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Abstract

In offline reinforcement learning (RL) agents are trained using a logged dataset.
It appears to be the most natural route to attack real-life applications because in
domains such as healthcare and robotics interactions with the environment are
either expensive or unethical. Training agents usually requires reward functions,
but unfortunately, rewards are seldom available in practice and their engineering
is challenging and laborious. To overcome this, we investigate reward learning
under the constraint of minimizing human reward annotations. We consider two
types of supervision: timestep annotations and demonstrations. We propose semi-
supervised learning algorithms that learn from limited annotations and incorporate
unlabelled data. In our experiments with a simulated robotic arm, we greatly
improve upon behavioural cloning and closely approach the performance achieved
with ground truth rewards. We further investigate the relationship between the
quality of the reward model and the final policies. We notice, for example, that the
reward models do not need to be perfect to result in useful policies.

1 Introduction
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Figure 1: We train a reward function on a pre-recorded
dataset, use it to label the data and do offline RL. As
supervision, we use demonstrations, which can be op-
tionally annotated with timestep rewards.

We are interested in applying deep reinforce-
ment learning (RL) to obtain control policies
from vision in realistic domains, such as robotic
manipulation (Fig. 2). In online RL, agents
are trained by interacting with an environment,
while in offline RL, agents are trained using a
logged dataset. Our work builds upon offline
RL [17, 18, 34], which seems to be well suited
for real-life applications. However, there are
some obstacles in applying offline RL to the real
world: most algorithms require a reward signal
which is often unavailable. To address this is-
sue, we draw inspiration from the literature in
inverse RL and reward modelling to learn a re-
ward function. Then, it is used to retrospectively
label episodes with rewards to make them avail-
able for offline RL (Fig. 1). Both rewards and
policies can be learned with the same logged
dataset.
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We investigate various types of supervision for reward learning and how to use them efficiently.
In particular, we consider timestep-level (e.g., per-frame reward annotations for the entire episode
produced by humans [5], Sec. 3.3) or episode-level supervision (e.g., annotations of success for the
whole episode, usually demonstrations [39], Sec. 3.2). Timestep annotations are laborious to produce,
but they contain a precise signal for learning. Episode annotations are usually easier to obtain, but
they provide only limited information about the reward. That is, they indicate that some of the video
frames from the episodes show successful behaviour, but do not indicate when the success occurs. To
deal with the setting of minimal reward supervision, we investigate sample efficient semi-supervised
learning algorithms that benefit from large unlabelled datasets. Inspired by multiple-instance learning,
co-training and self-supervision, we further propose an algorithm to deal with coarse reward labels in
demonstrations, which uses time structure of the episodes and refines label predictions iteratively.

We demonstrate that efficient manipulation policies can be obtained even when rewards are learnt
with limited supervision. If a sufficient amount of episode-level annotations is available, timestep
annotations are not needed to produce satisfactory policies. However, in a setting where the demon-
strated trajectories are rare, good policies can still be obtained after incorporating more detailed
timestep-level labels. Further, we examine the reward models and their influence on the offline RL
agent performance. We inspect the various supervised learning metrics for reward models and their
correlation with agent performance. Interestingly, we notice that our offline RL algorithm can be
quite forgiving of the imperfections in reward models.

2 Related work

Offline RL Offline RL enables learning policies from the logged data instead of collecting it
online [17, 18]. It is a promising approach for many real-world applications. Offline RL is an active
area of research and many algorithms have been proposed recently, e.g., BCQ [12], MARWIL [33],
BAIL [6], ABM [30] AWR [24], and CRR [34]. In our work, we adopt CRR due to its efficiency and
simplicity. However, unlike standard offline RL, we do not observe the task rewards.

Reward learning When the reward signal is not readily available in the environment, it can be
learnt. If demonstrations are given, the reward can be learnt either directly with inverse RL [21, 1],
or indirectly with generative adversarial imitation learning (GAIL) [13]. If the end goal [8, 32] or
reward values [5] are known for a subset of episodes, reward functions could be learnt with supervised
learning. Some works study the important case of learning from limited reward supervision [32].
Rewards are often learnt for the purposes of online RL. While a lot of success has been achieved in
learning from engineered or pre-trained state representations [8, 10, 29, 19, 11, 20, 37, 2], learning
directly from pixel input is known to be still challenging [38] and the amount of required supervision
may become a bottleneck [32]. Unlike many other reward learning approaches, we focus on learning
from pixel input in offline RL from limited and coarse annotations.

Behavioural cloning (BC) When demonstrations, but no reward signal is available, policies could
be learnt with imitation learning [22], and in particular, behavioural cloning (BC) [25, 26]. BC is a
supervised learning technique that aims to imitate the exact actions observed in demonstrations. One
limitation of BC is that it requires large high-quality demonstration datasets that cover all the state
space. In our experiments reward functions are learnt from the limited demonstrations and perform
superior to BC.

Learning from noisy labels When learning rewards from demonstrations, we learn from group
labels, which are not as informative as direct timestep annotations. To efficiently utilise the available
supervision, some ideas can be borrowed from self-training, multiple-instance learning and co-
training. As in self-training [28, 35], we use the predictions of a learnt function to guide its refinement.
Multiple-instance learning [16, 7] operates with an assumption that group labels are available and the
task is to recover instance-level labels. Co-training [4] usually divides features in several groups and
uses predictions from one group as supervision for another group. PU-learning (positive unlabelled
learning) [9, 15] and TRAIL (task relevant adversarial imitation learning) [38] also deal with coarse
training signal and they were successfully applied to adversarial imitation learning [36, 38].

Reward models with offline RL It is natural to learn reward functions in offline RL as both reward
and policy training can rely on the same pre-recorded dataset (Fig. 1). Similar to our approach, the
work of Cabi et al. [5] and ORIL [39] learn reward functions and use them in offline RL. Cabi et al.
[5] employ a reward sketching interface to elicit human preferences and use them as a signal for
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learning. In reward sketching, the annotator draws a curve where higher values correspond to higher
rewards. As the values are not very precise in absolute terms, the ranking loss is used for training.
In this work, our timestep annotations are binary and it allows us to treat the reward prediction as a
classification problem. Furthermore, we focus on sample efficiency as we deal with limited human
supervision. A recent method ORIL [39] goes further and obtains reward functions both from labelled
and unlabelled data at the same time as training an agent. It relies on demonstrated trajectories, and
employs ideas from PU-learning [36] and TRAIL [38] to correct for group labels. We analyse ORIL
as one of the methods with episode-level supervision. Here we study both types of annotations from
these works [5, 39]. Additionally, we study how to select the most promising reward model.

3 Method

3.1 Overview

We take advantage of the Markov Decision Process (MDP) inductive bias. In particular, we observe
trajectories of states and actions without rewards τ = (s1, a1, . . . , sT , aT ), but we are given a small
amount of information about the reward, as we discuss in detail in Secs. 3.2 and 3.2. As in offline
RL, such trajectories are logged in a dataset D. In practice, D includes diverse trajectories produced
for various tasks by scripted, random or learnt policies as well as human demonstrations [5]. Our
workflow is illustrated in Fig. 1 and it consists of the following steps:

1. Infer a reward function R from a small amount of supervision, either (1) episode-level
annotations in the form of a set of successful episodesDE , usually demonstrations (Sec. 3.2),
or (2) timestep-level annotations in the form of reward values on a subset of trajectories
(Sec. 3.3).

2. Use R to retrospectively annotate all the trajectories inD with the reward values r̂t = R(st).

3. Use the trajectories with the predicted rewards r̂ to do offline RL (Sec. 3.4).

3.2 Reward learning from episode-level supervision

Suppose that as a form of reward supervision we are given a small set DE of successful trajectories
(e.g., expert demonstrations). For simplicity, we assume that a reward is binary and it indicates if
the task is solved 1. We can view DE as episode-level labels: they do not indicate the value of any
timestep reward rt, but they indicate that at least one of them is positive. The rest of the trajectories
DU = D \ DE are unlabelled, and they include both success and failure episodes. Several ways can
be used to obtain reward values based on DE and DU .

Reward without learning (SQIL) Similar to SQIL which is reported to be successful in online
RL [27], without reward learning, we set every timestep in expert demonstrations DE to have reward
1 and every timestep in unlabelled trajectories DU to have reward 0:

∀τ ∈ DE ,∀t : r̄t = 1;

∀τ ∈ DU ,∀t : r̄t = 0.
(1)

Learn from flat reward (ORIL) Instead of using the reward values r̄t from Eq. 1 directly in RL,
it was proposed to use them as a training signal to learn a reward function R [39]. This idea is similar
to training a discriminator in GAIL, applied to the offline RL setting. Then, the loss function is the
cross-entropy that treats r̄t as synthetic ground truth labels:

L(D) = Est∼DE
[− logR(st)] + Es′t∼DU

[− log(1−R(s′t)], (2)

where st ∼ D denotes a state st that is sampled from a trajectory τ that is sampled from D. ORIL
method [39] additionally introduces several types of regularizations, such as TRAIL and PU-learning,
to mitigate the problem of false negative trajectories present in DU and false positive timesteps in DE

(originating from the flat reward assumption). We adapt ORIL in our work by separating training a
reward model from training an agent.

1The described methods can be adapted to numerical rewards [5] as well.
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Time-guided reward (TGR) Next, we propose a semi-supervised algorithm for learning the reward
(TGR) and an algorithm to further iteratively refine its predictions (TGR-i). Instead of assuming
a flat positive reward at the whole duration of the demonstration, we propose to make use of the
time structure of episodes. We set all successful episodes to have reward zero in all timesteps until
time t0 and reward one after that moment. As before, unlabelled trajectories are assigned label zero.
Formally:

∀τ ∈ DE ,∀t ≤ t0 : r̄t = 0;

∀τ ∈ DE ,∀t > t0 : r̄t = 1;

∀τ ∈ DU ,∀t : r̄t = 0.

(3)

Hyperparameter t0 is shared among the episodes, its value is chosen according to the model selection
procedure as described in Sec. 4.4. Then, based on the synthetic labels from Eq. 3 the loss is:

L(D) = Est∼DE :t≤t0 [− log(1−R(st))] + Es′t∼DE :t>t0 [− logR(s′t)]+

Es′′t ∼DU
[− log(1−R(s′′t )].

(4)

Arguably, TGR is simpler than ORIL as it does not need any special type of regularisation.

Refining reward function (TGR-i) In TGR we made an assumption about the reward structure to
produce synthetic labels (Eq. 3). We propose to further refine the reward function training by using
the ideas from self-training, co-training and MIL [7]. As in cross-validation [4, 7], we split the data
into disjoint sets and train separate models that help to refine each other further.

We randomly split DE and DU into two parts each: DA
E ,DB

E , and DA
U ,DB

U . Then, we minimize the
loss from Eq. 4 to obtain a reward classifier RA

0 trained on the trajectories from DA = DA
E ∪DA

U and
RB

0 trained on the trajectories from DB = DB
E ∪ DB

U . Next, we “cross-apply” the classifiers to the
datasets on which they were not trained. It produces new reward estimates: ∀st ∈ DB : r̂0

t = RA
0 (st)

and ∀st ∈ DA : r̂0
t = RB

0 (st). Now, we use the predicted reward values r̂0
t as new synthetic labels for

the next generation of the classifiers RB
1 and RA

1 . Splitting into disjoint sets A and B is important as
it prevents each reward model from overfitting to synthetic labels on the data for which the predictions
are used to train new models. This procedure is repeated several times, at each iteration i ≥ 1 using
the loss function with the reward labels produced at the previous iteration:

Li(DA) = Est∼DA [−RB
i−1(st) logRA

i (st)− (1−RB
i−1(st)) log(1−RA

i (st))]. (5)

Li(D) = Li(DA) + Li(DB). (6)

The learning problem is then: minRA
i ,RB

i
Li(D), where RA

i−1 and RB
i−1 stay fixed. We refer to the

refined reward function as TGR-i, where i indicates the iteration of refinement.

3.3 Reward learning from timestep-level supervision

Now, in addition to the episode-level annotations, we allow for timestep-level annotations. That
is, for any trajectory τ = (s1, a1, . . . , sT , aT ) from a selected subset D0 we provide τr̄ =
(s1, a1, r̄1 . . . , sT , aT , r̄T ). In practice, the labels r̄ can be obtained, for example, with reward
sketching procedure [5] or by specifying the goal states [8]. Then, we minimise supervised learning
loss on the synthetic labels r̄t:

Lsup(D0) = Est∼D0
[−r̄t logR(st)− (1− r̄1) log(1−R(st)]. (7)

Supervised by demonstrations (sup-demo) In practice, when only a limited amount of supervi-
sion is possible, people often choose to first annotate demonstrated trajectories DE as they exhibit
the most informative behaviour [5]. Then, using the loss Lsup(DE) from Eq. 7 we train a reward
function sup-demo.

Semi-supervised by demonstrations (sup-and-flat) In addition to the limited reward labels in
sup-demo, we propose to leverage the unlabelled data in the semi-supervised learning fashion, similar
to how it is done with episode-level annotations. We set the flat zero synthetic reward for unlabelled
subset ∀st ∼ DU : r̄t = 0. Then the loss is optimised jointly over timestep-level annotations in DE

and synthetic flat labels inDU , thus combining supervised and flat reward components (sup-and-flat):

L(D) = Est∼DE
[−r̄t logR(st)− (1− r̄t) log(1−R(st)] + Es′t∼DU

[− log(1−R(s′t)]. (8)
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Figure 2: Kinova Jaco arm performs object manipulation: put into box, stack banana, slide, insert.

3.4 Policy learning

Critic-Regularised Regression (CRR) For learning a policy, we use a pre-recorded dataset D′.
D′ contains some trajectories that were not seen during the reward training to avoid reward functions
to overfit to the synthetic labels. We train an offline RL policy on the dataset with predicted rewards
using Critic-Regularized Regression (CRR) [34], a state-of-the-art offline reinforcement learning
method. The policy update is a weighted version of BC, where the weights are determined by the
learnt critic.

Behaviour cloning (BC) An alternative way to learn a policy when the reward values are not
available is to use BC. BC agent does not require reward values as it attempts to directly imitate the
actions from the demonstrated trajectories DE .

4 Experiments

In our experiments, we validate that

1. Offline RL with learnt reward functions outperforms BC and RL with memorized rewards;
2. Using unlabelled data is advantageous for reward learning with both types of reward

supervision;
3. The proposed TGR-i algorithm is among the top performing methods that utilise only

episode-level annotations for training (Sec. 4.2) and it is quite robust to the choice of
hyperparameters (Sec. 4.4);

4. TGR-i with a sufficient amount of demonstrations matches the performance of the semi-
supervised algorithm sup-and-flat that uses timestep reward annotations (Sec. 4.3);

5. Offline RL policy training is forgiving of the reward model imperfections, but supervised
learning metrics still help to guide the reward model selection (Sec. 4.4).

4.1 Experimental setup

Environment and tasks We conduct the experiments with a simulated Kinova Jaco arm with 9
degrees of freedom. We use joint velocity control of 6 arm and 3 hand joints. Note that we are
interested in learning directly from pixel input and thus the agent needs to infer objects configuration
from its camera observations. There are two cameras: frontal and in-hand, each producing 64× 64
pixel images. Besides, we use the proprioception information. We perform several manipulation
tasks in 20× 20 cm basket: put into box, insertion, slide, and stack banana (Fig. 2). The environment
reward is binary: 1 if the task is solved and 0 otherwise.

Datasets The datasets are pre-generated according to a procedure from the work of Wang et al.
[34]. Each episode terminates either 20 timesteps after the task is solved or after 400 timesteps. The
size of each dataset D′ is around 8000 epsiodes. Half of these episodes are available for reward
learning, which includes demonstrations and unlabelled episodes. The ground truth rewards are
used to produce limited annotations, which are not observed for any other purpose. For simplicity,
we define a successful trajectory to be such that at least one timestep has a positive reward. The
demonstrations set DE is selected among successful episodes where trajectories are sampled with
probability 1

16 for methods with episode-level annotations (Sec. 3.2) and with probability 1
128 for

methods with timestep-level annotations (Sec. 3.3) 2. As a result of this sampling procedure, we
2Supplementary materials contain experiments with varying amounts of annotations.
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Table 1: Summary of the methods used in our experiments. The methods are organised in the order of increasing
amount of required reward supervision: a set of successful episodes, a set of successful episode with timestep
annotations, ground truth reward signal.

Name Reward supervision Description

BC A set of demonstrations DE BC on expert demonstrations.
SQIL A set of demonstrations DE CRR + memorised reward signal [27].
ORIL A set of demonstrations DE CRR + flat reward + best regularisation [39].
TGR A set of demonstrations DE CRR + time-guided reward function.
TGR-i A set of demonstrations DE CRR + TGR model refined at ith iteration.

sup-demo Timestep annotations on DE CRR + supervised reward model.
sup-and-flat Timestep annotations on DE CRR + semi-supervised reward model.

GT Ground truth rewards CRR + ground truth reward
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Figure 3: Policy training results for 4 tasks using different reward models trained with episode-level labels.
TGR-i strategy is consistently among the top performing models. In addition to this, in several cases it closely
approaches the performance achieved with ground truth labels.

have different amount of annotated trajectories in 4 tasks. In total, we use 181, 199, 206 and 371
episode-level annotated episodes and 28, 16, 19 and 47 timestep-level annotated episodes for tasks
box, insertion, slide, and stack banana respectively.

Baselines We summarize the methods in Tab. 1. They are organised in the order of increasing
amount of reward supervision. GT indicates an upper bound on the agent performance. The other
strategies are described in Sec. 3.

Agent training All agents are trained with CRR algorithm [34] (except for the BC agent) in Acme
framework [14]. The batch size is set to 1024 and the learning rate is 1× 10−4. In every experiment
we train a policy with 3 random seeds and show the rolling average score over 30% of data with the
shading indicating where 95% of the datapoints lie.

4.2 Learning from episode-level annotations

In Fig. 3 we show the performance of the policies that use episode-level annotations for determining
rewards as described in Sec. 3.2 and Tab. 1. BC policy reaches only between 1/3 and 2/3 of the score
attained by a CRR policy with ground truth rewards (GT). SQIL with memorized reward values
works well in some cases (box), but its performance is worse than BC in other cases (insertion, slide).
Learning a reward function from flat reward assumption with regularisation as in ORIL improves
significantly over BC. Finally, TGR-i further improves the results making it to be among the best
performing strategies across all tasks. To sum up, semi-supervised reward learning techniques greatly
reduce the gap to GT compared to BC while using exactly the same annotations.

4.3 Learning from timestep-level annotations

Fig. 4 shows the performance of the policies that learn reward functions from timestep-level annota-
tions described in Sec. 3.3 and Tab. 1: sup-demo and sup-and-flat. As before, for the reference, we
indicate the performance of GT and BC. Both sup-demo and sup-and-flat use timestep annotations
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Figure 4: Results of policy training for 4 tasks using different reward model trained with timestep-level labels.
Leveraging the unlabelled data with small amount of annotation in sup-and-flat allows to attain high scores that
closely approach the performance achieved with ground truth labels.

for 28, 16, 19 and 47 episodes for box, insertion, slide and stack banana tasks, but their performance
differs greatly. Using limited supervision in sup-demo sometimes does and sometimes does not
match the scores of BC and only once performs on par with sup-and-demo. Leveraging unlabelled
data as in sup-and-demo brings a remarkable benefit to the agent’s performance and allows it to
closely approach GT.

If we compare the results from Figs. 4 and 3, we notice that both TGR-i and sup-and-flat attain high
policy scores while using the different types of supervision. In practice, it means that if a sufficient
number (200–300) of demonstrations of a desired behaviour is available, there is no need to provide
timestep annotations. However, if only a handful (20–50) of demonstrations is available, detailed
annotations could help to match the performance.

4.4 Reward model results

Reward model quality can be assessed as the quality in the binary classification task of distinguishing
between successful and failure timesteps. Thus, we track the classification quality metrics. In the
initial trials with accuracy and recall they turned out to be unsuccessful due to the imbalance of the
classes. Using the validation loss is biased because of the nature of synthetic training labels. Thus,
we compute: (1) precision as the proportion of the correctly classified timesteps among positive
predictions, (2) f-score as the combination of precision and recall, and (3) AUC-PR as the area under
precision recall curve. To estimate the scores, we sample and annotate a limited validation set from
the unlabelled data: 89, 101, 76, and 59 episodes for box, insertion, slide, and stack banana tasks.

Model selection Among the different hyper-parameter values, such as the type of regularization in
ORIL, t0 in TGR, learning rate and batch size, we select the classification models that achieve the
best validation scores in each metrics. The policy curves in Figs. 3 and 4 show the best of reward
models that maximize each of the metrics. Then, we study how the quality of the reward models
relates to the quality of the trained policies. Fig. 5 shows the dependency between these scores and the
policy return at the end of the training (averaged of the last 10 000 iterations) as well as their Pearson
correlation. The reward model scores are correlated with the agent performance, however, it is hard
to identify which one would perform the best in advance. Nevertheless, very high classification
scores reliably indicate good policy performance (e.g., sup-and-flat). The reward model scores of
ORIL and sup-demo have similar spread, TGR-i scores are often higher and sup-and-flat method
has the highest scores. Higher reward model scores (even without improvement in the policy) might
be useful for different purposes, for example, for policy evaluation. Interestingly, sometimes reward
models with low scores can still provide informative signal for RL training (e.g., precision, f-score
and AUC-PR of ORIL methods in insertion task), thus, offline RL is forgiving of the noisy rewards.

Robustness of iterative refinement Fig. 6 shows the improvement in TGR-i policies with the
iterations of refinements. Six training curves in the figure are selected according to different validation
scores of the reward models and four figures correspond to iterations of reward model refinement.
We observe that while the performances of the best policies are not changing dramatically between
iterations, the diversity of the returns decreases. It means that even suboptimal policies perform well
after refinement and thus the task of model selection is facilitated.
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Figure 5: The relationship between the quality of the reward model (precision, f-score, and AUC-PR in first,
second, and third columns) and the performance of the policy in box (first row) and insertion tasks (second
row). We take advantage of the correlation between the scores for the model selection.
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Figure 6: Policy training results for TGR reward models with different hyper-parameters (different colours of
curves) as different iterations of refinement. The robustness of policy training increases with the iterations. Black
dotted line indicated the performance of GT.

5 Conclusions

In this article we presented several approaches towards learning the reward functions for offline RL
with limited reward supervision. As offline RL brings a promise of dealing with real-word tasks
by relying on the pre-recorded datasets, it is an important step to consider the situations where the
reward is not available as it may often occure in practice. We studied two types of reward supervision,
episode-level and timestep-level annotations. We analysed the performance in terms of reward
prediction quality and in terms of the quality of the policies trained with them. It turned out that using
semi-supervised reward models can closely approach the policy performance with the ground truth
rewards, both in settings with episode-level annotations and timestep-level annotations.

Future directions We identified useful correlations between the reward model quality and policy
performance, however, the dependency is not very strong and more studies might be needed. Reward
model selection is closely related to offline policy evaluation in RL. A lot of progress in this area
has been made recently [23] and reward model learning can benefit from it. So far, the proposed
reward refinement procedure was applied to one strategy (TGR), but one can think of combining it
with other reward learning algorithms (e.g., ORIL). We can also consider other types of annotations
and their combinations. Finally, the relation between the type of offline RL algorithm and the reward
model quality is not yet completely understood (Fig. 7) and requires further investigation.
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Figure 7: Results of policy training with two offline RL algorithms: CRR and D4PG for 4. The first row shows
the performance when using the ground truth reward signal and the second row is with a learnt reward function.
The performance of CRR with a learnt reward function stays close to the GT, however, D4PG with learnt reward
fails completely.

Reward learning and different offline RL algorithms As the first step towards understanding
how the type of offline RL algorithm influences the performance of the model with learnt reward,
we conduct the following experiment. We study the performance of D4PG algorithm [31, 3] (which
was used in the related work by Cabi et al. [5]) and CRR trained with ground truth rewards and
learnt reward model. The first row of Fig. 7 shows the performance of CRR and D4PG when relying
on the ground truth reward signal. Although CRR is clearly more efficient than D4PG, D4PG still
reaches reasonable scores in two tasks and non-zero scores in two other tasks. The second row shows
the performance of both algorithms with one of the learnt reward models. While CRR still attains
reasonably high scores in all tasks, D4PG struggles to learn any useful policy from this imprecise
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Figure 8: Results of policy training for 4 tasks using two reward model: sup-demo (first row) and sup-and-flat
(second row) trained with varying amount of supervision. The performance of sup-demo can be potentially
improved with more timesteps-level annotations, but the performance of sup-and-flat is almost indifferent to
the amount of direct supervision and superior to sup-demo.
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reward signal3. Our intuitive explanation of such difference in the behaviour of two offline algorithms
is that CRR relies on the rewards only when learning a critic and it uses a loss similar to BC for
acting. This makes it more robust to the errors in reward predictions. However, further investigation
is needed to understand how reward models inter-plays with the type of policy training.

Varying amount of timestep-level annotations Nest, we study at the performance of methods with
timestep-level annotations with the increasing amount of supervision. Fig. 8 shows the performance
of sup-demo in the first row and the second row shows the performance of sup-and-flat. We use
growing amounts of data: 1) the same amount of data as in Sec. 3.3 (x), 2) twice more (2x), 3) four
times more (4x), and 4) eight times more (8x). The curves of the same colour use the same amount
of data, but different hyperparameters as discussed in Sec. 4.4. When we use only annotated data as
in sup-demo, we notice that it is possible to improve the performance substantially by increasing the
amount of supervision, but seldom up to the level of sup-and-flat. Contrary to this, the performance
of the policy trained with sup-and-flat seems to be much less affected by the amount of timestep-level
supervision and works equally well with 1x and 8x annotations. We conclude that sup-and-flat
training algorithm is well suited for working with limited supervision.

3Note that using D4PG with a simple classification reward model with episode-level annotations closely
resembles the offline variant of GAIL.
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