
POPO: Pessimistic Offline Policy Optimization

Qiang He1,2, Xinwen Hou1, Yu Liu1

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

Abstract

Offline reinforcement learning (RL), also known as batch RL, aims to optimize
policy from a large pre-recorded dataset without interaction with the environment.
This setting offers the promise of utilizing diverse, pre-collected datasets to obtain
policies without costly, risky, active exploration. However, commonly used off-
policy algorithms based on Q-learning or actor-critic perform poorly when learning
from a static dataset. In this work, we study why off-policy RL methods fail
to learn in offline setting from the value function view, and we propose a novel
offline RL algorithm that we call Pessimistic Offline Policy Optimization (POPO),
which learns a pessimistic value function to get a strong policy. We find that
POPO performs surprisingly well and scales to tasks with high-dimensional state
and action space, comparing or outperforming several state-of-the-art offline RL
algorithms on benchmark tasks.

1 Introduction

One of the main driving factors for the success of the mainstream machine learning paradigm in
open-world perception environments (such as computer vision, natural language processing) is the
ability of high-capacity function approximators (such as deep neural networks) to learn inductive
models from large amounts of data [1] [2]. Combined with deep learning, reinforcement learning
(RL) has proven its great potential in a wide range of fields such as playing Atari games [3], playing
chess, Go and shoji [4], beating human players in StarCraft [5] etc. However, it turns out that
reinforcement learning is difficult to extend from physical simulators to the unstructured physical
real world because most RL algorithms need to actively collect data due to the nature of sequential
decision making, which is very different from the typical supervised learning setting. In this paper,
we study how to utilize RL to solve sequential decision-making problems from a fixed data set,
i.e., offline RL, a.k.a. batch RL, which is opposite to the research paradigm of active, interactive
learning with the environment. In the physical world, we can usually obtain static data from historical
experiences more easily than dynamics data, such as scheduling a region’s power supply system.
There are problems with model deviation for such a scenario, and too expensive for manufacturing a
simulator. Therefore, learning from static datasets is a crucial requirement for generalizing RL to
a system where the data collection procedure is time-consuming, risky, or expensive. In principle,
if assumptions about the quality of the behavior policies that produced the data can be satisfied,
then we can use imitation learning (IL) [6] to get a strong policy. However, many imitation learning
algorithms are known to fail in the presence of suboptimal trajectories or to require further interaction
with the environment in which the data is generated from [7] [8] [9]. Many off-policy RL methods
have proven their excellent sample-efficiency in complex control tasks or simulation environments
recently [10] [11] [12]. Generally speaking, off-policy reinforcement learning is considered to be able
to leverage any data to learn skills. However, in practice, these methods still fail when facing arbitrary
off-policy data without any opportunity to interact with its environment. Even the off-policy RL
method would fail given high-quality expert data produced by the same algorithm. This phenomenon
goes against our intuition about off-policy RL because if shown expert data, then exploration, RL’s
intractable problem, no longer exists. The sensitivity of existing RL algorithms to data limits the

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

broad application of RL. We aim to develop a completely offline RL algorithm, which can learn from
large, arbitrarily static datasets.

Our contributions are summarized as follows. Firstly, we show that a critical challenge arises
when applying value-based algorithms to completely offline data that the estimation gap of the
value function. When we evaluate the value function, the inability to interact with the environment
makes it unable to eliminate the estimation gap through the Bellman equation. This gap can lead
to the value function’s catastrophic estimation issue for data that the actions do not appear in the
data set. Secondly, We propose a novel offline policy optimization method, namely Pessimistic
Offline Policy Optimization (POPO), where the policy utilizes a pessimistic distributional value
function to approximate the true value, thus learning a strong policy. Finally, we demonstrate the
effectiveness of POPO by comparing it with SOTA offline RL methods on the MuJoCo locomotion
benchmarks [13]. Furthermore, we conduct fine-grained experiments to verify POPO reflects the
principles that informed its development.

2 Related Work

Imitation learning [6] methods study how to learn a policy by mimicking expert experience demon-
strations. IL has been combined with RL, either by learning from demonstrations [14] [9] [15], or
using deep RL extensions [7] [16], or using variants policy gradient methods [17] [8]. Although
this family of methods has proven its efficiency, it is still insufficient in the face of fully offline
datasets. They either require interaction with the environment or need high-quality data. These
requirements are unable to meet under offline setting, making the use of imitation learning from
offline data impractical [18]. How to deal with the impact of noise is also an urgent area in imitation
learning [19] [20]. Gao et al. [21] introduced an algorithm that learns from imperfect data, but it is
not suitable for continuous control tasks. We borrow from the idea of imitation learning and introduce
a generative model into POPO, which gives our model the potential of rapid learning.

For unlimited data, some offline RL methods have proven their convergence, such as using non-
parametric function approximation methods [22] and kernel methods [23]. Fitted Q-iteration, using
function approximation methods, such as decision trees [24], neural networks [25], cannot guarantee
convergence in the offline setting. Recently, many offline RL algorithm combined with deep learning
have received significant attention [18] [26] [27] [28] [29][30] [31] [32] [33]. Offline RL suffers
from the problem of the distribution shift, a.k.a. out-of-distribution (OOD) actions. Specifically, the
target of the Bellman backup operator utilizes actions sampled from the learned policy in the policy
evaluation and policy improvement process, which may not exist in the datasets. In the sense of
batch-constrained, the BCQ algorithm [18] can ensure that it converges to the optimal policy under
the given consistent datasets. Bootstrapping error accumulation reduction (BEAR) algorithm [26]
uses maximum mean discrepancy (MMD) [34] to constrain the support of learned policy close to
the behavior policy. Safe policy improvement with baseline bootstrapping (SPIBB) [27], similar
to BEAR, constrains the support of learned policy w.r.t. behavior policy. Behavior regularized
actor-critic (BRAC) [29] is an algorithmic framework that generalizes existing approaches to solve
the offline RL problem by regularizing the behavior policy. AlgaeDICE [30] is an algorithm for
policy gradient from arbitrary experience via DICE [35], which is based on a linear programming
characterization of the Q-function. Critic Regularized Regression (CRR) [31] algorithm can be seen
as a form of filtered behavior cloning where data is selected based on the policy’s value function.
Conservative Q-learning (CQL) [32] aims to learn a conservative Q-function such that the expected
value of a policy under this Q-function lower-bounds its true value. Random ensemble mixture
(REM) [28] uses random convex combinations of value functions to learn a static data set. Besides,
REM proves that distributional RL can learn a better policy than the conventional form in offline
setting. But there is a controversy that the success comes from the massive amount of data resulting in
actions induced by concurrent policy always in the datasets [36]. However, their work did not consider
distributional value functions to control the attitude towards the OOD actions, thus improving policy.
We recommend that readers check IQN algorithm [37]. These methods focus on how to deal with
OOD actions.

2

3 Background

The optimization goal of RL is to get an optimal policy by interacting with its environment in discrete
timesteps. We formalize the standard RL paradigm as a Markov Decision Process (MDP), defined by
a tuple (S,A,R,p, ρ0, γ) with state space S , action space A, reward functionR : S ×A× S → R,
transition probability function p(s′, r|s, a), initial state distribution ρ0, and discount factor γ ∈ [0, 1).
At each time step t , the agent receives a state s ∈ S and selects an action a ∈ A with respect to
its policy π : S → A, then receiving a reward signal r and a new state s ′ from its environment. A
four-element tuple (s, a, r, s′) is named transition. The optimization problem in RL is to maximize the
cumulative discounted reward, defined as Rt =

∑
i=t γ

i−tr(si, ai) with γ determining the priority
of recent rewards. Here the return depends on the actions, thus on the policy π, deterministic or
stochastic. Typically, the action-value function, a.k.a. Q-function, critic, is defined as Q(s, a) =
Ep,π[Rt|s0 = s, a0 = a] which measures the quality of an action a given a state s. State-value
function, a.k.a value function, V -function, is defined as V (s) = Ep,π[Rt|s0 = s] measuring the
quality of an individual state s. Both Q-function and V -function can be applied to evaluate the policy
and further guide the agent to learn a higher quality value, i.e., a better policy. For a given policy π,
the Q-function can be estimated recursively by Bellman backup operator [38]:

Qπ(s, a) = r + γEs′,a′ [Qπ(s′, a′)], (1)

where a′ ∼ π(s′). The Bellman operator is gamma-contraction when γ ∈ [0, 1) with a unique
fixed point Qπ(s, a). We can recover the optimal policy through the corresponding optimal value
function Q∗(s, a) = maxπ Q

π(s, a) in discrete action space. When we apply RL to large state space
or continuous state space, the value function can be approximated by neural networks, which is
called Deep Q-networks [3]. The Q-function is updated by r + γQ(s′, π(s′); θ′), where π(s′) =
arg maxa′ Q(s′, a′; θ′) and θ′ is a delayed copy of θ. Generally, we sample mini-batch transitions
from replay buffer B [39] and feed the data into the deep Q-networks. In offline policy optimization
setting, we consider the buffer B static and no further data can be added into itself and call it datasets
D. A vitally significant improvement of DQN is soft update. When updating the network, we freeze a
target network Q(· · · ; θ′) to stabilize the learning processing further. The frozen network are updated
by θ′ = ηθ + (1− η)θ′ every specific time steps t, where the η is a small scalar [3]. In continuous
action space, the arg max operator in Equation 1 is intractable. Thus Sutton et al. [40] introduced
policy gradient method. Combined with aforementioned value-based method, actor-critic method
was introduced, which is widely used in the field of deep RL. When we train an actor-critic agent, the
action selection is performed through a policy network π(·;φ), a.k.a. actor, and updated w.r.t. a value
network [38]. Silver et al. [41] proposed deterministic policy gradient theorem to optimize policy:

φ← arg max
φ

Es [Qπ(s, π(s;φ); θ)] , (2)

which corresponds to optimizing the Q-function Qπ(·, ·; θ) by the chain rule. When combined with
tricks in DQN [3], this algorithm is referred to as deep deterministic policy gradients (DDPG) [10].

4 Diagnosing Value Function Estimation

Offline reinforcement learning suffers from OOD actions. Specifically, the target of the Bellman
backup operator utilizes actions generated by the learned policy in the policy evaluation and policy
improvement process. However, the generated actions may not exist in the dataset. Thus, we cannot
eliminate the error through the Bellman update. Both the value-based method and policy gradient
methods would fail for this reason. Hasselt et al. [42] observed that overestimation occurs in the
DQN algorithm. We argue that the analogous phenomenon also occurs in offline scenario but for
the different underlying mechanism. These two phenomena are coupled with each other, making
the value function more difficult to learn than online setting. In the standard reinforcement learning
setting, these errors due to erroneous estimation could be eliminated through the agent’s exploration
to obtain a true action value and then updated by the Bellman backup operator. But for offline setting,
this error cannot be eliminated due to the inability to interact with the environment. Furthermore,
due to the backup nature of the Bellman operator, the error would gradually accumulate, which
would eventually cause the value function error to become larger, leading to the failure of policy
learning. Some algorithms train policies through optimizing the Q-value indirectly. And some actor-
critic style methods optimize the policies directly but are assisted by the value function. Therefore,

3

out-of-distribution actions harm these RL algorithms’ performance in offline setting. We call the
aforementioned error estimation gap.

Definition 1. We define estimation gap for policy π in state s as δMDP(s) = V π(s)− V πD (s) where
V π(s) is true value and V πD (s) is estimated on dataset D.
Theorem 1. Given any policy π and state s, the estimation gap δMDP(s) satisfies the following
Bellman-like equation:

δMDP(s) =
∑
a

π(a|s)
∑
s′,r

[p(s′, r|s, a)− pD(s′, r|s, a)]
(
r+

γV πD (s′)
)

+ γ
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)δMDP(s′)

Proof. Through the definition of the V function, it can be proved by expanding this equation.

Theorem 1 shows that the estimation gap is a divergence function w.r.t. the transition distributions,
which means if the policy carefully chooses actions, the gap can be minimized by visiting regions
where the transition probability is similar.
Remark 1. For any reward function, δMDP = 0 if and only if p(s′, r|s, a) = pD(s′, r|s, a).

4.1 Does this phenomenon occurs in practical?

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e5)

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e

Va
lu

e

Quality=expert, Value Estimation
Estimate 50k
Estimate 200k
Estimate 1M
True 50k
True 200k
True 1M

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e5)

1250

1000

750

500

250

0

250

500

750

Av
er

ag
e

Re
tu

rn

Quality=expert, Performance

size
50k
200k
1M

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e5)

50

0

50

100

150

200

250

300

Av
er

ag
e

Va
lu

e

Quality=random, Value Estimation
Estimate 50k
Estimate 200k
Estimate 1M
True 50k
True 200k
True 1M

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e5)

1000

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

Quality=random, Performance

size
50k
200k
1M

Figure 1: The relationship between data quality, quantity, and corresponding average return. We
train TD3 algorithm on MuJoCo halfcheetah-v2 environment over five random seeds. ’Estimate 50k’
means the curve shows the agent’s value estimation on the size=50k dataset. To maximally control
the influence of random factors, we control the random seed of each experiment. The shaded area
represents a standard deviation.

15 10 5 0 5 10 15
x

15

10

5

0

5

10

15

y

Distributions of Expert
Label

Expert Data
Expert Trajectory

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Distributions of Random
Label

Random Data
Random Trajectory

Figure 2: Visualization of data generated by the
halfcheetah-v2 environment. Left: expert data,
visiting the different area. Right: random data, vis-
iting a similar area. The state space is 17-dim, and
the action space is 6-dim. We concat a trajectory
as a vector, and we reduce the trajectories with a
dimension of 23k to a two-dimensional plane.

We utilize datasets [43] of different qualities
and sizes to verify our analysis. We train TD3,
a SOTA algorithm on continuous control tasks,
on halfcheetah-v2 environment in offline set-
ting. We show results in Figure 1. Surprisingly,
training on random data gives us a better aver-
age return than expert data. Observing its value
function, we find that for expert data, as the
data set capacity increases, the estimated value
function deviates more and more from the true
value, which verifies there does exist an estima-
tion gap. The erroneous estimation of the value
function further leads to the failure of policy
learning. Why can random data learn better?
The theory above inspires us that if the policy
chooses actions carefully, it can eliminate the
estimation gap by visiting regions with similar
transition probability, suggesting that the phe-
nomenon may be due to the large difference in the visited state. Thus, we visualizing [44] the
distributions of the datasets and trajectories in Figure 2. We collect five trajectories every 5,000
training steps. Expert/random trajectory means we train TD3 on expert/random dataset in offline

4

setting. We find that the TD3 agent does visit a similar area on random data. Still, for expert data, the
agent visits different area from expert data even though they have the same origin, which is consistent
with our theory.

5 Pessimistic Offline Policy Optimization

𝑠′ 𝑟s 𝑎

Encoder

Decoder

ො𝑎

Decoder

ො𝑎

Actor

Critic

Actor Loss Critic Loss

VAE Loss

𝑎𝑠 𝑠′

Figure 3: The architecture of POPO. Left: Conditional VAE Optimization. Right: Policy Optimiza-
tion.

Our insight is if the agent could maintain a pessimistic attitude towards the actions out of the support
of behavior policy when learning the value function, then we can suppress the estimation gap of the
value function outside the data set so that the algorithm can obtain a more melancholic value function
to learn a strong policy through an actor-critic style algorithm. To capture more information on the
value function, we utilize distributional value function [45] [37], which has proved its superiority in
the online learning setting.

5.1 Pessimistic Value Function

Now we introduce pessimistic value function estimation from distributional RL view. The distribu-
tional Bellman optimality operator is defined by:

T Zπ(s, a) := r + γZπ(s′, arg max
a′∈A

EZ(s′, a′)), (3)

where s′ ∼ p(·|s, a) and random return Zπ(s, a) :=
∑∞
t=0 r(st, at), s0 = s, a0 = a, st ∼

p(·|st−1, at−1), at ∼ π(·|st), and X = Y denotes that random variable X and Y have equal
distribution. Let F−1Z (τ) denotes the quantile function at τ ∈ [0, 1] for random variable Z. We
write Zτ := F−1Z (τ) for simplicity. Similar to [37], we model the state-action quantile function as a
mapping from state-action to samples from certain distribution, such as τ ∼ U(0, 1) to Zτ (s, a). Let
β : [0, 1] → [0, 1] be a distortion risk measure. Then the distorted expectation of random variable
Z(s, a) induced by β is:

Qβ(s, a; θ) := Eτ∼U(0,1)[Zβ(τ)(s, a; θ)]. (4)

We also call Zβ critic. By choosing different β, we can obtain various distorted expectation, i.e.,
different attitude towards the estimation value. To avoid the abuse of symbols, τ in the following
marks τ acted by β. For the critic loss function, given two samples, τ, τ ′ ∼ U(0, 1), the temporal
difference error at time step t is:

∆τ,τ ′

t = rt + γZτ ′(st+1, πβ(st+1))− Zτ (st, at). (5)

Then the critic loss function of POPO is given by:

L(st, at, rt, st+1) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(∆
τi,τ

′
j

t), (6)

5

where

ρκτ (x) = |τ − I{x < 0}|Lκ(x)

κ
, with (7)

Lκ(x) =


1

2
x2, if|x| ≤ κ

κ(|x| − 1

2
κ), otherwise

in which N and N ′ is the number of i.i.d. samples τi, τ ′j draw from U(0, 1) respectively. Thus, given
Z function, we can recover the Qβ(s, a) from the Equation 4, further guides the learning process of
policy.

5.2 Distribution-Constrained Optimization

To tackle OOD actions, we introduce a generative model, specifically, conditional Variational Auto-
Encoder (VAE) G(·;ω), consists of Encoder E(·|·;ω1) and Decoder D(·|·;ω2). Furthermore, VAE
could constrain the distance between the actions sampled from the learned policy and that provided
by the datasets. VAE reconstructs action on condition state s. We call the action produced by the
VAE the central action â. Thus, the loss function of VAE is:

LVAE = Es,a
[
(a− â)2 +

1

2
DKL(N (µ,Σ)‖N (0, I)

]
. (8)

where s, a ∼ D and â = D(z|s;ω2). To generate actions a′ w.r.t. state s′, firstly we copy the action
n times and send it to VAE in order to incorporate with policy improvement. Then we feed the actor
network with central action â′i = D(zi|s′;ω2) and state s′, then the actor network π(· · · ;φ) outputs
a new action ā′i. Combining â′i and ā′i with residual style with coefficient ξ, we get the selected action
ã′i. We choose action of n output with highest value as the final output:

a′new = arg max
ai

Qβ(s′, ã′i; θ), (9)

where {ã′i = (π ◦D)(zi|s′)}ni=1. We call this action generation method the residual action generation.
The whole model structure is shown in Figure 3. We use the DPG method (Equation 2) to train actor
network π. The benefits of residual action generation are apparent. In this way, for a given state, the
generated action can be close to the actions contained in the data set with a similar state. At the same
time, residual action generation maintains a large potential for policy improvement. We summarize
the entire algorithm on Algorithm 1.

Algorithm 1 Pessimistic Offline Policy Optimization (POPO)
Require
• Data set D, num of quantiles N , target network update rate η, coefficient ξ.
• Distortion risk measure β, random initialized networks and corresponding target networks,

parameterized by θ′i ← θi, φ
′ ← φ, VAE G = {E(·, ·;ω1), D(·, ·;ω2)}.

for iteration = 1, 2, ... do
Sample mini-batch data (s, a, r, s′) from data set D.
Update VAE
µ, σ = E(a|s;ω1), â = D(z|s, ;ω2), z ∼ N (µ, σ)
ω ← arg minω

∑
(a− â)2 + 1

2DKL(N (µ,Σ)‖N (0, I).
Update Critic.
Set Critic loss L(· · · ; θ) (Equation 6).
θ ← arg minθ L(· · · ; θ).
Update actor
Generate anew from Equation 9
φ← arg maxφQβ(s, anew)
Update target networks
θ′i ← ηθi + (1− η)θ′i, φ

′ ← ηφ+ (1− η)φ′

end for

6

6 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

2000

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
tu

rn
halfcheetah-expert-v0

Algorithm
POPO
BCQ
REM
RSEM
BEAR

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

hopper-expert-v0
Algorithm
POPO
BCQ
REM
RSEM
BEAR

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

walker2d-expert-v0

Algorithm
POPO
BCQ
REM
RSEM
BEAR

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

3000

2000

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

ant-expert-v0

Algorithm
POPO
BCQ
REM
RSEM
BEAR

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

3000

2000

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

ant-medium-expert-v0

Algorithm
POPO
BCQ
REM
RSEM
BEAR

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

3000

2000

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

ant-medium-v0

Algorithm
POPO
BCQ
REM
RSEM
BEAR

Figure 4: Performance curves for OpenAI gym continuous control tasks in the MuJoCo suite. The
shaded region represents a standard deviation of the average evaluation over five seeds. The BCQ
is stable when tested, but it is not as good as the POPO. BEAR suffers from performance decrease
when training too much time. REM almost failed during testing.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (5e5)

3000

2000

1000

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

ant-expert-v0

Algorithm
TD3
TD4
OPO
POPO

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (5e5)

0

2000

4000

6000

8000

10000

12000
Av

er
ag

e
Re

tu
rn

halfcheetah-expert-v0

Algorithm
TD3
TD4
OPO
POPO

Figure 5: Performance curves for ablation study.
The shaded region represents a standard deviation
of the average evaluation. The results show that
the pessimistic critic does have improvement than
the original TD3 algorithm. VAE makes offline
optimization successful because it deals with the
OOD action issue. The combination between VAE
and pessimistic critic would produce better results.

To evaluate our algorithm, we measure the per-
formance of POPO on OpenAI gym [13] contin-
uous control tasks. We utilize the various quality
original transitions from the d4rl datasets [43] to
train our model. "Expert" means the dataset is
generated by a fine-tuned RL policy. "Medium-
expert" marks the dataset is produced by mix-
ing equal amounts of expert demonstrations and
suboptimal data. The "medium" dataset con-
sists of data generated by the suboptimal pol-
icy. Given the recent concerns about algorithms
reflect the principles that informed its develop-
ment [46] [47], we implement POPO without
any engineering tricks so that POPO works as
we originally intended for. We compare our algo-
rithm with the recently proposed SOTA offline
RL algorithms BCQ1, REM2, and BEAR3. We
use the authors’ official implementations. The
performance curves are graphed in Figure 4. Note that we have not performed fine-tuned to the POPO
algorithm due to the limitation of computing resources. Nevertheless, the results show that POPO
matches or outperforms all compared algorithms.

6.1 Ablation Study

The main modifications of POPO are VAE and pessimistic distributional critic. To explore the rule
of each component, we design the ablation study. We call the POPO version without pessimistic
distributional value function OPO, meaning OPO adopts TD3 style value function. We call the POPO
version without VAE TD4 since it is TD3 with a pessimistic critic. Also, we use the original TD3

1https://github.com/sfujim/BCQ.
2https://github.com/agarwl/off_policy_mujoco
3https://github.com/rail-berkeley/d4rl_evaluations

7

https://github.com/sfujim/BCQ
https://github.com/agarwl/off_policy_mujoco
https://github.com/rail-berkeley/d4rl_evaluations

algorithm as a baseline because it neither has VAE nor a pessimistic critic. In this experiment, all the
algorithms are tested over four seeds. The performance curves are graphed in Figure 5. The results
show that the pessimistic distributional value function does have a robust performance improvement
compared to TD3 and OPO. Besides, VAE makes the offline RL successful because it solves the OOD
actions issue. The combination between VAE and pessimistic critic would produce better results.
Because VAE brings significant performance improvements, the pessimistic value function’s positive
impact on performance is relatively small but still significant.

7 Discussion and Future Work

In this work, we study why off-policy RL methods fail to learn in offline setting and propose a new
offline RL algorithm. Firstly, we show that the inability to interact with the environment makes offline
RL unable to eliminate the estimation gap through the Bellman equation. We conduct fine-grained
experiments to verify the correctness of our theory. Secondly, We propose the Pessimistic Offline
Policy Optimization (POPO) algorithm, which learns a pessimistic value function to get a strong
policy. Finally, we demonstrate the effectiveness of POPO by comparing it with SOTA offline RL
methods on the MuJoCo locomotion benchmarks datasets.

8 Acknowledgments

We thank anonymous reviewers for their comments. Xinwen Hou is the corresponding author. Qiang
He thanks Yuxun Qu for helping to draw figures. This project was supported by the National Natural
Science Foundation of China (61379099).

Broader Impact

In this work we we propose the Pessimistic Offline Policy Optimization (POPO) algorithm which
learns a conservative value function to get a strong policy in continuous control tasks. Our proposed
method compares or outperforms the previous state-of-the-art policy gradient methods even in the
challenging high-dimensional control tasks. Thus more fine-grained investigations on applying
distributional RL methods into offline setting should be a promising future direction. Empirically,
it is promising to apply our method to areas where interaction with the environment is extremely
expensive, e.g., autonomous-driving, robotics, etc.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[4] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[5] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[6] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

8

[7] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan
Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep q-learning from
demonstrations. arXiv preprint arXiv:1704.03732, 2017.

[8] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining
reinforcement learning & imitation learning. arXiv preprint arXiv:1805.11240, 2018.

[9] Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations. In
IJCAI-24th International Joint Conference on Artificial Intelligence, 2015.

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[11] Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[12] Qiang He and Xinwen Hou. Reducing estimation bias via weighted delayed deep deterministic
policy gradient. arXiv preprint arXiv:2006.12622, 2020.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[14] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from
limited demonstrations. In Advances in Neural Information Processing Systems, pages 2859–
2867, 2013.

[15] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimization
handling expert demonstrations. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 549–564. Springer, 2014.

[16] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

[17] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with policy
optimization. In International Conference on Machine Learning, pages 2760–2769, 2016.

[18] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062,
2019.

[19] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[20] Owain Evans, Andreas Stuhlmüller, and Noah D Goodman. Learning the preferences of
ignorant, inconsistent agents. arXiv preprint arXiv:1512.05832, 2015.

[21] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement
learning from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

[22] Geoffrey J Gordon. Stable function approximation in dynamic programming. In Machine
Learning Proceedings 1995, pages 261–268. Elsevier, 1995.

[23] Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine learning,
49(2-3):161–178, 2002.

[24] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6(Apr):503–556, 2005.

[25] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages 317–328.
Springer, 2005.

9

[26] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11784–11794, 2019.

[27] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pages 3652–3661,
2019.

[28] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in
off-policy deep reinforcement learning. arXiv preprint arXiv:1907.04543, 2019.

[29] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[30] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-
gaedice: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[31] Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

[32] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[33] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted
imitation learning for batched historical data. In Advances in Neural Information Processing
Systems, pages 6288–6297, 2018.

[34] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[35] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation
of discounted stationary distribution corrections. In Advances in Neural Information Processing
Systems, pages 2318–2328, 2019.

[36] Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking
batch deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019.

[37] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. arXiv preprint arXiv:1806.06923, 2018.

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[39] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[40] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[41] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. 2014.

[42] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[43] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[44] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

10

[45] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. arXiv preprint arXiv:1707.06887, 2017.

[46] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case
study on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020.

[47] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

11

	Introduction
	Related Work
	Background
	Diagnosing Value Function Estimation
	Does this phenomenon occurs in practical?

	Pessimistic Offline Policy Optimization
	Pessimistic Value Function
	Distribution-Constrained Optimization

	Experiments
	Ablation Study

	Discussion and Future Work
	Acknowledgments

