal contribution.
†Contact: fernando.camargo.ai@gmail.com.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.



for marketplaces [41, 30], we observed a lack of resources to experiment models that learn from
interaction logs of these ecosystems effectively. To the best of our knowledge, there are no frameworks
that help researchers and engineers to quickly design, train, and evaluate Reinforcement Learning
(RL) agents to optimize the dynamics of marketplaces, with special focus on real-world applications.

In this work, we present MARS-Gym (MArketplace Recommender Systems Gym), a open source
framework for modeling, training, and evaluating RL-based recommender systems for marketplaces.
Three main components compose the framework. The first one is a highly customizable module
where the consumer can ingest and process a massive amount of interaction logs for learning using
spark jobs. The second component was designed for training purposes, with counterfactual losses
to support offline RL. It holds an extensible module built on top of PyTorch [34] to design learning
architectures. It also possesses an OpenAI’s Gym [9] environment that ingests the processed dataset
to run a multi-agent system that simulates the targeted marketplace.

Finally, the last component is an evaluation module that provides a set of distinct perspectives
on the agent’s performance. It presents not only traditional recommendation metrics but also off-
policy evaluation metrics, to account for the bias induced from the historical data representation of
marketplace dynamics. It also provides fairness indicators to analyze the long-term impact of such
recommenders in the ecosystem concerning sensitive attributes. This component is powered by a
user-friendly interface to facilitate the analysis and comparison between agents.

This paper is organized as follows. In Section 2, we describe related work. Section 3 presents the
theoretical background. Section 4 details the framework usage, its internal components, and the
evaluation protocol. Section 5 presents the experimental results and analysis for the baselines agents.
Finally, Section 6 concludes and shares our thoughts for future work.

2 Related Work

We identified some works which focused on marketplace recommendations. Wang et al. [41]
proposed a model based on multi-armed bandits and UCB (Upper Confidence Bound) exploration. It
was trained via multi-objective optimization to address exploration and diversity of recommendations
in a food delivery marketplace. McInerney et al. [30], on the other side, formulated the problem
as a contextual bandit in an off-policy training scenario to recommend not only items but also an
associated explanation in an online music streaming service. For comparison, our work also addresses
marketplace recommendation with sequential decision-making formulation; however, we propose a
framework and benchmark environment to improve research and development in this subject, rather
than new models and applications.

In terms of environments for RS evaluation, we identified works that focused on open-sourcing
datasets [6, 21, 19], elaborating competitions [25, 44, 2], and releasing environments or platforms to
engage researchers. In the last line of contribution, which is closely related to our work, we highlight
RecoGym [36] and PyRecGym [38] platforms. Like our work, they also created OpenAI’s Gym
environments for sequential interaction, which enables the development of RL agents in RS. However,
those platforms assumed a user-centric perspective where the episodes are users’ sessions, and the
objective is to maximize their satisfaction. On the other side, our work assumes the perspective of
the whole marketplace, simulating several users acting in each episode, aiming to maximize the
satisfaction of all sides involved.

In the field of offline RL, we noticed several works in theory and algorithm development [27, 4, 26, 32],
benchmarks and datasets [20, 17, 16], and even applications in robotics [11] and advertising engines
[8]. In this work, our objective is to provide such techniques to improve modeling and deployment
of agents into productions systems in the context of Recommender Systems, addressing some of
the main challenges for real-world RL [14]. We implement off-policy metrics and losses based on
counterfactual estimation to compare against traditional recommendation metrics and diagnose any
source of bias induced by the historical dataset.

Finally, in terms of fairness, there is a large body of recent work that formulates this concept for
marketplaces [10, 1] and use it as evaluation protocol or even as optimization objective [31, 35, 41].
Our work presents fairness metrics either to ensure that models account for the satisfaction and
visibility for all involved sides and also to diagnose any source of bias in sensitive attributes.

2



3 Preliminaries

3.1 Reinforcement Learning and Recommender Systems

We formalize a Recommender System by the main aspects of its composition. We call a policy π,
the primary means of making decisions. Thus, in the case where a dataset D is available, the policy
used to acquire it is called a collection policy πc. In order to make recommendations, the policy takes
into account x ∈ X : U× C composed of the current user u ∈ U and contextual information c ∈ C.
Finally, the policy selects an action a ∈ A – according to π(a | x) – as a recommendation to the user.

The RL problem formulation is formalized as a Markov Decision Process (MDP) [39]. In an MDP,
an agent is whatever form that makes decisions; at a time step t, it receives from the environment
state st ∈ S and chooses from a finite set of actions at ∈ A. The environment changes, following a
dynamics p : S ×S ×A → [0,∞), which represents the probability density of the next state. Finally,
the environment sends a feedback reward r : S ×A → [0, 1]. The ultimate objective of an RL agent
is to maximize the cumulative reward, i.e., maxE[

∑T
t=0 γ

tr(st, at)], where γ is a discount factor to
account for delayed rewards.

3.2 Off-Policy Evaluation and Learning

MARS-Gym addresses the process of training a Recommender System as a off-policy, batch learning
from partially observed feedback in a historical dataset. This consideration is advantageous because
we do not require any additional interaction with production systems, which is often very costly. This
advantage is valid for learning and evaluation, which makes iteration cycles faster and helps to detect
poor policies before any deployment.

Nevertheless, this is acknowledged as a hard problem, because such data is biased towards the
collection policy (predictions favored by the historical algorithm will be over-represented) and is
incomplete (feedback for other predictions will not be available) [40]. To address this problem, we
need counterfactual estimators [7], in order to estimate how other systems would have performed if
they had been recommending items in the place of the collection policy. Several works applied these
estimators for both off-policy evaluation [28, 13] and learning [30, 40].

For evaluation, MARS-Gym implements three main estimators. The first one is called the Direct
Method (DM), which forms an estimate %̂(x, a) of the expected reward conditioned on the context
and action. It is simple and has low variance, but it depends on the collection policy data, which is
often biased. The second estimator, called Inverse Propensity Score (IPS), forms an estimate of the
collection policy πc and uses Importance Sampling to re-weight rewards generated by it such that
they are unbiased estimates of the evaluated policy πe. Although less prone to induce bias, it has a
much larger variance, especially when our estimation of the collection policy is small.

The third estimator is the Doubly Robust (DR) Estimator in (1), which combines both reward and
collection policy estimates, using the former as a baseline and the latter for correction. If at least one
of them is accurate, then DR is also accurate. We will guide our analysis mainly using this metric.

v̂πDR =
1

|D|
∑

(x,a,r)∈D

[
πe(a | x)
π̂c(a | x)

(r − %̂(x, a)) +
∑
a∈A

πe(a | x)%̂(x, a)
]
, (1)

where %(x, a) = E(x,a,r)∼πc
[r|x, a].

Finally, for learning, we apply the Counterfactual Risk Minimization (CRM) [40]. This learning
principle uses one of the counterfactual estimators to modify the log-likelihood. Instead of evaluation
policy, we consider an uniform distribution over actions U(a), to account for the fact that the data
come from the production policy πc and not from an uniform random experiment [30]. Concretely, the
current version of MARS-Gym implements CRM via IPS, as shown in (2), where pθ is a distribution,
parameterized by θ, from which we derive the agent policy π.

L(θ) = − 1

|D|
∑

(x,a,r)∈D

U(a)
π̂c(a | x)

log pθ(r | x, a). (2)

3



3.3 Fairness Evaluation

Recommender Systems are very prone to reproduce dataset biases as well as to disregard societal and
economic impacts when they solely maximize user satisfaction. They are also capable of changing
the data distribution, i.e., the way people interact within the production system. Therefore, we need
to account the long-term impact of such systems in production by diagnosing sources of unfairness
that could impact the entities in the marketplace [15].

We focus on two main sources. First, when the user has sensitive attributes that could potentially
cause any form of disadvantage or poorer experience for them in the platform. Second, when partners
do not have fair opportunity to be presented to users: partner diversity and visibility are intrinsically
related to the healthiness of marketplaces, especially because they are acknowledged to suffer from
“superstar economics" [37].

In MARS-Gym, we consider the notion of fairness in three perspectives [43]: disparate treatment,
impact, and mistreatment. In this paper, we present an analysis focused in the third perspective, for
the sake of conciseness. Disparate mistreatment arises when the misclassification rates differ for
groups of users having different values for a given sensitive attribute. To compute these rates, we
need ground-truth actions for each interaction. In the current version of the MARS-Gym, we measure
it by using true positive rates. Therefore, we need to satisfy (3), where a∗ is the ground-truth action:

π(a = a∗ | zi, a∗ = ak) = π(a = a∗ | zj , a∗ = ak),∀ak ∈ A,∀zi, zj ∈ Z. (3)

4 MARS-Gym Architecture

In this section, we present how MARS-Gym simulates the marketplaces, as well as the design of
internal modules used to model, train, and evaluate RL agents for Recommender Systems. The source
code of MARS-Gym is available in https://github.com/deeplearningbrasil/mars-gym.

4.1 MDP Counterfactual Simulation

MARS-Gym models the marketplace as an MDP. The framework ingests a ground-truth dataset
sampled from a collection policy in the real marketplace to perform a counterfactual simulation, i.e.,
reason about the following question: "how the policy in evaluation would perform if it were in the
place of the collection policy, with the same perspective of the dynamics and reward distribution?".
MARS-Gym generates an OpenAI’s Gym environment where the data drives the internal transitions
resulted from the interaction within the recommender. The consumer of MARS-Gym must provide
the ground-truth dataset.

Fig. 1 presents how MARS-Gym simulates the dynamics of the marketplace. First of all, the framework
filters only successful interactions (e.g., buys or clicks), once they are the available source of the
true reward distribution. Then, the gym environment wraps the resultant data. We compose each
environment step with one interaction. The provided observation contains the associated user and its
metadata, as well as the contextual information from the log. As selected action, the agent should
return the recommendation of one partner. The environment also provides additional informative data
via a dictionary (for example, a pre-selected list of potential recommendations, in order to narrow the
action space).

4

https://github.com/deeplearningbrasil/mars-gym


Figure 1: Diagram flow of MARS-Gym, from dataset ingestion for environment generation to the
MDP simulation.

We compute the reward by comparing the agent’s selected action and the partner provided by the log.
The agent receives a positive reward if they match. Therefore, the agent only discovers the targeted
partner in the scenario of a successful recommendation. Otherwise, it should explore the actions to
build its knowledge.

The sequence of steps follows the sequence of interactions in the filtered ground-truth dataset. Hence,
we maintain the same temporal dynamic. We define an episode as one iteration trough all logs, rather
than the user session. This behavior intends to approximate the multi-agent scenario and keep the
perspective on the marketplace, not solely in the user. Finally, the interactions between the proposed
agent and the environment generate new interaction logs. This simulated data trains the agent and
also provides the cumulative reward curve as the first source of evaluation. In the next subsection, we
describe the design of MARS-Gym to accomplish this simulation.

4.2 System Design

We compose MARS-Gym with three main internal components: The Data Engineering Module,
the Simulation Module, and the Evaluation Module. Fig. 2 shows a visual representation of our
implementation. In the remainder of this subsection, we describe each module separately.

Figure 2: MARS-Gym Architecture and its three internal modules.

4.2.1 Data Engineering Module

This module processes the incoming data to satisfy all requirements to create the OpenAI’s Gym
environment. It cleans the dataset and applies all transformations to provide the list of interactions
and metadata associated with the user or partners as output.

We ingest the dataset where each row should have the user identifier, the fields containing contextual
information, the action (partner) presented to the user, and the success flag (if an interaction is
successful in the marketplace scenario).

5



Naturally, distinct marketplaces collect data in many different ways. Therefore, it is impossible to
provide a single data processing task that handles all scenarios. For this reason, this module is highly
customizable, and we provide abstractions and tools to help in creating data processing tasks.

4.2.2 Simulation Module

This module is the core of MARS-Gym and implements the MDP counterfactual simulation described
in Subsection 4.1. Additionally, it is also the module to design and train learning agents. We compose
MARS-Gym with three main components: the Recommendation Agent, the Gym Environment, and
the Simulator.

As previously described, the Gym Environment implements the interface of OpenAI’s Gym. It ingests
the processed dataset to create a representation of marketplace dynamics by using the same successful
interactions and computing the rewards using their corresponding actions as ground truth. On the
other side, the Recommendation Agent module implements the agent’s interface, which exposes the
act and the fit methods. Specifically, MARS-Gym requires the act method to return not only the action
but also the respective probabilities of each available action. Therefore, any decision-making system
that satisfies these requirements can run a simulation.

For the fit method, MARS-Gym expects to train the agent using previous experience. We already
provide high-level PyTorch modules with parameterized architectures (including logistic regression,
factorization machine, and neural networks), state-of-the-art gradient-based optimization algorithms,
and regularization methods. As we also implement the whole PyTorch’s optimization procedure (with
GPU support), the only work we left for the user is to combine these building blocks and select the
appropriated hyperparameters.

The third component is the Simulator, which plays the central role for the module. It manages both
agent and environment to conduct the simulation across episodes, accumulating the experience data
for training and the rewards for evaluation. The proposed architecture assumes low customization in
this module, as well as for the Gym Environment. In other words, we do not expect any modification
in these modules in order to simulate new agents or marketplaces.

4.2.3 Evaluation Module

This final module inputs the logs generated from MDP counterfactual simulation to perform a multi-
sided evaluation. The evaluation task computes metrics of recommendation, off-policy evaluation,
and fairness. Then, the data visualization component provides a user-friendly interface to present and
compare these metrics among different agents (see Appendix D for some samples).

The Simulation Module generates two different types of logs to be ingested by the Evaluation Module.
During the simulation, it splits the processed dataset into train and test subsets. Naturally, it uses the
training subset to conduct the training process, and the Evaluation Module uses the resultant logs
to compute and plot the cumulative mean reward. On the other hand, the test subset provides a new
perspective of the same MDP, but the agent interacts with it only after training, in order to measure
generalization. With this test subset, we compute traditional metrics for Recommender Systems, such
as Precision, MaP [42], nDCG [22], Coverage [18] and Personalization.

In terms of off-policy evaluation, we implement the policy value estimators listed in Subsection 3.2:
Direct Method, Inverse Propensity Score (and its variations CIPS and SNIPS), and Doubly-Robust
Estimator. For these metrics, we compute the expected reward estimator, %̂(x, a), and the collection
policy estimator, π̂c, as described in Subsection 3.2. They are automatically trained using the whole
processed dataset (i.e., the output of the Data Engineering Module) and the same base model of the
agent. Then, we use the ground-truth actions and the list of probabilities to compute the metrics.

Finally, for fairness evaluation, we propose implementations for the three perspectives listed in
section 3.3. Specifically, for disparate mistreatment (which will be used in this paper) we consider
the ground-truth actions in interactions logs to compute classification metrics (such as accuracy, true
positive rate, and others). They are grouped by the values of the sensitive attribute, so that we can
evaluate the contition in equation 3.

6



0 2000 4000 6000 8000 10000 12000 14000 16000
Interactions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(a) Como, Italy

0 2000 4000 6000 8000
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(b) Rio de Janeiro, Brazil

0 2500 5000 7500 10000 12500 15000 17500 20000
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

bandit
adaptive
custom_lin_ucb
epsilon_greedy
explore_then_exploit
popular_item
lin_ts
lin_ucb
percentile_adaptive
random
softmax_explorer

(c) RecSys Cities

Figure 3: Bandit Simulation Results.

5 Experimental Results and Analysis

In this section, we present our baseline agents, evaluation results and interpretations. We hope to
illustrate the usage of the framework and to facilitate the work of new users. For evaluation, we used
the Trivago markeplace dataset [33], which we describe in Appendix A. We implemented a diverse
set of Contextual Bandits as baselines for easy extension and comparison with other agents. They
apply a variety of explorations strategies, most of them inspired by Cortes [12]. We also proposed
CustomLinUCB, which extends LinUCB by implementing a non-linear reward model.

An agent consists of an oracle that predicts scores for each possible interaction between the user and
the available actions in the specific context. Therefore, the exploration strategies use these scores
to compute probabilities and choose an action. We trained the agents via off-policy batch learning,
applying the CRM loss function. The training procedure happened in epochs of a fixed number of
interactions, using the whole experience buffer acquired throughout the simulation. Finally, we also
performed hyperparameter tuning in all agents and presented the best set found for each of them.

5.1 Bandit Simulation Results

We performed the simulation of each proposed task until the convergence of most methods to observe
cumulative mean reward throughout the simulation. For statistical significance, we represent each
curve by the mean and confidence interval across five executions of the same experiment. Fig. 3
presents the results of the simulations for few different tasks and methods. The complete list of
simulation results is in Appendix B.

We observed that he performance of these methods dramatically varies across tasks, which reinforces
that there is no better exploration strategy for all scenarios. Nevertheless, the experiments also show
some patterns among the tasks. Linear methods like LinTS and LinUCB obtain better results when
the search space is smaller but does not scale well as the dimensionality of the MDP increases. On
the other hand, the proposed CustomLinUCB presents better results in these scenarios but has worse
sample efficiency in the low data regime. We hypothesize that the introduction of non-linearities in
the oracle increases the capacity of the representation of contextual information in the policy, at the
cost of a harder optimization problem.

The curve of the Explore-Exploit agent, which locally interleaves peaks and valleys as the method
switches from full exploitation to full exploration are important to highlight. It suggests a sensibility
of the switch hyperparameter, which is undesirable for production environments. Ultimately, we
also point out that simple methods (in an implementation perspective) such as ε-greedy and softmax
explorer present satisfactory results, suggesting to be ideal for composing more complex agents and
algorithms as initial setup.

5.2 Recommendation Metrics and Off-Policy Evaluation

We evaluated the bandits according to traditional recommendation metrics and off-policy metrics in
the test subset of the “Chicago, USA" task. Table 1 presents the average results over five executions
for some agents and metrics in the framework. For the complete list, we refer to Appendix C.

7



Table 1: Recommendation Metrics for "Chicago, USA" task.
Rank Metrics Off-Policy

Precision NDCG@5 Cove@5 SNIPS DR
CustomLinUCB 0.338 0.443 0.371 0.319 0.299
AdaptiveExplorer 0.331 0.415 0.379 0.331 0.291
SoftmaxExplorer 0.316 0.446 0.328 0.302 0.281
ε-Greedy 0.311 0.441 0.343 0.322 0.278
LinUCB 0.065 0.183 0.297 0.049 0.043
MostPopularItem 0.074 0.199 0.153 0.052 0.061
Without CRM 0.354 0.457 0.303 0.346 0.312
With CRM 0.344 0.434 0.300 0.352 0.320

The precision metric highly correlates to the simulations results in Fig. 5b (see Appendix B).
CustomLinUCB presented the best results in both the simulated cumulative mean reward and doubly
robust value. For other bandits, the performance varies from counterfactual simulation to rank
metrics and off-policy evaluation. We hypothesize that these changes are related to the sample
efficiency of each exploration strategy, as well as the generalization properties from the learned
policies. Furthermore, we observe that the SoftmaxExplorer outperforms all other methods in the
nDCG metric, which suggests good performance in scenarios of slate recommendation.

We observe a consistent drop from the precision to the off-policy metrics, suggesting that all methods
naturally exploit the sampling bias. Comparatively, we see a high correlation between those metrics.
However, the ranking of bandits is not the same, which suggests that some bandits suffer more from
sampling bias. This evidence and analysis are important for model deployment, once that off-policy
metrics often correlates better with online experiments [24, 23].

Ultimately, we conducted an ablation study regarding CRM loss. For this purpose, we trained two
policies using the training data in the full offline setting (i.e., directly using the interaction logs for
optimization, with no MDP simulation), varying the loss function. From Table 1, we observe that the
policy with CRM trades off accuracy in recommendation metrics to improve the unbiased, off-policy
metrics. This result validates that this technique is essential to reduce the effect of sampling bias
during training, and, therefore, improve off-policy evaluation.

5.3 Fairness Evaluation

We evaluated the SoftmaxExplorer bandit on the “RecSys Cities" task, in the perspective of disparate
mistreatment (Fig. 4). We selected a few sensitive attributes across partners in the marketplace.

� ��� ��� ���

KRXVH�DSDUW

)DOVH

KRXVH�DSDUW

7UXH

KRWHO

)DOVH

KRWHO

7UXH

WUXHBSRVLWLYHBUDWH

%
X
V
L
Q
H
V
V

(a) Feature – Accommodation
Type

� ��� ��� ���

FKLOGFDUH

)DOVH

FKLOGFDUH

7UXH

IDPLO\�IULHQGO\

)DOVH

IDPLO\�IULHQGO\

7UXH

WUXHBSRVLWLYHBUDWH

%
X
V
L
Q
H
V
V

(b) Feature – Business Affinity

� ��� ��� ���

&RPR

'XEOLQ

&RSHQKDJHQ

9LHQQD

%DUFHORQD

5LR�GH�-DQHLUR

%RVWRQ

9DQFRXYHU

+RQJ�.RQJ

&KLFDJR

1HZ�<RUN

/DXVDQQH

WUXHBSRVLWLYHBUDWH

F
L
W
\
B
L
G
[

(c) Feature – City

Figure 4: Fairness analysis for SoftmaxExplorer.

In Fig. 4a, we present features related to the type of accomodation. We observe that hotels receive
a much better recommendation from the agent than the other types, such as hostels or apartments,
suggesting disparate mistreatment, which is undesirable for the health of the marketplace. Fig. 4b also
presents disparate mistreatment for accommodations that are family-friendly or provides childcare.
These are not only business features from partners but also user requirements.

8



From a different perspective, Fig. 4c shows the true positive rates for each city analyzed. In general,
we see similar results for all of them. The metrics for some cities present higher confidence intervals,
which is directly related to having fewer data. Nevertheless, we diagnose differences among some
cities (e.g., comparing New York and Dublin), which we could explore to understand the source of
unfairness and improve the recommender system.

Ultimately, all charts in Fig. 4 diagnose different scenarios in which the recommender system does
not satisfy the current notions of fairness. They are the reproduction of many biases in the dataset, and
the machine learning pipeline and platform must address it. Therefore, these metrics provide insights
into where the system needs to improve to maintain the marketplace fairness and healthiness.

6 Conclusions and Future Work

In this work, we proposed MARS-Gym, an open-source framework to model, train, and evaluate
RL-based recommender systems for marketplaces. We presented in detail its internal components
and provide baseline implementation and analysis to serve as an introduction for the users. We also
point out that the presented results are an extra contribution of our work on the task of benchmarking
contextual bandits, complementing the results of previous works.

As future releases of this framework, we plan to implement extensions for multi-objective and
constrained optimization to extend the support for marketplaces with multiples stakeholders during
learning. It addresses, for example, the recommendation in marketplaces with a delivery system,
where logistic restrictions arise. We also plan to extend the framework to address the hierarchical
setting, where the agent manages multiples recommendation models rather than solely actions. This
problem is valuable for current production systems, where we often have a diverse set of models
running concurrently and need to evaluate their adaptability and degradability over time.

Acknowledgments and Disclosure of Funding

We would like to thank iFood Research for financial support and helpful reviews.

9



References
[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Recommender systems as

multistakeholder environments. In Proceedings of the 25th Conference on User Modeling,
Adaptation and Personalization, UMAP ’17, page 347–348, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450346351. doi: 10.1145/3079628.3079657.
URL https://doi.org/10.1145/3079628.3079657.

[2] Fabian Abel, Yashar Deldjoo, Mehdi Elahi, and Daniel Kohlsdorf. Recsys challenge 2017:
Offline and online evaluation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems, pages 372–373, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450346528. doi: 10.1145/3109859.3109954. URL https://doi.org/10.1145/
3109859.3109954.

[3] Jens Adamczak. Recsys challenge 2019 · trivago tech blog, March 2019. URL https:
//tech.trivago.com/2019/03/11/recsys-challenge-2019.

[4] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning, 2020.

[5] Xavier Amatriain and Justin Basilico. Recommender systems in industry: A netflix case study.
In Recommender systems handbook, pages 385–419. Springer, 2015.

[6] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop,
volume 2007, page 35, San Jose, California, USA, 2007. Citeseer, ACM SIGKDD Explorations
Newsletter.

[7] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems: The example of computational advertising. Journal of Machine Learning Re-
search, 14(65):3207–3260, 2013. URL http://jmlr.org/papers/v14/bottou13a.html.

[8] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems, 2013.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http:
//arxiv.org/abs/1606.01540.

[10] Robin Burke. Multisided fairness for recommendation. CoRR, abs/1707.00093, 2017. URL
http://arxiv.org/abs/1707.00093.

[11] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David
Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu Wang. Scaling data-driven
robotics with reward sketching and batch reinforcement learning, 2020.

[12] David Cortes. Adapting multi-armed bandits policies to contextual bandits scenarios. CoRR,
abs/1811.04383, 2018. URL http://arxiv.org/abs/1811.04383.

[13] Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learn-
ing. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, page 1097–1104, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

[14] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning, 2019.

[15] Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, D. Sculley, and Yoni
Halpern. Fairness is not static: Deeper understanding of long term fairness via simulation
studies. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
FAT* ’20, page 525–534, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450369367. doi: 10.1145/3351095.3372878. URL https://doi.org/10.1145/
3351095.3372878.

10

https://doi.org/10.1145/3079628.3079657
https://doi.org/10.1145/3109859.3109954
https://doi.org/10.1145/3109859.3109954
https://tech.trivago.com/2019/03/11/recsys-challenge-2019
https://tech.trivago.com/2019/03/11/recsys-challenge-2019
http://jmlr.org/papers/v14/bottou13a.html
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1707.00093
http://arxiv.org/abs/1811.04383
https://doi.org/10.1145/3351095.3372878
https://doi.org/10.1145/3351095.3372878


[16] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[17] Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking
batch deep reinforcement learning algorithms, 2019.

[18] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy: Evaluating
recommender systems by coverage and serendipity. In Proceedings of the Fourth ACM Con-
ference on Recommender Systems, RecSys ’10, page 257–260, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781605589060. doi: 10.1145/1864708.1864761.
URL https://doi.org/10.1145/1864708.1864761.

[19] X. Geng, H. Zhang, J. Bian, and T. Chua. Learning image and user features for recommendation
in social networks. In 2015 IEEE International Conference on Computer Vision (ICCV), pages
4274–4282. IEEE, 2015.

[20] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gomez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, Gabriel
Dulac-Arnold, Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker,
Nicolas Heess, and Nando de Freitas. Rl unplugged: Benchmarks for offline reinforcement
learning, 2020.

[21] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

[22] Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation methods for retrieving highly relevant
documents. In Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’00, page 41–48, New York, NY,
USA, 2000. Association for Computing Machinery. ISBN 1581132263. doi: 10.1145/345508.
345545. URL https://doi.org/10.1145/345508.345545.

[23] Olivier Jeunen, Dmytro Mykhaylov, David Rohde, Flavian Vasile, Alexandre Gilotte, and
Martin Bompaire. Learning from bandit feedback: An overview of the state-of-the-art, 2019.

[24] Olivier Jeunen, David Rohde, and Flavian Vasile. On the value of bandit feedback for offline
recommender system evaluation, 2019.

[25] Peter Knees, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Jens Adamczak, Gerard-
Paul Leyson, and Philipp Monreal. Recsys challenge 2019: Session-based hotel recom-
mendations. In Proceedings of the Thirteenth ACM Conference on Recommender Systems,
RecSys ’19, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6243-6/19/09. doi:
10.1145/3298689.3346974. URL https://doi.org/10.1145/3298689.3346974.

[26] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction, 2019.

[27] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems, 2020.

[28] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. Counterfactual estimation and
optimization of click metrics in search engines: A case study. In Proceedings of the 24th
International Conference on World Wide Web, WWW ’15 Companion, page 929–934, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334730. doi:
10.1145/2740908.2742562. URL https://doi.org/10.1145/2740908.2742562.

[29] R Logesh and V Subramaniyaswamy. Exploring hybrid recommender systems for personalized
travel applications. In Cognitive informatics and soft computing, pages 535–544. Springer,
2019.

[30] James McInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues Bouchard, Alois
Gruson, and Rishabh Mehrotra. Explore, exploit, and explain: Personalizing explainable
recommendations with bandits. In Proceedings of the 12th ACM Conference on Recommender

11

https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2827872
https://doi.org/10.1145/345508.345545
https://doi.org/10.1145/3298689.3346974
https://doi.org/10.1145/2740908.2742562


Systems, RecSys ’18, page 31–39, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450359016. doi: 10.1145/3240323.3240354. URL https://doi.org/
10.1145/3240323.3240354.

[31] Rishabh Mehrotra, James McInerney, Hugues Bouchard, Mounia Lalmas, and Fernando Diaz.
Towards a fair marketplace: Counterfactual evaluation of the trade-off between relevance, fair-
ness & satisfaction in recommendation systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18, page 2243–2251, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360142. doi:
10.1145/3269206.3272027. URL https://doi.org/10.1145/3269206.3272027.

[32] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online rein-
forcement learning with offline datasets, 2020.

[33] The ACM Conference Series on Recommender Systems. Acm recsys challenge 2019 | dataset,
2019. URL https://recsys.trivago.cloud/challenge/dataset.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[35] Gourab K Patro, Abhijnan Chakraborty, Niloy Ganguly, and Krishna P. Gummadi. Incremental
fairness in two-sided market platforms: On smoothly updating recommendations, 2019.

[36] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou.
Recogym: A reinforcement learning environment for the problem of product recommendation
in online advertising, 2018.

[37] Sherwin Rosen. The economics of superstars. American Economic Review, 71(5):845–58,
1981. URL https://EconPapers.repec.org/RePEc:aea:aecrev:v:71:y:1981:i:5:
p:845-58.

[38] Bichen Shi, Makbule Gulcin Ozsoy, Neil Hurley, Barry Smyth, Elias Z. Tragos, James Geraci,
and Aonghus Lawlor. Pyrecgym: A reinforcement learning gym for recommender systems. In
Proceedings of the 13th ACM Conference on Recommender Systems, RecSys ’19, page 491–495,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362436. doi:
10.1145/3298689.3346981. URL https://doi.org/10.1145/3298689.3346981.

[39] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Adaptive Computation
and Machine Learning series. MIT Press, 2nd edition, 2018. ISBN 9780262039246. URL
https://books.google.com.br/books?id=sWV0DwAAQBAJ.

[40] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 814–823. JMLR.org, 2015.

[41] Yuyan Wang, Yuanchi Ning, Isaac Liu, and Xian Xing Zhang. Food discovery with
uber eats: Recommending for the marketplace, 2018. URL https://eng.uber.com/
uber-eats-recommending-marketplace/.

[42] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support vector method
for optimizing average precision. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’07, page 271–278,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595935977. doi:
10.1145/1277741.1277790. URL https://doi.org/10.1145/1277741.1277790.

12

https://doi.org/10.1145/3240323.3240354
https://doi.org/10.1145/3240323.3240354
https://doi.org/10.1145/3269206.3272027
https://recsys.trivago.cloud/challenge/dataset
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://EconPapers.repec.org/RePEc:aea:aecrev:v:71:y:1981:i:5:p:845-58
https://EconPapers.repec.org/RePEc:aea:aecrev:v:71:y:1981:i:5:p:845-58
https://doi.org/10.1145/3298689.3346981
https://books.google.com.br/books?id=sWV0DwAAQBAJ
https://eng.uber.com/uber-eats-recommending-marketplace/
https://eng.uber.com/uber-eats-recommending-marketplace/
https://doi.org/10.1145/1277741.1277790


[43] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without dis-
parate mistreatment. In Proceedings of the 26th International Conference on World Wide
Web, WWW ’17, page 1171–1180, Republic and Canton of Geneva, CHE, 2017. Interna-
tional World Wide Web Conferences Steering Committee. ISBN 9781450349130. doi:
10.1145/3038912.3052660. URL https://doi.org/10.1145/3038912.3052660.

[44] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. An analysis of approaches
taken in the acm recsys challenge 2018 for automatic music playlist continuation. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(5):1–21, 2019.

13

https://doi.org/10.1145/3038912.3052660


A Benchmark Description

In this section, we describe the Trivago marketplace dataset [33], which we ingested into MARS-Gym
for experiments.

A.1 Trivago Marketplace

Trivago is a global hotel search platform located in more than 190 countries and provides access to
more than two million hotels for travelers. It centralizes hotel offers on a single platform. Hence,
the platform needs to give good recommendations to users and to ensure that affiliated hotels are
treated fairly by the platform in different scenarios. Furthermore, user preferences change over time
and depend on the trip purpose, as well as accommodation prices, type, and availability. Finally,
there is an interest of all partners (traveler, advertising booking site, and Trivago) to suggest good
recommendations in different aspects [3].

A.2 Dataset Description and Benchmark Tasks

Trivago organized the ACM RecSys Challenge in 2019 [33]. For this competition, it provided a
dataset that consists of session logs with 910k samples in approximately 35k different cities. Each
session contains a sequence of interactions between a user and the platform. They can represent
different actions, such as rating, get item metadata (info, image, and deals), sort list, search for a
destination or point of interest. In addition to the user session information, the dataset also provides
different item metadata that characterize the hotels. Table 2 shows the general statistics of the Trivago
challenge dataset.

Table 2: Trivago marketplace – dataset statistics and benchmark tasks
Task Interactions clickouts user session item
RecSys Cities 761,702 62,168 31,075 36,846 12,002
New York, USA 223,320 18,160 9,158 10,869 1,961
Rio de Janeiro,
Brazil 161,973 9,122 4,429 5,563 2,080
Chicago, USA 22,939 1,890 1,155 1,347 662
Como, Italy 1,718 155 112 122 328

We organized the dataset in five tasks, which are primarily identified by the city of interest. In Table
2, we present the statistics for each proposed task. The task “RecSys Cities" contains a set of 12 cities
presented in the dataset. We chose cities based on several factors: the episode length, to represent
how long is the sequence of actions that the agent handles; the state space size, represented by the
number of unique sessions and users, which exposes the variability of contextual information; the
action space size (i.e., the number of available partners for recommendation), which indicates how
complex is the exploration problem; and the number of clickouts, which gives an idea of how many
successful interactions the city has to be used as ground-truth actions during the simulation. For
further information, we refer to the dataset page [33] and our source code.

B Bandit Simulation Results

Fig. 5 shows the cumulative mean reward throughout the simulation all bandits provided in MARS-
Gym, for all benchmark tasks described in Appendix A.

14



0 2000 4000 6000 8000 10000 12000 14000 16000
Interactions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(a) Como, Italy

0 2000 4000 6000 8000 10000 12000
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(b) Chicago, USA

0 2000 4000 6000 8000
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(c) Rio de Janeiro, Brazil

0 2500 5000 7500 10000 12500 15000 17500
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

(d) New York, USA

0 2500 5000 7500 10000 12500 15000 17500 20000
Interactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
m

ul
at

iv
e 

M
ea

n 
Re

wa
rd

bandit
adaptive
custom_lin_ucb
epsilon_greedy
explore_then_exploit
popular_item
lin_ts
lin_ucb
percentile_adaptive
random
softmax_explorer

(e) RecSys Cities

Figure 5: Bandit Simulation Results.

C Recommendation Metrics and Off-Policy Evaluation

Table 3 shows the recommendation and off-policy metrics for all contextual bandits provided by
MARS-Gym as baselines, in the context of task "Chicago, USA".

15



Table 3: Recommendation Metrics for "Chicago, USA" task.
Classic Recommendation Metrics Off-Policy Metrics

Precision NDCG@5 Cove@5 Per@5 IPS SNIPS DE DR

CustomLinUCB 0.338 0.443 0.371 0.724 0.324 0.319 0.180 0.299
AdaptiveGreedy 0.331 0.415 0.379 0.770 0.314 0.331 0.181 0.291
PercentileAdaptiveGreedy 0.319 0.426 0.364 0.750 0.306 0.307 0.171 0.279
SoftmaxExplorer 0.316 0.446 0.328 0.727 0.308 0.302 0.171 0.281
ExploreThenExploit 0.315 0.423 0.313 0.737 0.308 0.316 0.167 0.280
ε-Greedy 0.311 0.441 0.343 0.737 0.305 0.322 0.165 0.278
LinUCB 0.065 0.183 0.297 0.721 0.047 0.049 0.033 0.043
LinTS 0.029 0.112 0.419 0.778 0.031 0.033 0.018 0.031
MostPopularItem 0.074 0.199 0.153 0.592 0.063 0.052 0.046 0.061
Random 0.042 0.145 0.392 0.777 0.028 0.031 0.024 0.029
Policy without CRM 0.354 0.457 0.303 0.717 0.340 0.346 0.199 0.312
Policy with CRM 0.344 0.434 0.300 0.730 0.350 0.352 0.195 0.320

D Visualization Tool Samples

In this appendix, we present some screenshots samples from MARS-Gym visualization tool. It
provides a user-friendly interface to facilitate feature analysis and the comparison among learning
agents.

Figure 6: Visualization – Simulation Results.

16



Figure 7: Visualization – Rank metrics and Off-policy evaluation.

Figure 8: Visualization – Fairness Results.

17


	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning and Recommender Systems
	Off-Policy Evaluation and Learning
	Fairness Evaluation

	MARS-Gym Architecture
	MDP Counterfactual Simulation
	System Design
	Data Engineering Module
	Simulation Module
	Evaluation Module


	Experimental Results and Analysis
	Bandit Simulation Results
	Recommendation Metrics and Off-Policy Evaluation
	Fairness Evaluation

	Conclusions and Future Work
	Benchmark Description
	Trivago Marketplace
	Dataset Description and Benchmark Tasks

	Bandit Simulation Results
	Recommendation Metrics and Off-Policy Evaluation
	Visualization Tool Samples

