
Optimal Mixture Weights for Off-Policy Evaluation
with Multiple Behavior Policies

Jinlin Lai Lixin Zou Jiaxing Song
Department of Computer Science and Technology

Tsinghua University
jinlinlai@cs.umass.edu,zoulx15@mails.tsinghua.edu.cn,jxsong@tsinghua.edu.cn

Abstract

Off-policy evaluation is a key component of reinforcement learning which evaluates
a target policy with offline data collected from behavior policies. It is a crucial step
towards safe reinforcement learning and has been used in advertisement, recom-
mender systems and many other applications. In these applications, sometimes the
offline data is collected from multiple behavior policies. Previous works regard
data from different behavior policies equally. Nevertheless, some behavior policies
are better at producing good estimators while others are not. This paper starts with
discussing how to correctly mix estimators produced by different behavior policies.
We propose three ways to reduce the variance of the mixture estimator when all
sub-estimators are unbiased or asymptotically unbiased. Furthermore, experiments
on simulated recommender systems show that our methods are effective in reducing
the Mean-Square Error of estimation.

1 Introduction

In applications of reinforcement learning [24], it is usually unsafe or risky to use a policy without
evaluating it. For example, in reinforcement learning based recommender systems, if a defective
policy is deployed, it can cause irreversible loss like losing customers. To tackle the problem, Off-
Policy Evaluation (OPE) algorithms are developed to evaluate a target policy with data collected
from online behavior policies in an offline manner. OPE has been used to evaluate reinforcement
learning applications in advertisements, recommender systems and many other areas [13, 4, 11, 25, 8].
The most influential algorithm in OPE is Doubly Robust estimation [6, 10]. Based on it, some
recent works [27, 7, 2, 14] in OPE explore different ways to reduce the Mean-Square Error (MSE)
of estimation. However, few of them discuss deeply about how to evaluate with multiple behavior
policies. In such cases, most current methods will directly go through after regarding data from
different behavior policies as a whole. However, in later sections of this paper, we show that better
results can be reached if we split data by behavior policy, construct split estimators for the split data
and consider the mixture estimator of the split estimators. The root cause of this issue is that some
behavior policies are "adding" high variance to the result. Therefore, if we can assign high weights to
"good" behavior policies and low weights to "bad" ones, better estimation can be obtained.

In this paper, we optimize the mixture weights for the mixture estimator by minimizing variance.
This idea has been discussed in Agarwal et al. [1] for Importance Sampling estimators of contextual
bandits. We generalize this idea to finite-horizon Markov Decision Process and derive naive mixture
estimators for most OPE algorithms, including Importance Sampling, Weighted Importance Sampling,
Doubly Robust estimation and Weighted Doubly Robust estimation. After exploiting the structure of
reinforcement learning, we further propose mixture estimators and ↵� mixture estimators, which
have theoretically lower variances than naive mixture estimators. To compute the optimal weights,
we introduce Delta Method [18] from asymptotic statistics to estimate the variances and covariances
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of the components of weighted estimators. In our experiments on simulated recommender systems,
we show that mixture estimators are effective in reducing the MSE of all the estimators.

2 Preliminaries

2.1 Markov Decision Process

Markov Decision Process (MDP) [24] is represented by < S,A, R, P, P0, � >, where S and A are
state space and action space, R(s, a) is a random variable indicating the immediate reward of taking
action a at state s, P (·|s, a) is the state transition distribution, P0(·) is the distribution of initial state,
and � is the discount factor. To interact in such environment, a policy ⇡ is given and ⇡(a|s) is the
probability of taking a in state s.

2.2 Off-policy Evaluation with Single Behavior Policy

In the literature of reinforcement learning, there are many algorithms to evaluate a new policy ⇡ with
data collected from one behavioral policy ⇡0. In this section, we assume there are N data trajectories
and the i-th data is (si,0, ai,0, ri,0, si,1, ai,1, ri,1, ...).

Direct Method (DM) fits E[R(s, a)] and P (·|s, a) by regression [10]. With the approximated functions
R̂(s, a) and P̂ (·|s, a), the value functions are recursively updated (V̂0(s) = 0):

Q̂t(s, a) = R̂(s, a) + �Es0⇠P̂ (s0|s,a)[V̂t�1(s
0)] V̂t(s) = Ea⇠⇡(a|s)[Q̂t(s, a)], (1)

Q̂(s, a) = lim
t!1

Q̂t(s, a) V̂ (s) = lim
t!1

V̂t(s). (2)

The value of the new policy would be estimated by V̂DM = Es⇠P0(s)[V̂ (s)].

Besides DM, another family of OPE technique is Importance Sampling(IS). IS estimates the value by
V̂IS = 1

N

PN
i=1

PT
t=0 �

t⇢i,tri,t, where ⇢i,t =
Qt

⌧=0
⇡(ai,⌧ |si,⌧ )
⇡0(ai,⌧ |si,⌧ ) and T is the maximal horizon of

data.

DM typically has low variance and high bias. IS is proved to be unbiased but suffers from high
variance. Doubly Robust estimation(DR) [10] combines DM and IS. It can be regarded as IS with
control variates so it has lower variance than IS. We follow Thomas and Brunskill [27] and formulate
DR as V̂DR = 1

N

PN
i=1

PT
t=0 �

t
⇣
⇢i,t�1V̂ (si,t) + ⇢i,t(ri,t � Q̂(si,t, ai,t))

⌘
.

Weighted Importance Sampling(WIS) [20] is also a variance reduction technique for IS. It is derived
by replacing ⇢i,t

N in IS with wi,t =
⇢i,tPN
i=1 ⇢i,t

. WIS is asymptotically unbiased and has lower variance
than IS. Similarly, Weighted Doubly Robust estimation(WDR) [27] has lower variance than DR. It
also replaces ⇢i,t

N in DR with wi,t.

2.3 Problem Setting

In applications of reinforcement learning, there might be multiple behavior policies in the same
environment. Suppose we have M behavior policies ⇡1,⇡2, ...,⇡M . The i-th behavior policy ⇡i

collects ni data. The j-th data from ⇡i is (si,j,0, ai,j,0, ri,j,0, si,j,1, ai,j,1, ri,j,1, ...). With the data
from ⇡i, we can build an asymptotically unbiased estimator V̂i to evaluate the target policy ⇡. This
paper begins with constructing the mixture estimator of the M estimators. The goal is to minimize the
MSE of estimation. If we estimate ✓ with ✓̂, the MSE is formulated as E[(✓̂�✓)2] = E2[✓̂�✓]+V[✓̂].
For IS and DR, MSE reduces to variance so we directly minimize the variance. For WIS and WDR,
by Delta Method [18], the bias squared is O(n�2) while the variance is O(n�1). When n is large,
the bias squared is dominated by variance so we neglect the bias of weighted estimators and also
directly minimize the variance.

To make our idea clear, we define our symbol system of the following sections here. Bold letters
are random variables (like X). Letters with a subscript j are samples of the corresponding random
variable (for example, Xi,j is a sample of Xi). Letters with a hat are estimators (like X̂). Letters
with an arrow are vectors (like

�!
X ).
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Method Estimator
IS V̂IS = 1PM

i=1 ni

PM
i=1

Pni

j=1

PT
t=0 �

t⇢i,j,tri,j,t

WIS V̂WIS =
PM

i=1

Pni

j=1

PT
t=0 �

twi,j,tri,j,t

DR V̂DR = 1PM
i=1 ni

PM
i=1

Pni

j=1

PT
t=0 �

t
⇣
⇢i,j,t�1V̂ (si,j,t) + ⇢i,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))

⌘

WDR V̂WDR =
PM

i=1

Pni

j=1

PT
t=0 �

t
⇣
wi,j,t�1V̂ (si,j,t) + wi,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))

⌘

SWIS V̂SWIS =
PM

i=1
niPM

i0=1
n0
i

Pni

j=1

PT
t=0 �

tui,j,tri,j,t

SWDR V̂SWDR =
PM

i=1
niPM

i0=1
n0
i

Pni

j=1

PT
t=0 �

t
⇣
ui,j,t�1V̂ (si,j,t) + ui,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))

⌘

Table 1: Formulas for the vanilla estimators.

To guarantee the theoretical results in this paper, we give the following assumptions.

Assumption 1 8s, a, i, if ⇡(a|s) > 0, then ⇡i(a|s) > 0. Furthermore, there exists � > 0, such that

8i, t, ⇢i,t  �.

Assumption 2 There exists ⇣ > 0, such that 8s, a, 8r ⇠ R(s, a), |r|  ⇣.

Assumption 3 For any estimator ✓̂, we ignore its bias.

Assumption 4 Any two different data trajectories are independent.

3 Optimal Mixture Weights with Multiple Behavior Policies

3.1 Value Estimators with Multiple Behavior Policies

With multiple behavior policies, we can construct value estimators based on Section 2.2. Define

⇢i,j,t =
tY

⌧=0

⇡(ai,j,⌧ |si,j,⌧ )
⇡i(ai,j,⌧ |si,j,⌧ )

, (3)

wi,j,t =
⇢i,j,tPM

i0=1

Pni0
j0=1 ⇢i0,j0,t

, (4)

then the IS, WIS, DR and WDR estimators are listed in Table 1.

Note that WIS and WDR normalize the importance weights across all data. We can also normalize
inside each behavior policy by

ui,j,t =
⇢i,j,tPni0

j0=1 ⇢i,j0,t
(5)

and construct split weighted estimators. We call them Split WIS (SWIS) and Split WDR (SWDR).
See Table 1 for their formulas.

In our experiments, we show that there is little difference between the performances of weighted
estimators and split weighted estimators. Nevertheless, the advantage of split weighted estimators is
that they can be divided into sub-estimators. This makes optimizing the mixture weights of weighted
estimators possible.

3.2 Naive Mixture Estimators

The central idea of this paper is to split each estimator into sub-estimators, assign weights to the
sub-estimators and optimize the weights. For IS, SWIS, DR and SWDR, the first idea is to split them
according to behavior policy. Taking IS for example, it can be rewritten as

V̂IS =
MX

i=1

niPM
i0=1 n

0
i

V̂IS,i, (6)
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where V̂IS,i = 1
ni

Pni

j=1

PT
t=0 �

t⇢i,j,tri,j,t is estimator for the target value V . We then replace
niPM

i0=1
n0
i

with mixture weights ↵i, form V̂NMIS =
PM

i=1 ↵iV̂IS,i and optimize the weights. The

weights should satisfy
PM

i=1 ↵i = 1. The following theorem gives the optimal mixture weights of
this problem:

Theorem 1 Given M unbiased and independent estimators V̂1, V̂2, ..., V̂M of a value V , the mixture

estimator of them with the minimal variance is V̂MIX =
PM

i=1 ↵
⇤
i V̂i, where ↵⇤

i = 1
V[V̂i]

PM
i0=1

1
V[V̂i0 ]

.

The minimal variance is
1PM

i=1
1

V[V̂i]

.

See Appendix A.1 for proof. The condition of independence comes from Assumption 4. Theorem
1 is the general case for Section 6 of Agarwal et al. [1] as well as the basis of Fixed Effect Model
in Meta Analysis [3]. It can also be applied to SWIS, DR and SWDR. We call this estimator naive
mixture estimator because it does not consider the properties of reinforcement learning.

3.3 Mixture Estimators for Off-Policy Evaluation

We can further split the estimators by t. Taking IS for example, it can be formulated as

V̂IS =
MX

i=1

TX

t=0

niPM
i0=1 n

0
i

V̂IS,i,t, (7)

where V̂IS,i,t = 1
ni

Pni

j=1 �
t⇢i,j,tri,j,t is estimator for the value at t denoted by Vt. We can re-

place niPM
i0=1

n0
i

with ↵i,t and form V̂MIS =
PM

i=1

PT
t=0 ↵i,tV̂IS,i,t. The weights should satisfy

8t,
PM

i=1 ↵i,t = 1. The following proposition shows how to optimize such mixture weights.

Proposition 1 Denote the covariance matrix of [V̂i,0, V̂i,1, ..., V̂i,T ] by ⌃i. If

• 8i1, i2, t1, t2, if i1 6= i2, then V̂i1,t1 and V̂i2,t2 are independent;

• 8i8t, V̂i,t is unbiased for Vt;

• 8i ⌃i is positive definite;

then V̂MIXT =
PM

i=1

PT
t=0 ↵i,tV̂i,t is unbiased for V and the mixture weights that minimize

variance of V̂MIXT are
�!↵ ⇤

i = ⌃�1
i (
PM

i0=1 ⌃
�1
i0 )�1�!e , where

�!↵ ⇤
i = [↵⇤

i,0,↵
⇤
i,1, ...,↵

⇤
i,T ]

T
and

�!e is

[1, 1, ..., 1]T . Moreover, V[V̂MIXT ]  V[V̂MIX ] if 8i, V̂i =
PT

t=0 V̂i,t.

See appendix A.2 for proof. The assumption of positive definite is not hard to reach in real world
problems. If the reward is constant at some horizon, we can simply remove it from our formula and
still get a positive definite covariance matrix. The same results also hold for SWIS, DR and SWDR.

3.4 ↵� Mixture Estimators for Off-Policy Evaluation

Compared with IS and SWIS, DR and SWDR both have control variate terms. These terms reduce
the variance of estimation [27]. Taking DR for example, we can divide the estimator to IS plus the
control variates and formulate as

V̂DR =
MX

i=1

TX

t=0

niPM
i0=1 n

0
i

(V̂IS,i,t + ŴDR,i,t), (8)

where ŴDR,i,t =
1
ni

Pni

j=1 �
t
⇣
⇢i,j,t�1V̂ (si,j,t)� ⇢i,j,tQ̂(si,j,t, ai,j,t)

⌘
are estimators for 0. Sim-

ilar to the previous sections, we assign ↵i,t to V̂IS,i,t and �i,t to ŴDR,i,t and form V̂↵�MDR =PM
i=1

PT
t=0(↵i,tV̂IS,i,t + �i,tŴDR,i,t). The weights should satisfy 8t,

PM
i=1 ↵i,t = 1. The follow-

ing proposition derives optimal mixture weights for mixture estimator with control variates.
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Proposition 2 Given M ⇤ (T + 1) estimators V̂i,t and M ⇤ (T + 1) estimators Ŵi,t, if

• 8i1, i2, t1, t2, if i1 6= i2, then V̂i1,t1 and V̂i2,t2 are independent, Ŵi1,t1 and Ŵi2,t2 are

independent, V̂i1,t1 and Ŵi2,t2 are independent;

• 8i, t, E[V̂i,t] = Vt and E[Ŵi,t] = 0;

then the mixture weights that minimize the variance of mixture estimator with control variates

for the estimators are
�!↵ ⇤

i = Hi,11(
PM

i0=1 Hi0,11)�1�!e ,
�!
� ⇤

i = Hi,21(
PM

i0=1 Hi0,11)�1�!e , where✓
Hi,11 Hi,12

Hi,21 Hi,22

◆
is the precision matrix of [V̂i,0, V̂i,1, ..., V̂i,t, Ŵi,0, Ŵi,1, ..., Ŵi,t]T .

See Appendix A.3 for proof. We call this estimator ↵� mixture estimator. The formulations for all
three types of mixture estimators can be found in Appendix C.1.

4 Variance estimators

The mixture estimators in Section 3 rely on the estimation of variances and covariance matrixes. By
Assumption 1 and 2, we can get strongly consistent variance estimators. Taking V̂IS,i for example, it
is formulated as

V̂IS,i =
1

ni

niX

j=1

TX

t=0

�t⇢i,j,tri,j,t =
1

ni

niX

j=1

V̂IS,i,j , (9)

which can be interpreted by average of ni samples of a random variable VIS,i. So V[V̂IS,i] =
1
ni
V[VIS,i]. In this paper, we use half of the data to estimate V[VIS,i], plug the estimated variances

into the formulas and estimate the value by the other half of the data. This strategy can be applied to
components of IS and DR in all three types of mixture estimators.

However, for SWIS and SWDR, we can not regard each component as average of samples. Rather,
we should regard them as function of average of samples. For example,

V̂SWDR,i =
niX

j=1

TX

t=0

�t
⇣
ui,j,t�1V̂ (si,j,t) + ui,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))

⌘

=
TX

t=0

�t

 Pni

j=1 ⇢i,j,t�1V̂ (si,j,t)Pni

j=1 ⇢i,j,t�1
+

Pni

j=1 ⇢i,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))Pni

j=1 ⇢i,j,t

!

=
TX

t=0

�t

 
1
ni

Pni

j=1 ⇢i,j,t�1V̂ (si,j,t)
1
ni

Pni

j=1 ⇢i,j,t�1
+

1
ni

Pni

j=1 ⇢i,j,t(ri,j,t � Q̂(si,j,t, ai,j,t))
1
ni

Pni

j=1 ⇢i,j,t

!

,
TX

t=0

 
1
ni

Pni

j=1 X̂i,j,t

1
ni

Pni

j=1 Ŵi,j,t

+
1
ni

Pni

j=1 Ẑi,j,t

1
ni

Pni

j=1 Ŷi,j,t

!
(10)

We approximate V[V̂SWDR,i,t] by Delta Method [18]. See appendix B for introduction.

The variance and covariance estimators for components of all the estimators are in Appendix C.3.

5 Related Work

Recent advances in OPE can be split into two categories: Importance Sampling based OPE and
stationary distribution based OPE. For Importance Sampling based OPE, previous works about
mixture estimators mainly focus on mixing different kinds of estimators. Thomas and Brunskill [27]
optimize a mixture weight between WDR and Direct Method to reduce the MSE of estimation.
Following it, recent works [29, 21, 22, 23] propose more strategies to blend different off-policy
evaluation algorithms. The mixture estimators in this paper are different from theirs. They mix
different kinds of estimators, while we mix estimators of different behavior policies. Agarwal et al. [1]
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Figure 1: MSE of all four types of estimators.

derive Weighted IPS estimators, which is actually NMIS estimators for contextual bandits. Compared
with them, we not only generalize the idea to finite-horizon MDP, but also apply our techniques to
more OPE algorithms. Additionally, Balanced IPS estimator [1] or Multiple Importance Sampling
[18] is another way to reduce variance for OPE of contextual bandits with multiple behavior policies.
However, as far as we know, no previous work has generalized it to finite-horizon OPE so we do
not compare with it. Stationary distribution based OPE are built on the estimation of stationary
distributions or ratio of stationary distributions [15, 30, 26, 28, 16, 31]. To evaluate with multiple
behavior policies, Nachum et al. [17] and Chen et al. [5] build the mixture policy of the behavior
policies and estimate the ratio of stationary distributions. Different from them, we optimize the
mixture weights of estimators while they regard data from different policies equally. It would be
interesting to see how our methods help improve these methods.

6 Experiments

6.1 Experimental Settings

We construct a simulated recommender platform based on RecSim [9]. The interactions in this
platform form a Partially Observable Markov Decision Process(POMDP) [24]. Detailed configuration
of this environment can be found in Appendix D.1. We implemented IS, WIS, SWIS, DR, WDR and
SWDR as baselines. We call naive mixture estimators for the methods NMIS, NMWIS, NMDR and
NMWDR. Mixture estimators for the methods are called MIS, MWIS, MDR, MWDR. ↵� mixture
estimators are called ↵� MDR and ↵� MWDR. See Appendix D.3 for implementation of the OPE
algorithms. For mixture estimators and ↵� mixture estimators, we choose a hyper-parameter T , mix
the values from 0 to T and simply add up the remains. See Appendix D.4 for discussion about it.

6.2 Results

With the chosen T, the MSE of the estimators with different M on test set are plotted in Figure 1.
Numerical results can be found in Appendix E.2. In each figure, when M=1, the baselines have the
lowest MSE. This is because only half of the samples in mixture estimators are used to estimate values.
As M increases, the MSE of all estimators decrease. For IS and WIS, when M=5, both naive mixture
estimators and mixture estimators are better than baselines. However, naive mixture estimators have
the best results. There are two possible reasons for it. First, mixture estimators only mix the first
several values while naive mixture estimators mix values of the whole horizon. Second, mixture
estimators require estimation of covariance matrix, which may amplify the error of estimation. For
DR and WDR, when M=5, mixture estimators produce the best results while naive mixture estimators
and ↵� mixture estimators produce comparable results with baselines. This indicates that ↵� mixture
estimators are not as effective as theory. We compute the average condition number for the estimated
covariance matrixes of all the mixture estimators. See Appendix E.3. With relatively large condition
numbers, the error of ↵� mixture estimators is amplified in matrix inversion.

7 Conclusion

We derive naive mixture estimators, mixture estimators and ↵� mixture estimators for OPE with
multiple behavior policies. To estimate the mixture weights for weighted estimators, we introduce
Delta Method to estimate the variances and covariances of weighted estimators. In our experiments
on simulated recommender systems, we show that naive mixture estimators and mixture estimators
are effective in reducing MSE while ↵� mixture estimators suffer from ill covariance matrixes. Future
work can focus on mitigating this problem.
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