Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

MODEL-BASED VISUAL PLANNING WITH SELF-SUPERVISED
FUNCTIONAL DISTANCES

Stephen Tian', Suraj Nair?, Frederik Ebert', Sudeep Dasari’, Benjamin Eysenbach®,
Chelsea Finn?, & Sergey Levine'

!University of California, Berkeley

2Stanford University

3Carnegie Mellon University

ABSTRACT

A generalist robot must be able to complete a variety of tasks in its environment.
One appealing way to specify each task is in terms of a goal observation. However,
learning goal-reaching policies with reinforcement learning remains a challenging
problem, particularly when rewards are not provided and distances in the obser-
vation space are not meaningful. Learned dynamics models are a promising ap-
proach for learning about the environment without rewards or task-directed data,
but planning to reach goals with such a model requires a notion of functional sim-
ilarity between observations and goal states. We present a self-supervised method
for model-based visual goal reaching, which uses both a visual dynamics model
as well as a dynamical distance function learned using model-free reinforcement
learning. This approach trains entirely using offline, unlabeled data, making it
practical to scale to large and diverse datasets. On several challenging robotic
manipulation tasks with only offline, unlabeled data, we find that our algorithm
compares favorably to prior model-based and model-free reinforcement learning
methods. In ablation experiments, we additionally identify important factors for
learning effective distances.

1 INTRODUCTION

Designing general-purpose robots that can perform a wide range of tasks remains an open problem
in AI and robotics. Reinforcement learning (RL) represents a particularly promising tool for learn-
ing robotic behaviors when skills can be learned one at a time from user-defined reward functions.
However, general-purpose robots will likely require large and diverse repertoires of skills, and learn-
ing individual tasks one at a time from manually-specified rewards is onerous and time-consuming.
How can we design learning systems that can autonomously acquire general-purpose knowledge
that allows them to solve many different downstream tasks?

To address this problem, we must resolve three questions. (1) How can this robot be commanded
to perform specific downstream tasks? A simple and versatile choice is to define tasks in terms of
desired outcomes, such as an example observation of the completed task. (2) What types of data
should this robot learn from? In settings where modern machine learning attains the best gener-
alization results (Deng et al., 2009; Rajpurkar et al., 2016; Devlin et al., 2018), a common theme
is that excellent generalization can be achieved by learning from large and diverse task-agnostic
datasets. In the context of RL, this means we need offfine methods that can use all sources of prior
data, even in the absence of reward labels. (3) What exactly should the robot learn from this data
to enable goal-reaching? Similar to prior work (Botvinick & Weinstein, 2014} [Watter et al., 2015}
Finn & Levine, [2017} |[Ebert et al., 2018b)), we note that policies and value functions are specific to a
particular task, while a predictive model captures the physics of an agent’s environment and thus can
be used for solving almost any task. This makes model learning particularly effective for learning
from large and diverse datasets, which do not necessarily contain successful behaviors.

While model-based approaches have demonstrated promising results, including for vision-based
tasks in real-world robotic systems (Ebert et al., 2018a; [Finn & Levine, [2017), such methods face
two major challenges. First, predictive models on raw images are only effective for short horizons,

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

as uncertainty accumulates far into the future (Denton & Fergusl 2018} [Finn et al. 2016} [Hatner
et al.l |2019b; |[Babaeizadeh et al.l [2017). Second, using such models for planning toward goals
requires a notion of similarity between images. While prior methods have utilized latent variable
models (Watter et al.| 2015 |Nair et al.,[2018)), £> pixel-space distance (Nair & Finn,[2019)), and other
heuristic measures of similarity (Ebert et al., 2018b)), these metrics only capture visual similarity. To
enable reliable control with predictive models, we instead need distances that are aware of dynamics.

In this paper, we propose Model-Based RL with Offline

Learned Distances (MBOLD), which aims to address Legend:

both of these challenges by learning predictive models 4 @ StartGoal States = Predicted Dynaimics
together with image-based distance functions that reflect i, | [OFemneSees = SorestPanioCon
functionality, from offline, unlabeled data. The learned \\2‘

distance function estimates of the number of steps that o RN "% coal

the optimal policy would take to transition from one state S| 4 % L ﬁ‘;
to another, incorporating not just visual appearance, but T
also an understanding of dynamics. However, to learn [1 MEOLD learns *~

dynamical distances from task-agnostic data, supervised dynamics and i
regression will lead to overestimation, since the paths in

the data are not all optimal for any task. Instead, we uti-
lize approximate dynamic programming for distance es-
timation. While prior work has studied such methods to
learp goal-conditioned policies in online model-free RL o = o unknown, so our method
settings (Eysenbach et al., 2019; [Florensa et al., 2019), jears an approximate shortest distance
we extend it to the offline setting and show that approxi- function and dynamics model directly on
mate dynamic programming techniques derived from Q- images. These models allow the robot to find
learning style Bellman updates can learn effective short- the shortest path to the goal at test-time.

est path dynamical distances. Although this procedure

resembles model-free reinforcement learning, we find empirically that it does not by itself produce
useful policies. Instead, our method (Fig.[T) combines the strengths of dynamics models and distance
functions, using the predictive model to plan over short horizons, and using the learned distances to

provide a global cost that captures progress toward distant goals.

Figure 1: The robot must find actions that
quickly achieve the desired goal. State tran-
sitions and the true optimal distances be-

The primary contribution of this work is an offline, self-supervised approach for solving arbitrary
goal-reaching tasks by combining planning with predictive models and learned dynamical distances.
To our knowledge, our method is the first to directly combine predictive models on images with
dynamical distance estimators on images, entirely from random, offline data without reward labels.
Through our experimental evaluation on challenging simulated robotic object manipulation tasks, we
find that our method can outperform previously introduced reward specification methods for visual
model-based control with a relative performance improvement of at least 50% across all tasks, and
compares favorably to prior work in model-based and model-free RL. We also find that combining
Q-functions with planning improves dramatically over policies directly learned with model-free RL.

2 RELATED WORK

Offline and Model-based RL: A number of prior works have studied the problem of learning behav-
iors from existing offline datasets. While recent progress has been made in applying model-free RL
techniques to this problem of “offline” or “batch” RL (Fujimoto et al.; 2019;|Wu et al.,2019; Kumar,
et al.l 2019; 2020} Nair et al., [2020b)), one approach that has shown promise is offline model-based
RL (Lowrey et al., 2018} Kidambi et al.l [2020; [Yu et al., 2020; |Argenson & Dulac-Arnold} [2020),
where the agent learns a predictive model of the world from data. Such model-based methods have
seen success both in the offline and online RL settings, and have a rich history of being effective
for planning (Deisenroth & Rasmussen, [2011; Watter et al., 2015; McAllister & Rasmussen, 2016
Chua et al. 2018 |[Amos et al., 2018; Hafner et al., 2019bj |Nagabandi et al., 2018} |Kahn et al.,
2020) or policy optimization (Sutton, |[1991; |Weber et al., 2017; Ha & Schmidhuber, [2018; [Janner
et al., 2019; Wang & Bal 2019; Hafner et al.l [2019a). Critically, however, the vast majority of
these prior works consider the single task setting where the agent aims to maximize a single
task reward. In contrast, in this work we circumvent the need for task rewards by adopting a self-
supervised multi-task approach, where a single learned model is used to perform a variety of tasks,
specified in a flexible and general way by desired outcomes — i.e., goal images.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Self-supervised goal reaching: While the standard RL problem involves optimizing for a task-
specific reward, an alternative and potentially more general formulation involves learning a generic
goal reaching policy, without task-specific reward labels. In fact, a number of prior works learn
goal-conditioned policies using model-free RL (Kaelbling} 1993} Nair et al.||2018; Mandlekar et al.,
2019; [Nair et al., |2020a), or variants of goal-conditioned behavioral cloning (GCBC) (Ghosh et al.}
2019; Ding et al.| 2019; [Lynch et al.| 2020). In our experiments, we show that our method outper-
forms both model-free approaches and goal-conditioned behavioral cloning. A number of methods
combine model-free and model-based elements by planning over a graph representation (Eysenbach
et al.,2019; Nasiriany et al.,|2019; [Savinov et al., 2018} [Liu et al., [2020). Such methods can strug-
gle in higher dimensions, where constructing graphs that adequately cover the space may require
an excessive number of samples. We compare to these methods in our experiments. Similarly to
Finn & Levine| (2017); [Ebert et al.| (2018b); INair & Finn| (2019); Yen-Chen et al.| (2019); Suh &
Tedrake| (2020), our method uses an action-conditioned video prediction model to generate plans.
However, these prior methods generally utilize hand-crafted image similarity reward measures such
as /5 pixel-error (Ebert et al.,[2018a; Nair & Finn, |2019) and pixel-flow prediction (Finn & Levine,
2017). In complex scenes, this can become a major bottleneck: predictions degrade rapidly further
in the future, making an informative image similarity metric critical for effective planning. We pro-
pose to learn functional similarity metrics in terms of dynamical distances, which we find can be
combined with predictive models to attain significantly improved results.

Dynamical distance learning: Our method learns dynamical distances — distances that represent
shortest paths — from offline data. In the literature, dynamical distances have been learned via direct
regression using online data (Hartikainen et al.l 2019), representation learning (Warde-Farley et al.,
2018; Yu et al., 2019b), or via Q-learning by relabeling goals (Eysenbach et al.|[2019} [Florensa et al.}
2019). While these last two works are most similar to ours, in that they also employ approximate
dynamic programming to learn distances, our method directly combines these dynamical distances
with visual predictive models and planning. Lastly, while prior work has also explored combining
model-based planning with value functions (Zhong et al.| 2013} Lowrey et al., [2018; |[Hafner et al.,
2019a; |Schrittwieser et al., 2019} |/Argenson & Dulac-Arnold, [2020)), these works consider the single
task domain with a reward function, while our learned value function considers the multi-task goal
reaching domain from entirely random, offline data without reward labels.

3 THE SELF-SUPERVISED OFFLINE RL PROBLEM STATEMENT

In this section, we introduce notation and define the problem setting. We will employ a Markov
decision process (MDP) with state observations s; € S and actions a; € A, both indexed by time
te€0,1,---, H, where H denotes the maximum episode length. The initial state is sampled from
an initial state distribution sg ~ po(so), and subsequent states are sampled according to Markovian
dynamics: s¢y1 ~ p(s¢41 | St,a¢). Actions are sampled a; ~ 7(a: | S¢, 54) from a policy that is
conditioned on both the current state and a goal state s, € S. In our experiments, both the state and
goal are images (i.e., S = RAXWx3),

We tackle offline learning in this setting, assuming access to a fixed dataset D consisting of tra-
jectories {sg, ag, $1,...s7} of the agent interacting with the environment. This data can include
any environment interactions, from expert demonstrations to trajectories which are not particularly
successful at any task. In our experiments, we use data collected using a random policy, which
is inexpensive to obtain. The agent does not have access to the environment to collect additional
training data. Given this dataset, the objective is to determine the optimal goal-conditioned policy
m*(ay | S¢, 54), under which the agent is able to transition to any goal state s, from any starting state
s¢ in the minimum number of time steps possible. Note that unlike in the standard formulation of
the RL problem, the agent does not receive any reward signal from its environment.

4 MODEL-BASED VISUAL GOAL-REACHING

In this section we will introduce our method, MBOLD, for offline, goal-conditioned reinforcement
learning. MBOLD, illustrated in Fig. [2] is composed of two neural networks: a predictive model
and a learned distance function. The video-predictive dynamics model allows the agent to predict
the result of hypothetical sequences of actions. However, this model cannot accurately predict far
into the future, and has no notion of whether the predicted outcomes are desirable. Thus, we also
learn a distance function, which will estimate the timestep length of the shortest path between a

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

1. Offline Learning 2. Sampling Based Planning

» N,
! 0] Ry
N N,
N,
N,
N,
\

A1
y
\,
S
. A NGO o) i
Distance s Lowest ¥
Model ;) Distance! /

(k) !
a ,/'
M /
SA 4
t+1 — ’
Prediction Q-Learning i (k) l ¥ |
Loss Loss

Visual
Dynamics

Qi1

R Legend:
Forward Distance 9

G N
- - a,’ ith Trajectory’s Action at Time t ~ —* Forward Model
Modelling Learning ¢

== Learned Distance to Goal @ Neural Network

Figure 2: Model-based visual goal reaching: (Left) During offline learning, we train an image-
based predictive model and distance function on the same random dataset. (Right) At test time, we
use the learned distance model for MPC, plugging in the learned distance as a cost function.

predicted state and a given goal. Both networks are trained on the same offline dataset pre-collected
by a (possibly random) policy.

At test-time, we use the learned dynamics model and distance function for model-predictive control
(MPC). MBOLD predicts future states for candidate action sequences using the learned dynamics
model, and uses the learned distance function to determine which action sequence will lead the agent
closest to the goal. The first of the actions is then executed, and planning repeats upon receiving
the subsequent observation from the environment. The remainder of this section describes how we
learn the dynamics model and distance function, and use them to perform control.

Dynamics learning. Our method learns environment dynamics in order to solve for actions dur-
ing test time, without explicit task reward signal during training time. The particular choice of
image-based forward model is a design decision when implementing our method. We implement
a deterministic, convolutional video prediction model adapted from SAVP 2018). The
network takes as input the current observation s; and a sequence of h actions a;.;5,—1 and returns
a prediction for the next / image observations, fg(s¢, at.t4n—1) = {8141, -, 8t+n}. We train this
model to minimize the /5 image reconstruction loss:

t+h
. 1 2
minEp EZer(St,at:tth—l)[t/*t] —sv|?|. (D

t'=t

Distance learning. Our method also learns a dynamical distance function, so that it can evaluate
a functional sense of distance from predicted states to the goal state, to be used as a planning cost.
However, the environment does not provide a reward signal that might be used to deduce these dis-
tances. Even worse, the offline dataset likely contains sub-optimal trajectories, so our method may
not even have access to examples of shortest path trajectories between states. Our key observation is
that a goal-conditioned Q-function trained on a modified MDP with an indicator cost function yields
values that correspond to shortest path distances in the original environment. Thus, Q-learning-like
dynamic programming methods can recover optimal distance functions even from sub-optimal data.

More precisely, we create an MDP by augmenting environment trajectories with the reward function
r(st,a,st41,9) = 1, =8y adding a discount factor of v, and considering episodes terminated
once they reach the goal state. During training, goals are sampled according to a distribution on S,
which we will discuss later. If v < 1, the Q-values for a policy that maximizes expected discounted
returns in this MDP can be directly mapped to shortest path distances. Specifically, in discrete state
environments, the optimal Q-function can be written as Q(s, a, g) = 7%$%9) where d(s, a, g) is a
shortest path distance between s and g affer taking action a. Similarly, we can recover d(s, a,g) =
log,, Q(s,a,g). Ultimately, our Q-learning approach corresponds to the following Bellman error
optimization objective:

IrgnEst,at,st+1~D,g~S Qg(st,a1,9) — (Lss =g + 7 seii2¢ lgliii Qs (St41,at41,9))| - (2
t

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Because trajectories from the offline dataset may not be directed towards any particular goals, we
must somehow select goals g for each transition. Naively choosing g, say by sampling random states
uniformly from the dataset, will provide an extremely sparse reward signal, as two random states
will almost never be exactly identical. The sparse reward problem can be mitigated by selectively
sampling as goals the states that were actually reached in future time steps along the same trajectory
as s; (Kaelbling| 1993} |Andrychowicz et al 2017)), so we adopt this procedure to make training
feasible. So, to sample positive goals for a transition at time step ¢, we sample a time offset A ~
Geom(p), where p € [0, 1] is a hyper-parameter, and use the state at time ¢ + A as the goal. Note
that if A = 1, the reward for this transition is 1, avoiding the sparsity issue.

However, relabeling all transitions in this way creates a major issue: since the distance function
would only be trained on goals that were actually reached, it would systematically underestimate
the distance to unreachable goals. Put another way, goals that were not reached from s, would be
out-of-distribution goals for the resulting Q-function. We found this to result in poor performance.
In practice, prior work (Kaelbling, 1993} /Andrychowicz et al.,|2017) actually relabels with a mixture
of reached “positive” goals and commanded but not necessarily reached “negative” goals.

While prior methods can obtain negative goals based on those commanded in online data, in the
offline setting we require a procedure to produce state-goal pairs that are distant, yet informative.
Randomly selecting dataset states will lead to pairs of images that are clearly distant with high
probability (e.g. pairs in which all objects and the robot have been moved). Therefore, we would
like a goal sampling procedure that produces less obvious examples of distant states, which are more
informative for training. Hard negative mining is one example of such a procedure, where pairs are
selected based on the model’s predictions, but is computationally expensive with large datasets.

Instead, we build upon the intuition that distance functions are likely to pay excessive attention to
fully actuated factors in the state, such as the position of the robot’s arm, because they are strongly
predictive of distances. We propose sampling “negative” goals g which have similar actuated compo-
nents to the state s;. When randomly sampling pairs of states under this constraint, the underactuated
dimensions (e.g. the objects), which are generally not known, are likely to have distinct positions.
Hence, these data points can serve as informative hard negatives that encourage the model to pay
more attention to the difficult, underactuated parts of the state. Unlike hard negative mining, this
sampling approach is computationally inexpensive, as it does not rely on the current distance func-
tion, and practical, as actuated components of the state can typically be measured through encoders
on the actuator. In practice, we sample these “negative” goals from observations across all dataset
trajectories via nearest-neighbors search, using arm joint /5 distance as the similarity key. Note that
this does assume proprioceptive state information from the agent (e.g. robot joint angles), which is
almost always available in real-world robotics settings, but does not require knowledge about object
positions or other ground-truth environment information. See Appendix [A.T]for details.

Control via MBOLD. At test-time, the learned distance function and dynamics model are used
together to solve control tasks via MPC. In other words, the dynamics model predicts how candidate
actions will affect the environment, and the distance model rates predicted sequences based on which
bring the agent closest to the user-defined goal state. This “rating” mechanism works as follows:
given the current state s;, goal state s4, candidate actions at.¢4—1, and predicted future states

fg (8¢, ag:t+h—1) from the learned dynamics model, the learned distance function calculates

V(at:t+h—1) = m(?x Qqﬁ(f@(sta Gt:t+h—1)[t + hL «, 5g)~ 3)

This equation acts as an objective function for MPC. Plainly, the controller’s goal is to find candidate
actions as.;4p—1 which minimize the dynamical distance to the goal h steps into the future. After
this process completes, the best action is executed by the agent. Note that this controller re-plans
after every action taken in the environment (i.e every timestep).

MPC Controller Algorithm. MBOLD uses the CEM algorithm (De Boer et al., |2005) to optimize
the objective in Equation [3] It begins by sampling N random trajectories from a prior multi-variate
Gaussian distribution. Then, the top K actions which score highest according to V(as.41p—1) are
selected as candidates. A new Gaussian distribution is fit on these candidates, and the loop starts
over again by sampling fresh actions from this distribution. After I iterations, the loop finishes and
returns the best action found so far. See Appendix for full CEM implementation details.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Manipulation tasks

Initial image Goal image 1.0

=== MBOLD (ours) mmm SORB (Eysenbach, 2019) ~ mmE Random
m=m Visual Foresight (Ebert, 2018) W RIG (Nair, 2018) Dreamer (Hafner, 2019) - Image MSE
== GCBC

Thrao objocts
regular

()
J s
Thvag objocts
(hard)
: el
r - n 1 - 0.2
Door sicing 30 N Y 00
% N .
i v One object, regular One object, hard Three objects, regular Three objects, hard Door sliding
Task

Figure 3: Comparative evaluation results: (Left) Example initial states and task definitions for Sawyer
object pushing and Franka door sliding environments. Note that “hard” tasks require the arm to take detours
from moving to the final arm position in order to relocate the object. Arrows indicate successful trajectories
for the robot. (Right) MBOLD is consistently able to outperform prior methods on these harder manipulation
tasks. Its improvement over prior methods is larger on the tasks that are more difficult (“hard” variants of object
pushing and door sliding). Error bars show standard deviations over 5 seeds.

Success Rate
)
b

5 EXPERIMENTS

Our experiments aim to answer two questions: (1) How does MBOLD compare to prior model-
based and model-free methods when learning to reach goals from task-agnostic offline data? (2)
How do different dynamical distance learning methods compare to MBOLD in terms of providing
effective distance functions for planning?

We evaluate our method, prior methods, and baselines on three simulated tasks with visual observa-
tions: (1) a simple reaching task that requires moving a Sawyer 7-DoF arm to a goal location, which
provides a way to validate implementations of all methods, (2) object pushing, in which a Sawyer
arm must relocate an object to a particular goal location, in environments with 1 or 3 objects, and
(3) door sliding, which requires repositioning a sliding door with a Franka 7-DoF arm. These tasks
are challenging because they require long-horizon planning without access to intermediate rewards.

For each task, we define the action space A such that actions control the Cartesian position of the
robot’s end-effector, as well as the robot’s gripper. We randomly generate a set of 100 test goals,
consisting of a goal image and starting state, for each task, on which all methods are tested. A trial is
considered successful if the final distance to the goal of each relevant object, e.g. slide position for
the door sliding task, ends below a given threshold. For the object relocation task, we evaluate each
method on two scenes, containing one and three objects. All evaluation goals require the robot to
move one of the objects, with the others serving as distractors. We also study two levels of difficulty:
“regular,” where goals are generated from random trajectories in which the object moves a certain
minimum distance, and “hard,” where the arm is additionally enforced to be distant from the object
in the goal observation, requiring the robot to push the object and then withdraw the arm. We depict
the tasks in Fig. 3] (left) and provide full experimental details in Appendix [A.3]

For all tasks, we generate an offline dataset by running random policies, and provide only this offline
dataset to all methods, with no online training. At test time, the agent only receives the goal image
and current observation at each step, and no intermediate rewards.

Comparative evaluation. We compare MBOLD to prior S Re“hins;a:k o
work in model-based and model-free RL. As MBOLD = Viual Foresignt (Evert, 2010 e Random ;H v 2019 g M

. . - reamer (Hafner, - Image
uses pure]y offline data and does not require rewards from mmm SORB (Eysenbach, 2019) mmm Dreamer (Hafner, 2019) - £; arm distance

the environment, we make modifications to these meth-
ods where necessary to provide a fair comparison. Many
of these prior methods (though not all) require the envi-
ronment to provide a ground truth reward signal. In this
case, we provide these methods with simple “uninforma- o
tive” rewards, following prior work 2018), o
which consist of the MSE between the current and goal tetrod
image. Many of these methods were initially presented
in the online setting. The offline setting is harder for RL . .
methods (Fujimoto et al] 2019 [Wu et all, 2019; [Kumar reaching ftask, where most methods attain
2019), partially explaining their poor performance. good performance.

See Appendix [B]for details on all baselines.

Success Rate

Figure 4: Comparisons on the simple

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

* Reinforcement Learning with Imagined Goals (RIG) (Nair et al.,[2018): RIG is a model-free
RL method for visual goal-reaching. Unlike the other methods, we still allow RIG to collect
additional online data to train its policy.

* Dreamer (Hafner et al., 2019a): Dreamer, a model-based method for image-based tasks, also
uses a combination of value functions and planning, but uses online data collection and, crucially,
ground truth reward signals. We adapt Dreamer for the offline, reward-free setting.

* Dreamer /> arm distance: We additionally compare with an “oracle” version of Dreamer that
uses privileged information about the ground-truth position of the arm.

* Search on the Replay Buffer (SoORB) (Eysenbach et al.,2019): SoRB performs planning on a
graph constructed using learned distances, learned without a reward function.

* Goal-Conditioned Behavior Cloning: We train a behavior cloning model using goals sampled
from observations achieved further in a given trajectory. This can be viewed as an offline variant
of GCSL (Ghosh et al.|[2019) or a non-recurrent version of [Lynch et al.| (2020).

* Visual Foresight (Ebert et al., 2018b): Visual Foresight also plans with an action-conditioned
video prediction model, but uses (among other choices) ¢5 pixel error as a cost function.

Since all methods are trained from offline data with no additional environment interaction, we
present final performance on the test goals as a bar graph, rather than learning curves. The com-
parison on the simple reaching task is shown in Figure 4} and suggests that on this task, many of
the methods perform quite well. However, on the substantially more complex tasks, shown in Fig-
ure [3] we see clearer differentiation between the different algorithms. On harder object pushing
tasks, MBOLD attains the best performance, by a considerable margin. Interestingly, simple goal-
conditioned behavioral cloning actually represents one of the strongest baselines on this task. On
the hardest door sliding task, our method attains the best performance by a large margin.

Planning cost ablation

mmm MBOLD (ours) B VAE Distance
MBOLD, no negative mining m=8 Random walk distance regression
mmm Pixel MSE

Qualitative analysis. In this section, we 0
examine the distance functions learned by
MBOLD, and show qualitatively that our
learned distances better model the dependence
of functional separation between two states on
the relative positions of objects in their scenes.
Figure [6] presents heatmaps of predicted dis-
tances for a fixed goal image on the object
pushing task, as the initial observation is varied
based on object position. The robot arm is set
to the same position in each initial image. We
see that MBOLD learns a well-shaped distance
which accounts for the object position.

Success Rate
o
=
—

One object, regular

One object, hard ~ Three objects, regular Three objects, hard
Task

Figure 5: Our learned distance function yields
higher success rates than alternative approaches from
prior work, such as the ¢ distance of a VAE latent
space (Nair et al.| 2018)) and temporal distance regres-

We additionally visualize baseline distance
models for comparison. First, we look at an ab-
lation of our distance model, which is trained

sion (Hartikainen et al., [2019). We also see consistent
improvements from using negative transition mining,
especially on “hard” tasks.

via regression to map pairs of states randomly

sampled from a given dataset trajectory to the number of timesteps separating them in that trajectory,
and can be viewed as an offline variant of DDL (Hartikainen et al., 2019). We call this scheme that
effectively predicts random walk distances “temporal distance regression.” The second baseline we
compare to is pixel-wise mean-squared error, a simple and popular metric.

We find that the temporal distance regression model produces more sharply peaked distances than the
Q-function, and is less desirable as a reward signal during planning, as we find through our ablation
experiments. The pixel-wise MSE metric produces low distances near the goal object position, but
is impacted by occlusions of the objects as well as the position of the visually pronounced arm.
While this analysis does not necessarily directly correspond to control performance, as it ignores
the movement of the robot, it demonstrates that our learned distances are aware of the functional
similarity of nearby object positions, despite the fact that they are learned entirely from images with
actions corresponding to the movement of the arm, not the object.

Ablations. Our ablation studies aim to answer the following questions: (1) How does Q-learning
for learning dynamical distances compare to alternative distance metrics, such as distance in the
latent space of a VAE, or dynamical distances learned using direct regression on temporal distances

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Goal Image MBOLD (ours) Pixel-wise MSE Temporal distance regression

02 L

40
01
3 00020
30 € ¢
00 2 oo 00015 2 a0
25 - .
™ - .
01 20 -01 - 3
00005
2
15
021 -02 024

0z 01 o0 o1 02 62 01 oo 01 02 62 61 oo o1 02

o
8
01 7
5
5

Object y-coordinate
Object y-coordinate
Object y-coordinate

Object x-coordinate Object x-coordinate Object x-coordinate

Figure 6: Heatmap visualizations of our distance functions. Each pixel in every heatmap represents the
distance between a generated starting image containing the object at that (z, y) coordinate and the fixed goal
image (pictured on left). All three distance functions show a minimum when the object position is near the goal
position of (0.1, —0.05). However, our Q-function produces a better-shaped signal than the direct regression
model, and avoids occlusion errors - like the local minimum at high y-values, which plague pixel-wise MSE.

in random data? (2) How important is mining negative transitions to our method’s performance?
(3) How beneficial is it to combine the learned distance function with planning through a predictive
model, as compared to directly acting using the learned policy, as in standard model-free offline RL?

To answer the first two questions, we perform experiments in the object pushing domain. We
evaluate alternative distance metrics for visual planning, by duplicating the planning setup, us-
ing the same dynamics model, and only modifying the metric used for scoring candidate trajec-
tories. The first distance we consider is Euclidean distance in the latent space of a VAE, that is,
d(s,g) = |le(s) — e(g)||2, where e is a learned encoder, which resembles the reward function used
in prior work on image-based goal reaching (Nair et al.| 2018). The second is the direct tempo-
ral distance regression model described previously. As shown in Figure 5] Q-function distances
outperform alternative distances on all of the object pushing tasks. While the temporal distance re-
gression scheme provides competitive performance in some settings, it often provides overestimates
of distances between states rather than shortest paths, as shown qualitatively in Figure[6]

We also find that the negative transition mining
scheme also consistently improves performance,
and is particularly important for the “hard” tasks.
We hypothesize this is because augmenting the
training data in this way causes learned distance
functions to better take into account the positions
of objects in the scene, rather than just visually Q-function Q-function
prominent components such as arm position. + planning only

) . 1 objectpush | 55.2 £4.3% | 19.2 £3.6%
To address the third question, we compare our | 3 object push | 44.8 +2.9% | 15.6 + 3.6%
method, which uses learned distances for plan- Reach 94.4+3.3% | 31.8+5.2%

ning, to the policy discovered when performing
Q-learning to learn dynamical distances. As shown in Table[T} the policy learned directly from of-
fline RL alone is greatly outperformed by MBOLD. We hypothesize that this is due to challenges in
advantage learning from offline data with extremely sparse rewards.

Table 1: Comparison of our method, which combines
Q-functions and planning with a model, to a base-
line that uses the Q-function to choose actions directly
without planning.

6 CONCLUSION

We presented a self-supervised approach to tackling goal-reaching tasks, which learns to reach un-
seen visual goals given only an offline, random dataset without reward labels. Our method combines
the strengths of predictive models and learned dynamical distances, where a predictive model can
provide effective predictions for planning actions over short horizons, while dynamical distances
can provide a useful planning cost that captures distance to goals over longer horizons. By perform-
ing visual model predictive control with a learned visual dynamics model and a goal conditioned
Q-function as the planning cost, we find that our method is able to perform goal reaching tasks more
effectively than model-based planning approaches that utilize other reward specification techniques,
as well as purely model-free methods. By leveraging offline data collected without a specific goal
in mind, our method may make it possible to utilize large, unstructured, open-world robotic ma-
nipulation datasets. Scaling up this method to real-world systems and large data sources therefore
represents a particularly exciting direction for future work, which may broaden the capabilities and
generality of robotic systems.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

REFERENCES

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothorl, Sergio Gomez Colmenarejo, Alistair
Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil. Learning awareness models,
2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pp. 5048-5058, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning, 2020.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. arXiv preprint arXiv:1710.11252, 2017.

Matthew Botvinick and Ari Weinstein. Model-based hierarchical reinforcement learning and hu-
man action control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369
(1655):20130480, 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pp. 4754-4765, 2018.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19-67, 2005.

M. Deisenroth and C. Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In ICML, 2011.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. arXiv preprint
arXiv:1802.07687, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. In Advances in Neural Information Processing Systems, pp. 15324-15335, 2019.

Frederik Ebert, Sudeep Dasari, Alex X Lee, Sergey Levine, and Chelsea Finn. Robustness
via retrying: Closed-loop robotic manipulation with self-supervised learning. arXiv preprint
arXiv:1810.03043, 2018a.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018b.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In Advances in Neural Information Processing Systems, pp.
15246-15257, 2019.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786-2793. IEEE, 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. In Advances in neural information processing systems, pp. 64—72,2016.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Riedmiller.
Self-supervised learning of image embedding for continuous control, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1582-1591, 2018.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052-2062, 2019.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning, 2019.

David Ha and Jiirgen Schmidhuber. World models, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555-2565. PMLR, 2019b.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. In International Conference on
Learning Representations, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, pp. 12519-
12530, 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Leslie Pack Kaelbling. Learning to achieve goals. In IN PROC. OF IJCAI-93, pp. 1094-1098.
Morgan Kaufmann, 1993.

Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr: An autonomous self-supervised learning-
based navigation system. arXiv preprint arXiv:2002.05700, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11784-11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, and Aviv Tamar. Hallucinative topo-
logical memory for zero-shot visual planning. arXiv preprint arXiv:2002.12336, 2020.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning, pp. 1113—
1132, 2020.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-Fei, Animesh Garg, and Dieter Fox. Iris:
Implicit reinforcement without interaction at scale for learning control from offline robot manip-
ulation data. arXiv preprint arXiv:1911.05321, 2019.

Rowan McAllister and C. Rasmussen. Improving pilco with bayesian neural network dynamics
models. 2016.

10

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559-7566. IEEE, 2018.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In Conference on Robot Learning, pp. 1101-1112, 2020.

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey Levine.
Contextual imagined goals for self-supervised robotic learning. In Conference on Robot Learning,
pp- 530-539, 2020a.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020b.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Vi-
sual reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191-9200, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. arXiv preprint arXiv:1909.05829, 2019.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. In Advances in Neural Information Processing Systems, pp. 14843—-14854, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation. arXiv preprint arXiv:1803.00653, 2018.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model, 2019.

H. J. Terry Suh and Russ Tedrake. The surprising effectiveness of linear models for visual foresight
in object pile manipulation, 2020.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards, 2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746-2754, 2015.

Théophane Weber, Sébastien Racaniere, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-
augmented agents for deep reinforcement learning, 2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Lin Yen-Chen, Maria Bauza, and Phillip Isola. Experience-embedded visual foresight, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019a. URL https://arxiv.org/abs/1910.
10897.

11

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. Unsupervised visuomotor control
through distributional planning networks. Robotics: Science and Systems XV, Jun 2019b. doi:
10.15607/rss.2019.xv.020. URL http://dx.doi.org/10.15607/RSS.2019.XV.020.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov. Value function
approximation and model predictive control. In 2013 IEEE symposium on adaptive dynamic
programming and reinforcement learning (ADPRL), pp. 100-107. IEEE, 2013.

12

http://dx.doi.org/10.15607/RSS.2019.XV.020

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

A MBOLD IMPLEMENTATION DETAILS
A.1 DISTANCE FUNCTION

This section explains the implementation details for our distance function. Following prior
work (Fujimoto et al [2018), we learn two independent Q-functions and use the minimum for per-
forming Bellman backups. Recall that we sampled goals from two distributions: future states in the
same trajectories, and states from different trajectories where the robot arm was in a similar posi-
tion. To implement the second strategy, we fit a k-nearest neighbors graph on 200000 (about 60% of
total) dataset observations, and use the /> arm joint distance as the similarity key. Each batch con-
tains equal numbers of transitions generated from each goal sampling method. For computational
efficiency, we implement the k-NN search using the GPU-enabled FAISS library (Johnson et al.,
2017).

We also modify the reward specification scheme by providing a small positive reward at each step
where the goal is not reached, and then a large positive reward upon reaching the goal. Specifically,
we choose to give a reward of 1 by default and 10 when the goal is reached (compared to 0 and 1
respectively as presented in the discussion in Section [)), although we do not extensively tune this
parameter. We find that it does not affect performance in a statistically significant way (results for
each reward choice are within 1 standard deviation of one another) to choose this reward over the
(0,1) rewards. Note that this does not change the interpretation of the Q-function as a shortest
path distance, merely slightly complicating the conversion calculations from Q-values to distances
in timesteps.

Finally, we add an additional loss term to perform conservative Q-learning (CQL) (Kumar et al.,
2020), a method for offline model-free RL, which penalizes Q-values of randomly selected actions
and increases Q-values of in-dataset actions. We use the Lagrangian version of CQL to automatically
tune the weighting term, and detail the parameters below. We find using CQL improves performance
on the door sliding task from a mean success rate of 41% to 58%, but does not significantly impact
performance on the others.

The Q-function network architecture consists of convolutional and fully connected layers. We define
a network called the convolutional encoder, which will be used throughout the appendix. This takes
as input an image of shape 64 x 64 x 6, containing the starting and goal images concatenated channel-
wise, and consists of 4 2D convolutional layers, with [8, 16, 32, 64] filters, respectively, with all with
kernel size (4,4) and strides of (2,2). We use Leaky ReLU activations after each intermediate
convolutional layer, and batch-norm layers after the second and third Leaky ReLUs.

We flatten the output of the convolutional encoder and feed the features through 6 fully-connected
linear layers of 128 units each, with the final layer outputting a single value. Each intermediate
fully-connected layer is followed by a ReLu activation and a batch-norm layer.

The actor network architecture first contains the above “convolutional encoder”, whose outputs are
flattened and input into a 10 layer MLP with 128 fully connected units each, and ReLu activations
and batch-norm layers in between. The final output, of dimension 4, is passed through a tanh
activation to constrain it to the normalized action space [—1, 1].

Additional training hyperparameters are detailed in Table[2]

A.2 MODEL-PREDICTIVE CONTROL

In Table [3] we describe the parameters for model-based planning in our experiments. These pa-
rameters are shared across all tasks and planning costs (in ablation experiments). Most values are
selected based on prior work (Ebert et al., 2018b). We find that replanning every 6 steps produces
slightly better performance than replanning every 13 steps, but not by a large margin, and we do
not tune this further due to computation constraints. We sample actions using the filtering scheme
described in [Nagabandi et al.| (2020) to make sequences smoother in time. We initialize sampling
distributions using each environment’s data collection parameters, as shown in Table

To compute the planning cost described in Equation [3] we maximize over « by feeding in the final
predicted state to the policy network learned by TD3, and using the outputted action as the maxi-
mizer.

13

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Dataset size 10000 trajectories
Train/test/val split 0.9/0.05/0.05
Trajectory length 30 steps
Observation dimensions 64 x 64 x 3
State observations in kNN graph 200000
Goal relabeling sampling parameter (p) 0.3 (tuned over [0.2, 0.3])
Discount factor () 0.8
Learning rate 3e-4
Target network update Polyak factor 0.995
Batch size 64
Actor network noise o 0.1
Actor network maximum noise magnitude 0.2
Training iterations 93750 (300 epochs)
Optimizer Adam
CQL Lagrange multiplier learning rate le-3
CQL slack parameter T (object pushing) 3.0
CQL slack parameter 7 (reaching) 3.0
CQL slack parameter 7 (door sliding) 10.0
CQL number of randomly selected actions 10

Table 2: Hyperparameters for distance learning

Planning horizon (h)

Actions executed per planning step (k)

CEM Iterations
Elite sample fraction
Samples per CEM iteration

13 steps
6 actions
3 iterations
0.05 (10 samples)
200 samples

Table 3: Hyperparameters for model-based planning

A.3 ENVIRONMENTS

The Sawyer environments are adapted from the Meta-World benchmark (Yu et al.| 2019a)), and the
door sliding environment is based off of the environment presented by |Lynch et al.| (2020). For each
task, we define the 4-dimensional action space A such that actions control the Cartesian position of
the robot’s end-effector, as well as the robot’s gripper.

We randomly generate a set of 100 different test goals for each setting. Each task is defined by a goal
image and starting state, on which all methods are tested. We define success for each task in terms of
the final distance to the goal of each relevant object, e.g. object position for the object repositioning
task. A trial is considered successful if the final distance is below a certain threshold € manually
chosen for each task, listed in the table below. We evaluate the success rate of each method over 5
different random training seeds.

We generate offline datasets for each task by running random policies for le4 episodes of 30
timesteps each. In the beginning of each episode, object positions are reset uniformly randomly
over the range of possible positions across each joint. The random policy actions are drawn using a
filtering technique, which smooths random zero-mean Gaussian samples across time. We apply the
correlated noise scheme described by Nagabandi et al.[(2020), setting the hyperparameter 3 = 0.5.
The parameters of the multi-variate Gaussian samples in each dimension are listed in Table 4]

\ Reaching | Object pushing | Door sliding
Data colln. stdev (diag(X)) [0.6, 0.6, 0.3, 0.3] | [0.6,0.6,0.3,0.3] | [0.3,0.3,0.3, 0.15]
Object compared in success threshold | Arm end effector Object Slide
Success distance threshold 0.05m 0.05m 0.075m

Table 4: Environment and task details

14

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

B COMPARATIVE EVALUATION IMPLEMENTATION DETAILS

B.1 RIG

In this section, we will discuss implementation details of our adaptation of RIG. We begin by train-
ing a $-VAE with latent dimension 8. The VAE is trained on randomly sampled states from the
entire offline dataset. For the loss, we use a combination of a maximum likelihood term and a KL
divergence term which constrains the latent space to a unit Gaussian. In particular, we compute the
mean pixel error, that is, 777 ||s — §/|3, where s is the original image, and § is the reconstruction,
both normalized to be in [0, 1]. We add this to the KL divergence between the latent distribution and
the unit Gaussian, with a weighting factor of 1e~2 on the KL penalty.

The architecture of the VAE encoder consists of the “convolutional encoder” described in section
[A.1] whose features are passed through two FC layers with 128 units with a ReLu activation and
batch-norm layer in between. The VAE decoder takes as input latent states into two FC layers with
128 units with a batch-norm layer and ReLu activation after each. This is followed by the inverted
architecture of the encoder, consisting of transposed 2D convolutions.

Then, we perform model-free RL in a modified MDP, using encoded observations as a substitute for
environment observations, and computing rewards as negative /5 distances in latent space. We sam-
ple random goals from the multivariate Gaussian prior (N (0, I)) at the beginning of every episode.
‘We use the open-source implementation of soft actor-critic (SAC) in RLKit, and use the default SAC
parameters and architecture found in the implementation, making the following modifications: We
increase the number of layers of all MLP networks from 2 to 6. We use a maximum path length of
30 steps for consistency with our other experiments, and a discount factor of 0.95. Along with the
goal sampled from the prior at the beginning of each episode, we find that relabeling goals with the
achieved observation at the end of the trajectory improves performance, and add these transitions
to the replay buffer as well. Note that unlike in the original RIG formulation, we do not update the
weights of the learned VAE using data collected online. We evaluate the learned policy after 600
epochs of training, long after environment returns plateau.

B.2 DREAMER

Dreamer, a model-based method for image-based tasks, also uses a combination of value functions
and planning. We adapt Dreamer from its original single-task setting to learn a goal-conditioned
policy, reward predictor, and value function; however, we do not condition the dynamics model
on the goal. Dreamer has been previously demonstrated only in settings where the environment
provides rewards to the agent, so we modify the method to learn from unlabeled, offline data by using
experience replay. We find that using an indicator reward function as in our method or a heuristically
defined reward function, image MSE, causes Dreamer to struggle to learn. We thus additionally
demonstrate the performance of Dreamer using a manually specified arm distance reward for the
Sawyer reaching task.

We build off of the open source implementation of Dreamer by the original authors, written in
TensorFlow?2 and found at https://github.com/danijar/dreamer. Specifically, to modify the networks
to support goal-conditioning, we add independent convolutional encoders which take the goal image
as input to each network. Each encoder consists of 2D convolution layers with [32, 64,128, 256)
filters and kernel sizes of 4 to each network, and we concatenate the flattened features to the inputs
of each network. We additionally increase the number of fully-connected layers for the value and
actor networks from 3 and 2 respectively to 10. We use a discount factor of v = 0.95. All other
hyperparameter values are defaults from the public implementation.

For training, we relabel trajectories sampled from the fixed, offline dataset with a uniformly ran-
domly selected observation from the trajectory as the goal. In most of our experiments, we compute
the negative pixel-wise MSE as the reward, but in one reaching experiment, we use the negative {5
Euclidean distance between the arm end-effector position and the goal end-effector position. We
train for 2000 iterations for each experiment, although initial experiments in which we trained for
20x longer did not yield improved results.

15

https://github.com/vitchyr/rlkit
https://github.com/vitchyr/rlkit/blob/master/examples/sac.py
https://github.com/danijar/dreamer

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

B.3 GOAL-CONDITIONED BEHAVIOR CLONING

To train a goal-conditioned behavior cloning policy, we begin by relabeling random transitions from
the dataset with goals which are later achieved in those trajectories. Specifically, we sample state-
goal pairs from trajectories in the dataset by first selecting the initial state index ¢; uniformly from
all timesteps, and then selecting the goal state index ¢, uniformly from timesteps greater than ¢;. We
then train a neural network to predict the transition action a; given the state s; and the relabeled goal
34, using a mean-squared error loss.

The network architecture is the same as that of the actor network used in Q-learning for MBOLD,
described in Appendix [A.T] We train the model for 3125000 iterations (1000 epochs) using a batch
size of 32, and use the same optimizer and learning rate as the distance learned for MBOLD.

B.4 SEARCH ON THE REPLAY BUFFER

For SoRB, we train a distributional Q-function to represent distances as in the original paper. Dis-
tributional RL discretizes possible value estimates into a set of bins — we use 10 for all of our exper-
iments. We train this distributional Q-function for 300 epochs, as in the distance function training
for MBOLD. We also use the same architecture and training scheme, altering the number of out-
puts to 10 bins and using the KL-divergence loss for the distributional Q-function as in [Eysenbach
et al. (2019). However, unlike in Eysenbach et al.|(2019), we train on just the fixed, offline dataset.
We then perform the planning portion of SORB with the “maxdist” parameter set to 4, after manual
tuning. We use a graph size of 2000 states for all experiments, due to computational constraints.

We find that the policy learned through Q-learning performs very poorly at reaching subgoals, so we
instead substitute the GCBC policy for this purpose. We find that this greatly improves performance
across all tasks.

B.5 VISUAL FORESIGHT

To compare MBOLD to visual foresight, we use the same dynamics model and planning setup as
in MBOLD, however, we substitute the learned dynamical distance function with the ¢, pixel error
cost used in visual foresight.

C ABLATION EXPERIMENTS IMPLEMENTATION DETAILS
C.1 VAE DISTANCE

We use the same architecture as the VAE used in the RIG comparison described in Appendix [B] We
set the latent space dimension to 256 and weight the KL divergence term using a factor of 1e=5.
We train the model for 3125000 iterations (1000 epochs) using a batch size of 32, and use the same
optimizer and learning rate as the distance learned for MBOLD.

C.2 TEMPORAL DISTANCE REGRESSION

To train the temporal distance regression model, we sample state-goal pairs from trajectories in the
dataset by first selecting the initial state index ¢; uniformly from all timesteps, and then selecting the
goal state index t, uniformly from timesteps greater than ¢;. We compute the label for this pair as
min(ty — t;, maxdist), where maxdist is a hyperparameter we set to 10. The maxdist parameter
helps to improve the optimality of distances on average. We train the neural network to regress this
target label using an ¢, error loss. We train the network for 3125000 iterations (1000 epochs) with a
batch size of 32, and use the same optimizer and learning rate as the distance learned for MBOLD.

The architecture for the temporal distance regression model begins with the convolutional encoder
described in Appendix[B] Its flattened outputs are fed into 5 fully-connected layers of 256 units each,
with batch-norm and ReLu activations after each intermediate layer.

C.3 Q-FuUNCTION POLICY

We find that the policy directly learned by our method when learning distances performs extremely
poorly. However, performing Q-learning using random shooting over 100 uniformly random actions

16

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

selected from [—1, 1]* to optimize over actions to compute target values produces much better results
when used directly as a policy, compared to using an actor network to perform this optimization as
in our method. Therefore, we report results from acting according to this random shooting method.
At test time, we estimate the optimal action a* = argmax, Q(s,a,g) by again sampling 100
uniformly random actions, and selecting the best one.

D PLANNING HORIZON ABLATION EXPERIMENTS

In this section, we investigate the effect of the planning horizon h on control performance. After
training distance functions according to Appendix [A.I] we perform planning with three different
settings for A on the simulated block pushing tasks. We present the results in Figure[7] We find that a
longer planning horizon is beneficial, especially for solving more difficult tasks. We hypothesize that
this is because longer planning horizons allow the planner and distance function to better distinguish
promising predicted states, while the fidelity of state predictions remains relatively high.

Planning horizon ablation

-
o w

> = o

Success Rate

One object, regular One object, hard Three objects, regular Three objects, hard
Task

Figure 7: Results for planning horizon ablations.

17

	Introduction
	Related Work
	The Self-Supervised Offline RL Problem Statement
	Model-Based Visual Goal-Reaching
	Experiments
	Conclusion
	MBOLD Implementation Details
	Distance Function
	Model-Predictive Control
	Environments

	Comparative Evaluation Implementation Details
	RIG
	Dreamer
	Goal-Conditioned Behavior Cloning
	Search on the Replay Buffer
	Visual Foresight

	Ablation Experiments Implementation Details
	VAE Distance
	Temporal Distance Regression
	Q-Function Policy

	Planning horizon ablation experiments

