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Abstract

Reinforcement learning (RL) encompasses both online and offline regimes. Unlike
its online counterpart, offline RL methods learn only using logged-data, without
interaction with the environment. This makes offline RL a promising direction
for real-world applications, such as healthcare, where repeated interaction with
environments is prohibitive. However, since offline RL losses often involve evalu-
ating state-action pairs not well-covered by training data, they can suffer due to
the errors introduced when the function approximator attempts to extrapolate those
pairs’ value. These errors can be compounded by bootstrapping when the func-
tion approximator overestimates, leading the value function to grow unbounded,
thereby crippling learning. In this paper, we introduce a three-part solution to
combat extrapolation errors: (i) behavior value estimation, (ii) ranking regulariza-
tion, and (iii) reparametrization of the value function. We provide ample empirical
evidence on our method’s effectiveness, showing the state of the art performance
on the RL Unplugged (RLU) ATARI dataset. We also introduce new datasets for
bsuite and partially observable DeepMind Lab environments, on which our method
outperforms state of the art offline RL algorithms.

Agents are, fundamentally, entities that map observations to actions and can be trained with rein-
forcement learning (RL) in either an online or offline fashion. An agent learns through trial and error
by interacting with its environment when trained with online RL. Online RL has had considerable
success recently: on Atari [34], the game of GO [43], video games like StarCraft II, and Dota 2,
[49, 9], and robotics [4]. However, the requirement of extensive environmental interaction combined
with a need for exploratory behavior makes these algorithms unsuitable and potentially unsafe for
many real-world applications. In contrast, in the offline RL setting [14, 15, 20, 31], also known as
batch RL [13, 30], agents learn from a fixed dataset which is assumed to have been logged by other
(possibly unknown) agents (see Fig. 1.) Learning purely from logged data allows these algorithms to
enable real-world applications, including in problems such as healthcare and self-driving cars, where
repeated interaction with the environment is costly and potentially unsafe or unethical, and the logged
historical data is abundant. However, these algorithms tend to behave considerably worse than their
online counterpart.

Although similar in principle, there are some important differences between the two regimes. While
it is useful for online agents to explore unknown regions of the state space so as to gain knowledge
about the environment and better their chances of finding a good policy [41], this is not the case for
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Figure 1: In online RL (left), the agent must interact with the environment to gather data to learn from. In offline
RL (right), the agent must learn from a logged dataset.

the offline setting. Choosing actions not well-represented in the dataset for offline methods would
force the agent to rely on function approximators’ extrapolation ability. This can lead to substantial
errors during training, as well as during deployment of the agent. During training, the extrapolation
errors are exacerbated by bootstrapping and the use of max operators (e.g. in Q-learning) where
evaluating the loss entails taking the maximum over noisy and possibly overestimated values of the
different possible actions. This can result in a propagation of the erroneous values, leading to extreme
over-estimation of the value function and potentially unbounded error; see [17, 27] and our remark in
Appendix A. As we empirically show in Section 3.2, extrapolation errors are a different source of
overestimation compared to those considered by standard methods such as Double DQN [22], and
hence cannot be addressed by those approaches. In addition to extrapolation errors during training,
a further degradation in performance can result from the use of greedy policies at test time which
maximize over value estimates extrapolated to under-represented actions. We propose a coherent set
of techniques that work well together to combat extrapolation error and overestimation:

Behavior value estimation. First, we address extrapolation errors during training time. Instead of
Qπ
∗
, we estimate the value of the behavioral policy QπB , thereby avoid the max-operator during

training. To improve upon the behavioral policy, we conduct what amounts to a single step of policy
improvement by employing a greedy policy at test time. Surprisingly, this technique with only one
round of improvement allows us to perform significantly better than the behavioral policies and often
outperform existing offline RL algorithms.

Ranking regularization. We introduce a max-margin based regularizer that encourages the value
function, represented as a deep neural network, to rank actions present in the observed rewarding
episodes higher than any other actions. Intuitively, this regularizer pushes down the value of all
unobserved state-action pairs, thereby minimizing the chance of a greedy policy selecting actions
under-represented in the dataset. Employing the regularizer during training will minimize the impact
of the max-operator used by the greedy policy at test time, i.e. this approach addresses extrapolation
errors both at training and (indirectly) at test time.

Reparametrization of Q-values. While behavior value estimation typically performs well, par-
ticularly when combined with ranking regularization, it only allows for one iteration of policy
improvement. When more data is available, and hence we can trust our function approximator to
capture more of the structure of the state space and as a result generalize better, we can rely on
Q-learning which permits multiple policy improvement iterations. However this exacerbates the
overestimation issue. We propose, in addition to the ranking loss, a simple reparametrization of the
value function to disentangle the scale from the relative ranks of the actions. This reparametrization
allows us to introduce a regularization term on the scale of the value function alone, which reduces
over-estimation.

To evaluate our proposed method, we introduce new datasets based on bsuite environments [35], as
well as the partially observable DeepMind Lab environments [6]. We further evaluate our method
as well as baselines on the RL Unplugged (RLU) Atari dataset [20]. We achieve a new state of
the art (SOTA) performance on the RLU Atari dataset as well as outperform existing SOTA offline
RL methods on our newly introduced datasets. Last but not least, we provide careful ablations
and analyses that provide insights into our proposed method as well as other existing offline RL
algorithms.

Related work. Early examples of offline/batch RL include least-squares temporal difference meth-
ods [10, 29] and fitted Q iteration [13, 38]. Recently, Agarwal et al. [2], Fujimoto et al. [17], Kumar
et al. [27], Siegel et al. [42] , Wang et al. [50] and Ghasemipour et al. [18] have proposed offline-RL
algorithms and shown that they outperform off-the-shelf off-policy RL methods. There also exist
methods explicitly addressing the issues stemming from extrapolation error [17].
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Figure 2: Two types of extrapolation error. Type A is most dangerous for offline RL, due to the max operation.
Type B is difficult to address without additional interactions with the environment. Here, we aim to address Type
A extrapolation errors. Qθ corresponds to the estimated values and Q’s are the real value of an action in state s.

1 Background and Problem Statement

We consider, in this work, Markov Decision Processes (MDPs) defined by (S,A, P,R, ρ0, γ) where
S is the set of all possible states and A all possible actions. An agent starts in some state s0 ∼ ρ0(·)
where ρ0(·) is a distribution over S and takes actions according to its policy a ∼ π(·|s), a ∈ A,
when in state s. Then it observes a new state s′ and reward r according to the transition distribution
P (s′|s, a) and reward function r(s, a). The state action value function Qπ describes the expected
discounted return starting from state s and action a and following π afterwards:

Qπ(s, a) = E

[∑
t=0

γtr(st, at)

]
, s0 = s, a0 = a, st ∼ P (·|st−1, at−1), at ∼ π(·|st), (1)

and V π(s) = Ea∼π(·|s)Qπ(s, a) is the state value function. The optimal policy π∗, which we aim to
discover through RL, is one that maximizes the expected cumulative discounted rewards, or expected
returns such that Qπ

∗
(s, a) ≥ Qπ(s, a) ∀s, a, π. For notational simplicity, we denote the policy used

to generate an offline dataset as πB1. In the same vein, for a state s in an offline dataset, we write
GB(s) to denote an empirical estimate of V πB(s), computed by summing future discounted rewards
over the trajectory that s is part of.

Approaches to RL can be broadly categorized as either on-policy or off-policy algorithms. Whereas
on-policy algorithms update their current policy based on data generated by that same policy, off-
policy approaches can take advantage of data generated by other policies. Algorithms in the mold of
fitted Q-iteration make up many of the most popular approaches to deep off-policy RL [34, 32, 21].
This class of algorithms learns a Q function by minimizing the Temporal Difference (TD) error. To
increase stability and sample efficiency, the use of experience replay is also typically employed. For
example, DQN [34] minimizes the following loss function:

Lθ′(θ) = E(s,a,r,s′)∼D

(
Qθ(s, a)−

(
r + γmax

a′
Qθ′(s

′, a′)
))2

, (2)

where D represents experience replay, i.e. a dataset generated by some behavior policy. Typically,
for off-policy algorithms the behavior policy is periodically updated to remain close to the policy
being optimized. A deterministic policy can be derived by being greedy with respect to Q̂, i.e. by
defining π(s) = arg maxaQ(s, a). In cases where maximization is nontrivial (e.g. continuous
action spaces), we typically adopt a separate policy π and optimize losses similar to: Lθ′(θ) =

E(s,a,r,s′)∼D

(
Qθ(s, a)−

(
r + γEa′∼π(·|s′)[Qθ′(s′, a′)]

))2
. In this case, π is optimized separately

in order to maximize Ea∼π(·|s)[Q(s, a)], sometimes subject to other constraints [32, 21]. Various
extensions have been proposed for this class of algorithms, including but not limited to: distributional
critics [8], prioritized replays [40], and n-step returns [25, 5, 23].

In the offline RL setting (see Figure 1, right), agents learn from fixed datasets generated via other
processes, thus rendering off-policy RL algorithms particularly pertinent. Many existing offline RL
algorithms adopt variants of Equation (2) to learn value functions; e.g. [3]. Offline RL, however,
is different from off-policy learning in the online setting. The dataset used is finite and fixed, and
does not track the policy being learned. When a policy moves towards a part of the state space not
covered by the behavior policy(s), for example, one cannot effectively learn the value function. We
will explore this in more detail in the next subsection.

1Our proposed approach does not depend on πB being a coherent policy.

3



1.1 Extrapolation and overestimation in offline RL

In the offline setting, when considering all possible actions for a next state in Equation (2), some of
the actions will be out-of-distribution (OOD), i.e. these actions were never picked in that particular
state by the behavior policy used to construct the training set (hence not present in the data). In such
circumstances, we have to rely on the current Q-network’s ability to extrapolate beyond the training
data, resulting in extrapolation errors when evaluating the loss. Moreover, the need for extrapolation
can lead to value overestimation, as explained below.

Value overestimation (see Fig. 2) happens when the function approximator predicts a larger value
than the ground truth. In short, taking the max over actions of several Q-network predictions, as in
Equation (2), leads to overconfident estimates of the true value of the state. We will expand on this
point shortly. Before doing so, it is worth pointing out that this phenomenon of overestimation was
well-studied in the online setting [46, 47] and some prior works sought to address this problem [46, 15].
However, in offline RL overestimation manifests itself in more problematic ways, which cannot be
addressed by the solutions proposed in online RL [27]. To see this, let us consider Equation (2)
again. The max operator is used to evaluate Qθ′ for all actions in a given state, including actions
absent in the dataset (OOD actions). For OOD actions, we depend on extrapolated values provided by
Q̂θ′ . While being an extremely powerful family of models, neural networks will produce erroneous
predictions on unobserved state-action pairs, and sometimes, these will be artificially high. These
errors will be propagated in the value of other states via bootstrapping. Due to the smoothness
of neural networks, by increasing the value of actions in the OOD action-state’s neighborhood,
the overestimated value itself might increase, creating a vicious loop. Mainly we remark that, in
such a scenario, typical gradient descent optimization can diverge and escape towards infinity. See
Appendix A for a formal statement, and proof on this statement, though similar observations had
been made before by Fujimoto et al. [17] and Achiam et al. [1]. In the online setting, when the agent
overestimates some state-action pairs, they will be chosen more often due to optimistic estimates of
values, even in the off-policy setting where the behavior policy trails the learned one. The online agent
would then act, collect data, thereby correcting extrapolation errors. This form of self-correction is
absent in the offline setting, and due to the overestimation from extrapolation, this absence can be
catastrophic.

2 Solutions to Address Extrapolation Error

We build towards a solution to the extrapolation errors by i) using behavior value estimation to reduce
training time extrapolation error, ii) ranking regularization of the Q-networks to better handle test time
extrapolation error, iii) reparameterizing the Q-function to prevent divergence of these predictions to
infinity.

2.1 Behavior Value Estimation

One potential answer to the overestimation problem is to remove the max-operator in the policy
evaluation step by optimizing the alternative loss:

Lθ′(θ) = E(s,a,r,s′,a′)∼D

(
Qθ(s, a)−

(
r + γQθ′(s

′, a′)
))2

. (3)

This update rule relies on transitions (s, a, r, s′, a′) collected by the behavior policy πβ and resembles
the policy evaluation step of SARSA [39, 48]. Since the update contains no max-operator, andQθ are
evaluated only on state-action pairs that are part of the dataset, the learning process is not affected by
overestimation. However, the removal of the max-operator means the update simply tries to evaluate
the value of the behavioral policy. The astute reader may question our ability to improve upon the
behavioral policy when using this update rule. We note, that when acting using the greedy policy
π(s) = arg maxaQθ(s, a) we are in fact performing a single policy improvement step. Fortunately,
this one step is typically sufficient for dramatic gains as we show in our experiments (see for example
Fig. 10). This finding matches our understanding that policy iteration algorithms typically do not
require more than a few steps to converge to the optimal policy [29, 45, Chapter 4.3].

2.2 Ranking regularization

Policy evaluation with Eq. equation 3 effectively reduces overestimation during training. But it also
avoids learning the Q values of OOD actions. Due to the lack of learning, these values are likely
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erroneous, and many will err on the side of overestimation, thus harming the greedy policy. This is in
contrast with the tabular case, where all OOD actions will have a default value of 0.

To robustify the policy improvement step, a natural choice is to regularize the function approximator
such that it behaves more predictable on unseen inputs. Forcing the neural network to output 0 for
OOD actions might require very non-smooth behavior of the network—hence we choose a less harsh
regularizer that asks the model only to assign lower values to state-action pairs that have not been
observed during learning. We formulate this as a ranking loss which follows a typical hinge-loss
approximation [12, 11] for ranking problems. Given a transition from the dataset (st, at) this can be
formulated as

C(θ) =

|A|∑
i=0,i6=t

max (Qθ(st, ai)−Qθ(st, at) + ν, 0)
2
. (4)

While equation equation 4 does, in expectation, encourage lower ranks for OOD action, it can also
have the adverse effect of promoting suboptimal behavior that is frequent in the dataset. This is
because for any transition, proportional to its frequency in the dataset, the regularizer pushes the
value of all but the selected action down, promoting a policy that picks the selected action regardless
of its value. To minimize this effect, we weigh the regularization based on the value of the trajectory:

C(θ) = exp

((
GB(s)− Es∼D[GB(s)]

)
/β

) |A|∑
i=0,i6=t

max (Qθ(s, ai)−Qθ(s, at) + ν, 0)
2
, (5)

where Es∼D[GB(s)] is estimated by average over GB(s) in mini-batches. In all our experiments,
we fix ν to be 5e− 2 and β to be 0.5. The new formulation of the loss ensures that particularly on
trajectories performed well in the dataset, trajectories that are likely for policy learned using behavior
evaluation, the OOD action rank lower than observed actions. We note that our rank loss, when
viewed through the lens of on-policy online RL, can be related to ranking policy gradients [33] or to
[44, 37] who also used a hinge loss as a regularizer but with different goals from ours.

2.3 Reparametrization of Q-values

The overestimation of state-action values can be severe in offline RL, and can escape towards
infinity (see for example appendix A). While behavior value estimation can be an effective way
for suppressing this overestimation, when one iteration of policy improvement is insufficient, one
may want to bring back the max-operator and therefore the implicit policy improvement step of
Q-learning. To better handle this scenario, we introduce a complimentary method to prevent severe
over-estimation by bounding the values predicted by the critic via reparameterization. Specifically,
we reparameterize the critic as Qθ(s, a) = αQ̂θ(s, a) given a state- and action-independent scale
parameter α. This, in effect, disentangles the scale from the relative magnitude of values predicted,
but also enables us to impose constraints on the scale parameter. To further stabilize the learning and
reduce the variance of the estimations, we update α by stochastic gradient descent, but with larger
minibatches and a smaller learning rate.

In our formulation, the “standardized” value Q̂θ(s, a) ∈ [−1, 1] is attained by using a tanh activation
function. Note that the tanh activation has the side effect of reducing numerical resolution for
representing extreme values (as the tanh will be in its saturated regime), minimizing the ability of the
learning process to keep growing these values by bootstrapping on each other. We let α = exp(ρ)
such that α > 0. Our parameterization thus ensures that Q-values are always bounded in absolute
value by α, i.e. n Q(s, a) ∈ [−α, α]. The equations below show how critic scaling can be adapted
into the Q-learning objective:

Lθ′,α′(θ, α) = E(s,a,r,s′)∼D

(
αQ̂θ(s, a)−

(
r + γα′max

a′
Q̂θ′(s

′, a′)
))2

. (6)

The introduction of α allows us to conveniently regularize the scale of Q values without disturbing
the ranking between actions. More precisely, we introduce a regularization term on α

C(α) = E[ζ(αQ̂θ(s, a)−GB(s))2], (7)

where C(α) represents a soft-constraint requiring Q values to stay close to the performance of the
behavioral policy, and thereby prevent gross overestimation. In Eq. (7), we rely on the ζ function to
constrain α only when Qθ(s, a) > GB(s).
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3 Experiments

We investigate the performance of discrete offline RL algorithms on the three aforementioned open-
source domains: Atari, DeepMind Lab, and bsuite. A question we are particularly interested in
answering is: how does the lack of coverage of the state-action pairs affect the performance of each
algorithm? In that context, we study each algorithms’ robustness to dataset size (see Fig. 6), noise
(see Fig. 3 and 7), and reward distribution (Fig. 10 in Appendix), as they all affect the datasets’
coverage of the state and action space.

Because we explore various ablations of our proposed approach, discussed in Section 2, we used
a specific acronym for each potential combination. According to our naming convention, Q is for
Q-learning and B is for behavior value estimation as the underlying RL loss, R indicates the use of
the ranking regularization and r the use of reparametrization. In that vein, QRr refers to Q-learning
with ranking regularization and reparametrization and BR stands for behavior value estimation with
ranking regularization (see Appendix B.1.) We note that, both our DQN and R2D2 experiments used
Double Q-learning [46], but for our approach (and ablations of it) that rely on Q-learning, we used
the vanilla Q-learning algorithm. More details for each experimental setup appear in Appendix D.
We also provide more analysis and additional results in Appendix B.

We used an open-source Atari offline RL dataset, which is a part of RL Unplugged [20] benchmark
suite. We have created two new offline RL datasets for bsuite and DeepMind Lab, which we are
going to opensource. The details of those datasets are provided in Appendix C.

3.1 bsuite Experiments
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Figure 3: Bsuite Experiments: bsuite experi-
mental results on two environments with respect
to different levels of noise injected into the ac-
tions in the dataset. The proposed method, BRr,
outperforms all the baselines on cartpole. Meth-
ods implementing a form of behavior constraining
(BCQ, CQL and our methods BRr and QRr) excel
on catch, stressing its importance.

bsuite [35] is a proposed benchmark designed to
highlight key aspects of agent scalability such as ex-
ploration, memory, credit assignment, etc. We have
generated low-coverage offline RL datasets for catch
and cartpole as described by [2] (see Appendix C.1
for details).

In Fig. 3, we compare the performance of BRr and
QRr with four baselines: DDQN [22], CQL [28],
REM [2] and BCQ [15]. We consider two tasks, each
in five versions defined by the amount of injected
noise. The noise is injected into transitions by replac-
ing the actions from an agent with a random action
with probability ε.

On the harder dataset (cartpole), BRr, the proposed
method, outperforms all other approaches showing
the efficiency of our approach and its robustness to
noise. Two other methods, QRr (proposed by us as
an ablation to BRr) and CQL, also perform relatively
well. The results for catch are similar, with the ex-
ception that BCQ also improves performance which
re-emphasises the importance of restricting behavior
to stay close to the observed data. We have additional
results on mountain_car, where most algorithms be-
have well except DDQN (see Appendix D.4).

3.2 Atari Experiments

Atari is an established online RL benchmark [7],
which has recently attracted the attention of the offline RL community [2, 16] arguably because the
diversity of games presents a challenge for offline RL methods. Here, we used the experimental
protocol and datasets from the RL Unplugged Atari benchmark [20]. We report the median normal-
ized score across the Atari games, and the error bars show a bootstrapped estimate of the [25, 75]
percentile interval for the median estimate computed across different games.
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Figure 4: Atari results: We compare our proposed
QRr results against other recent State of Art offline
RL methods on the Atari offline policy selection
games from RL Unplugged benchmark.

In Fig. 4, we show that QRr outperforms all baselines
reported in the RL Unplugged benchmark as well as
CQL [28]. While BRr performs well, this experiment
highlights the potential limitation of doing a single
policy improvement iteration in rich data regimes. Be-
cause in the considered setting there is enough data
for the neural networks to learn reasonable approxi-
mations of the Q-value (exploiting the structure of the
state space to extrapolate for unobserved state-action
pairs), one can gain more by reverting to Q-learning
in order to do multiple policy improvement steps.
However this amplifies the role of the regularization
and in particular the reparametrization. Therefore,
in this setting, QRr, which we proposed as an abla-
tion to BRr outperforms other techniques. Fig. 4 also
shows the robustness of QRr’s hyperparameters to
different tasks.
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Figure 5: Ablations (online policy selection
games): [LEFT] We compare behavior value esti-
mation (B), DDQN and Monte Carlo approaches
in offline RL Atari dataset. B and DDQN achieve
similar median episodic returns, but learning with
Monte Carlo returns performs poorly. [RIGHT]
We show various ablation studies (in terms of us-
ing regularization, reparametrization and behavior
value estimation). We found the most significant
improvement from the ranking regularization term.
Although the combination of ranking regulariza-
tion and the reparameterization performs the best.

Ablation Experiments on Atari We ablate three
different aspects of our algorithm on online policy
selection games: i) the choice of TD backup up-
dates (Q-learning or behavior value estimation), ii)
the effect of ranking regularization, iii) the reparame-
terization on the critic. We show the ablation of those
three components in Fig. 5. We observed the largest
improvement when using ranking regularization. In
general, we found that estimating the Monte-Carlo
returns directly from the value function (we refer this
in our plot as "MC Learning") does not work on Atari.
However, behavior value estimation and Q-learning
both have similar performance on the full dataset,
however in low data regimes, the behavior value pol-
icy considerably outperforms Q-learning (see Fig. 10
in Appendix B).
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Figure 6: Overestimation of Q-values with sub-
sampled Atari datasets (% of Dataset). We report
median over-estimation error over online policy
selection games on Atari. We see that DDQN over-
estimates the value of states severely whereas Qr
and B reduce over-estimation greatly.

Overestimation Experiments Q-learning can
over-estimate due to the maximization bias, which
happens due to the max-operator in the backups [22].
In the offline setting another source of overestimation,
as discussed in Section 2, are OOD actions due to the
dataset’s limited coverage. Double DQN (DDQN by
Hasselt [22]) is supposed to address the first problem,
but it is unclear whether it can address the second.
In Fig. 6, we show that in the offline setting DDQN
still over-estimates severely when we evaluate the
critic’s predictions in the environment. We believe
this is because the second factor is the main reason
of overestimation, which is not explicitly addressed
by DDQN. However, Qr (vanilla Q-learning with
reparametrization) and B are not effected from the
reduced dataset size and coverage as much. In the
figure, we compute the over-estimation error as 1

100

∑100
i=0(max(Qπ(s, a) − Gπ(s), 0))2 over 100

episodes, where Gπ(s) corresponds to the discounted sum of rewards from state s till the end of
episode by following the policy π.

Robustness Experiments In Appendix B.2 (see Figure 10), we investigate the robustness of B and
DDQN with respect to the reward distribution and dataset sizes. We found that the performance of B
is more robust than DDQN to the variations on the reward distribution and the dataset size.
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Figure 7: DeepMind Lab Results: We compare the performance of different baselines on challenging DeepMind
Lab datasets coming from four different DeepMind Lab levels. Our method, BR, consistently performs the best.
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Figure 8: Effect of coverage in the dataset: We compare offline RL models with varying the noise level in
the environment. Increasing the noise level increases the coverage as well. BC performs well with low noise,
however, BR performs significantly better as the noise increases. Let us note that, in all our experiments, R2D2
uses double Q-learning.

3.3 DeepMind Lab Experiments

Offline RL research mainly focused on fully observable environments such as Atari. How-
ever, in a complex partially observable environment such as Deepmind Lab, it is very
difficult to obtain good coverage in the dataset even after collecting billions of transi-
tions. To highlight this, we have generated datasets by training an online R2D2 agent
on DeepMind Lab levels. Specifically, we have generated datasets for four of the levels:
explore_object_rewards_many, explore_object_rewards_few, rooms_watermaze, and
rooms_select_nonmatching_object. The details of the datasets are provided in the Ap-
pendix C.2.

We compare offline R2D2, CQL, BC, B and BR on our DeepMind Lab datasets. In contrast to Atari,
BR performed better than QR according to our preliminary results. Thus, here, we decided to only
focus on BR (See Appendix Fig. 9). We use the same network architecture and hence, the models
vary only is the loss function. We want to compare our baselines’ performance on our Deepmind
Lab datasets when there is a large amount of data stored during online training with online R2D2. In
Figure 7, we show the performance of each algorithm on different levels. Our proposed modifications,
BR and B outperform other offline RL approaches on all DeepMind Lab levels. We argue that poor
performance of R2D2 in the offline setting is due to the low coverage of the dataset. Despite having
on the order 300M transitions, since the environment is partially observable and diverse, it is still not
enough to cover enough of all possible state-action pairs.

DeepMind Lab: The Effect of Coverage on Offline Learning Here, we investigate the effect
of coverage on the DeepMind Lab seekavoid_arena_01 level with dataset generated by a fixed
policy. To do so, we have created another set of datasets which is generated by using a fixed R2D2
snapshot with different noise levels when evaluating the trained snapshot in the environment for
seekavoid_arena_01 level. We have used different εs in the ε-greedy algorithm to create datasets
with different noise levels. The ε also effects the coverage of the dataset.

We compare R2D2, CQL, BC, B and BR on these DeepMind Lab datasets by using the same network
architecture—the only change among the models is the loss function.

We investigate the effect of coverage in the DeepMind Lab seekavoid_arena_01 level, by evaluat-
ing the policy with different ε’s for the epsilon-greedy in the environment and storing each episode
in the dataset. Increasing the ε will increase the coverage of the dataset but also it will increase

8



BR QR0

10

20

30

17.1
19.1

Noise level: 0.0

BR QR0

10

20

30

19.8
16.3

Noise level: 0.01

BR QR0

10

20

30
31.8

23.9

Noise level: 0.1

BR QR0

10

20

30
25.6

22.1

Noise level: 0.25

Models

Ep
iso

de
 R

etu
rn

Figure 9: Effect of coverage on QR vs BR: We compare offline RL models with varying the noise level in
the environment. Increasing the noise level increases the coverage as well. BC performs well with low noise,
however, BR performs significantly better than QR in all the high noise settings.

the noise in the dataset as well. In Figure 8, we show the effect ε on the simple DeepMind Lab
level. When ε = 0, BC works outperforms offline RL approaches, however increasing the level of
noise deteriorates the performance of BC, and BR starts to performs better. Since the environment is
deterministic, if the policy is deterministic as well, this corresponds to only having one single unique
episode in the dataset. As we increase the epsilon the coverage in the dataset and diversity of the
trajectories will increase as well. We trained all models by unrolling on the whole episode and trained
using back-propagation through time.

4 Discussion

In this work, we first highlight how, in the offline deep RL setting, overestimation errors may cause
Q-learning to diverge, with weights and Q-value escaping towards infinity. We discuss using behavior
value estimation to address this problem, which efficiently regresses to the Q-value of the behavior
policy and then takes a policy improvement step at test time by acting greedily with respect to
the learnt Q-value. The behavior value estimation oversteps the overestimation issue by avoiding
the max-operator during training. We note that a single policy improvement step seems sufficient,
especially in the low data regime, to improve over the behavior policy and the policy discovered
by double DQN. However, the max-operator used to construct the test time policy re-introduces
overestimation errors that were avoided during training. We can address this issue by regularizing
the function approximator with a ranking loss that encourages OOD actions to rank lower than the
observed actions. This reduces overestimation at test time and improves performance. Nevertheless,
we observe that behavior value estimation can be too conservative in rich data settings. In such
scenarios, the function approximator can exploit more of the state and action space’s underlying
structure, leading to more reliable extrapolation. Therefore, it can be more lucrative to rely on
Q-learning in such scenarios, which can do multiple policy improvement steps, further constraining
the function approximator. The resulting algorithm QRr, that is Q-learning with the ranking loss and
reparametrization, outperforms all other approaches on the RL Unplugged Atari benchmark.

Overall behavior value estimation coupled with the ranking loss, is an effective algorithm for
low data regimes. For larger data regimes, where the coverage is better, it is possible to achieve
better performance by switching to Q-learning and using reparametrization. The proposed methods
outperform existing offline RL approaches on the considered benchmarks. As future work, we plan
to extend our observations to the continuous control setup and towards more real-world applications.
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A Q-learning can escape to infinity in the offline case

Remark 1. Q-learning, using neural networks as a function approximator, can diverge in the offline
RL setting given that the collected dataset does not include all possible state-actions pairs, even if it
contains all transitions along optimal paths. Furthermore, the parameters (and hence the Q-values
themselves) can diverge towards infinity under gradient descent dynamics.

Proof. The proof relies on providing a particular instance where Q-learning diverges towards infinity.
This is sufficient to show that divergence can happen. Note that the remark does not make any
statement of how likely is for this to happen, nor is providing sufficient conditions under which such
divergence has to happen.

Let us consider a simple deterministic MDP depicted in the figure below (left).
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S = {s1, s2, s3, s4} is the set of all states, where S1 is deterministically the starting state and S4

is the terminal state of the MDP. Let A = {a0, a1, a2} be the set of all possible actions. Let the
reward function r(s, a) be 0 for all action-state pair except r(s1, a0) which is 1. Let the transition
probabilities P (s′|s, a) be deterministic as defined by the depicted arrows. I.e. for any state action
pair only transitioning to one state has probability 1, while the rest has probability 0. For example,
only P (s4|s1, a0) = 1, while P (s3|s1, a0) = 0, P (s2|s1, a0) = 0.P (s2|s1, a0) = 0. For s1, a1 only
P (s2|s1, a1) = 1 and so on and so forth.

First observation is that the optimal behavior is to pick action a0 (as it is the only rewarding transition
in the entire MDP).

The features describing each state are given by a single real number, where s1 = 0, s2 = 1, s3 = β,
with β > 1

γ > 0, where γ is the discount factor. Assume actions are provided to the neural network
as one-hot vectors, i.e. a0 = [0, 0, 1]T , a1 = [0, 1, 0]T , a2 = [1, 0, 0]T 2, where we will refer to a[i]
as the i-th element of the vector that represents the action a. For example a0[2] = 1 and a0[0] = 0.

Let us consider the Q-function parametrized as a simple MLP (depicted in the figure above left). The
MLP uses rectifier activations, and gets as input both the state and action, returning a single scalar
value which is the Q-value for that particular state action combination. Rewriting the diagram in
analytical form we have that for s ∈ R and a ∈ R3:

Qθ(s, a) = w · relu(s) + u1relu(a[0]− 2s) + u2relu(a[1]− 2s) + u3relu(−2s− a[2]) (8)

A note on initialization. The weights of the first layer are given as constants. The process would
work if we leave them to be learnable as well, but the analysis would become considerably harder.
The exact value used, −2, 1,−1, are not important. In principle we care for the negative weights
connecting s to h2, h3, h4 be larger in magnitude than those from a[i] to hi, and we care for the
weight between a[2] and h2 to be negative. They can be scaled arbitrarily small and do not need to be
identical.

2one-hot representation is the typical representation for action in discrete spaces
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What we will rely in the rest of the analysis is that the preactivation of h2, h3, h4 to be negative for
state s2 and s3. This will be in the zero region of the rectifier, meaning no gradient will flow through
those units. Since s3 > s2 ≥ 1 and a[i] ∈ {0, 1}, it is sufficient for the weight from s to h2, h3, h4
to be larger in magnitude than the weight from a[i] to h2, h3, h4. This ensures that for s > 1, the
Q-function is not a function of ui as ui will get multiplied by 0.3 Also we want the function to never
depend on u3 to simplify our analysis, which is easily achievable if the weight going from a[2] to h4
is negative.

Given the observations above, if we plug in the formula the different values of si and ai we get that:

Qθ(s1, a0) = u1
Qθ(s, 1, a1) = u2
Qθ(s1, a2) = 0

∀a ∈ A, Qθ(s2, a) = w
∀a ∈ A, Qθ(s3, a) = βw

(9)

Note that this implies that
maxaQθ(s2, a) = w
maxaQθ(s3, a) = βw

(10)

Assume w > 0. And let the dataset collected by the behavior policy to contain the following 3
transitions:

D = {(s1, a0, 1, s4), (s1, a1, 0, s2), (s2, a2, 0, s3)}

We can now construct the Q-learning loss that we will use to learn the function Q in the offline case
which will be

L =
∑

(s,a,r,s′)∈D (Qθ(s, a)− r − γmaxaQ′θ(s′, a))
2

= (Qθ(s1, s0)− 1)2 + (Qθ(s1, a1)− γmaxaQ
′
θ(s2, a))2 + (Qθ(s2, a2)− γmaxaQ

′
θ(s3, a))2

= (u1 − 1)2 + (u2 − γw′)2 + (w − γβw′)2
(11)

Note that we relied on Eq. equation 10 to evaluate the max operator and θ′ is a copy of θ, that is used
for bootstrapping. This is the standard definition of Q-learning see Eq. equation 2. In particular in
this toy example θ′ is numerically always identical to θ (in general it can be a trailing copy of θ from
k steps back) and is used more to indicate that when we take a derivative of the loss with respect to θ
we do not differentiate through Q′θ. From Eq. equation 11 we notice that only the first transition in
dataset contributes to the gradient of u1, only the second transition contributes to the gradient of u2
and only the third transition contributes to the gradient of w. We can not evaluate the gradient with
respect to θ of the loss L over the entire dataset:

∇u1 = u1 − 1
∇u2 = u2 − (0 + γw)
∇u3 = w − (0 + γβw) = (1− γβ)w
∇w = w − (0 + γβw) = (1− γβ)w

(12)

Note that we assumed w > 0 and for simplicity we exploited that w′ = w numerically, to be able
to better understand the dynamics of the update. Given that β > 1

γ ,∇w will always be negative as
long as w (and implicitly w′) stays positive. Given that wt = wt−1 − α∇w for some learning rate
α > 0, the update creates a vicious loop that will increase the norm of w at every iterations, such that
limt→∞ wt =∞. Given that the gradient on u2 tracks w, it means that the path that takes action a2
in the initial state s1 will have +∞ as value. Note that all transitions along the optimal path of this
deterministic MDP are part of the dataset.

Also that given our example, the same will happen if we rely on SGD rather than batch GD (as
the different examples affect different parameters of the model independently and there is no effect

3The fact that no gradient gets propagated in the first layer is only important if we attempt to consider the
case when the first layer weights are learnable.
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from averaging). Preconditioning the updates (as for e.g. is done by Adam or rmsprop) will also not
change the result as they will not affect the sign of the gradient (the preconditioning matrix needs
to be positive definite). Neither momentum will not affect the divergence of learning, as it will not
affect the sign of the update.

This means that the provided MDP will diverge towards infinity under the updates on most commonly
used gradient based algorithms.

B Additional Results and Ablations

B.1 Acronyms

In Table 1, we provided the acronyms for our models and their corresponding meanings.

Table 1: Acronyms for our models and their expansions
Acronym Meaning
B Behavior Value Estimation
BR Behavior Value Estimation with Ranking Regularization
BRr Behavior Value Estimation with Ranking Regularization and reparameterization
Q Standard Q-learning
QR Standard Q-learning with Ranking Regularization
QRr Standard Q-learning with Ranking Regularization and reparameterization

B.2 Atari: Robustness to Data

The robustness of the reward distribution in the dataset is an important feature required to deploy
offline RL algorithms in the real-world. We would like to understand the robustness of behavior
value estimation in the offline RL setting. Thus, we first investigate the robustness of B in contrast
to Q-learning with respect to the datasets’ size and the reward distribution. In Fig. 10, we split out
the dataset into two smaller datasets: i) transitions coming from only highly rewarding ii) transitions
from only poorly performing episodes. We show that B outperforms Q-learning in both settings.
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Figure 10: Robustness Experiments: [LEFT] We compare DQN and B in terms of their robustness to the
reward distribution on Atari online policy selection games. We split the datasets in two bins: the dataset that
only contains transitions that are coming from episodes that have episodic return less than the mean episodic
return in the dataset ("Episodic Reward < Mean"), transitions coming from episodes with return higher than
the mean return in the dataset ("Episodic Reward > Mean"). B performs better than DQN in both cases.
[RIGHT] Normalized scores of DQN and B on subsets of data from online policy selection games. B performs
comparatively better than DQN . The Q-learning suffers more since the coverage of the dataset reduces with the
subsampling which causes more severe extrapolation error.

B.3 On the effect of Regularization

In this Section we study the effect of the regularization on the action gap and the overestimation error.
In Figure 11, we show that increasing the regularization co-efficient for the ranking regularization
increases the action gap across the Atari online policy selection games which can result to lower
estimation error and better optimization.
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Figure 11: The Effect of increasing the ranking regularization on the action gap.

In Figure 12, we show the effect of increasing the regularization on the overestimation of the Q-
network when evaluated in the environment. We show the mean over-estimation across the games.
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Figure 12: The Effect of increasing the ranking regularization on the overestimation.
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B.4 Online Policy Selection Games Results

In Figure 13, we show the performance of different models with respect to the rewards they achieve
over the training.
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Figure 13: The Raw Returns obtained by each baseline on Atari online Policy Selection Games.

B.5 Overestimation on Online Policy Selection Games

In Figure 14 and 15, we report the value error of B, BRr and DQN’s value error and squared value
error respectively.
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Figure 15: The squared value error computed in the environment by evaluating the agent and computed with
respect to the ground truth discounted returns and reporting the mean squared values of the values.

C Details of Datasets

C.1 BSuite Dataset

BSuite [35] data was collected by training DQN agents [34] with the default setting in Acme [24]
from scratch in each of the three tasks: cartpole, catch, and mountain_car. We convert the originally
deterministic environments into stochastic ones by randomly replacing the agent action with a
uniformly sampled action with a probability of ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} (ie. ε = 0 corresponds
to the original environment). We train agents (separately for each randomness level and 5 seeds, i.e.
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25 agents per game) for 1000, 2000, 500 episodes in cartpole, catch and mountain_car respectively.
The number of episodes is chosen so that agents in all levels can reach their best performance. We
record all the experience generated through the training process. Then to reduce the coverage of the
datasets and make them more challenging we only used 10% of the data by subsampling it. More
details of the dataset are provided in Table 2. The results presented in the paper are averaged over the
5 random seeds.

Environments Number of episodes Number of transitions Average episode length
cartpole (ε = 0.0) 1000 710K 710
cartpole (ε = 0.1) 1000 773K 773
cartpole (ε = 0.2) 1000 649K 649
cartpole (ε = 0.3) 1000 607K 607
cartpole (ε = 0.4) 1000 672K 672
cartpole (ε = 0.5) 1000 643K 643

catch (ε = 0.0) 200 1.8K 9
catch (ε = 0.1) 200 1.8K 9
catch (ε = 0.2) 200 1.8K 9
catch (ε = 0.3) 200 1.8K 9
catch (ε = 0.4) 200 1.8K 9
catch (ε = 0.5) 200 1.8K 9

mountain_car (ε = 0.0) 50 10K 205
mountain_car (ε = 0.1) 50 10K 210
mountain_car (ε = 0.2) 50 22K 447
mountain_car (ε = 0.3) 50 13K 277
mountain_car (ε = 0.4) 50 12K 250
mountain_car (ε = 0.5) 50 24K 494

Table 2: BSuite dataset details.

C.2 DeepMind Lab Dataset

DeepMind Lab [6] data was collected by training distributed R2D2 [25] agents from scratch on
individual tasks. First, we tuned the hyperparameters of a distributed version of the Acme [24] R2D2
agent independently for every task to achieve fast learning in terms of actor steps. Then, we recorded
the experience across all actors during entire training runs a few times for every task. Training was
stopped after there was no further progress in learning across all runs, with a resulting number of
steps for each run between 50 million for the easiest task (seekavoid_arena_01) and 200 million
for some of the hard tasks. Finally we built a separate offline RL dataset for every run and every task.
See more details about these datasets in Table 3.

Additionally, for the seekavoid_arena_01 task we ran two fully trained snapshots of our R2D2
agents on the environment with different levels of noise (ε = 0, 0.01, 0.1, 0.25 for ε-greedy action
selection). We recorded all interactions with the environment and generated a different offline RL
dataset containing 10 million actor steps for every agent and every value of ε.

Table 3: DeepMind Lab dataset details. For training data, reward is measured as the maximum over training
of the average reward over runs for the same task. For snapshot data, reward is just an average over all episodes
recorded using the same level of noise.

Task Episode Length Datasets Episodes (K) Steps (M) Reward

seekavoid_arena_01 300 5 667.1 200.1 39.0
seekavoid_arena_01 snapshot (ε = 0) 300 2 66.7 20 40.4
seekavoid_arena_01 snapshot (ε = 0.01 300 2 66.7 20 40.1
seekavoid_arena_01 snapshot (ε = 0.1) 300 2 66.7 20 36.9
seekavoid_arena_01 snapshot (ε = 0.25) 300 2 66.7 20 29.7
explore_object_rewards_few 1350 3 178.3 240.7 51.5
explore_object_rewards_many 1800 3 334.1 601.4 64.5
rooms_select_nonmatching_object 180 3 2001.1 360.2 32.5
rooms_watermaze 1800 3 201.8 363.3 48.8
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Figure 16: DeepMind Lab Reward Distribution: We show the reward distributions for the DeepMind Lab
datasets. The vertical red line indicates the average episodic return in the datasets.

D Experiment Details

We used the Adam optimizer [26] for all our experiments. For details on the used hyperparameters,
refer to the Table 4 for bsuite, Table 5 for Atari, and Table 6 for DeepMind Lab. Our evaluation
protocol is described below, in Section D.1. On Atari experiments, we have normalized the agents’
scores as described in [20].

On Atari, in all our experiments we report the median normalized score along with the bootstraps
estimates of 75th and 25th percentiles for the interquantile range estimates of the errors in the error
bars as done by [20].

Atari Hyperparameters: On Atari we directly used the baselines and the hyperparameters reported
in [20], to get the detailed Atari results on test set we communicated with the authors. We have run
additional CQL and our own models with ranking regularization and reparameterization. For CQL we
have finetuned both the learning rate from the grid [8e− 5, 1e− 4, 3e− 4] and the regularization
hyperparameter α ∈ [0.005, 0.05, 0.01, 0.1, 1]. For our own proposed models we have only tuned the
learning rate from the grid [8e− 5, 1e− 4, 3e− 4] and the ranking regularization hyperparameter
from the grid [0.005, 0.05, 0.01, 0.1, 1]. We have fixed the rest of the hyperparameters. As mentioned
earlier, we have only used the online policy selection games for finetuning the hyperparameters. As a
result of our grid search, we have used learning rate of 1e − 4 for CQL and our models. We have
used 0.01 for the α hyperparameter of CQL. 0.05 seems to be the optimal hyperparameter choice for
the ranking regularization hyperparameter.

DeepMind Lab Hyperparameters: On DeepMind Lab experiments, we tuned the hyperparam-
eters of each model individually on each level separately. We have tuned the learning rate and the
regularization hyperparameters for each model from the same grid that we have used for Atari. All
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our algorithms are n-step in DeepMind Lab experiments, where n is fixed to 5 in all our experiments.
Thus both behavior value estimation and Q-learning experiments use 5 steps of unrolls for learning.

D.1 Evaluation protocol

To evaluate the performance of the various methods, we use the following protocol:

1. We sweep over a small (5-10) sets of hyperparameter values for each of the methods.

2. We independently train each of the models on 5 datasets generated by running the behavior
policy with 5 different seeds (ie. producing 25-50 runs per problem setting and method).

3. We evaluate the produced models in the original environments (without the noise).

4. We average the results over seeds and report the results of the best hyperparameter for each
method.

D.1.1 Evaluation method

To evaluate models (step 3. above), in the case of bsuite and DeepMind Lab we ran an evaluation
job in parallel to the training one. It repeatedly read the learner’s checkpoint and produced evaluation
results during training. We report the average of the evaluation scores over the last 100 learning steps.

In the case of the Atari environments, instead of averaging performance during the final steps of
learning, we take the final snapshot produced by a given method and evaluate it on a ‘100‘ environment
steps after the training finished.

Table 4: bsuite experiments’ hyperparameters. The top section of the table corresponds to the shared
hyperparameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of
Online vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.99
Mini-batch size 128
Target network update period every 2500 updates
Evaluation ε 0.48

Q-network: an MLP
Q-network: hidden units 56, 56, num_actions
Training Steps 2M learning steps
Hardware Tesla V100 GPU
Replay Scheme Uniform

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1M steps 2M steps
Double DQN No Yes

D.2 Atari Offline Policy Selection Results

In Table 7, we show the performance of our baselines on different Atari Offline Policy selection
games. We show that QRr outperforms other approaches significantly.

D.3 DeepMind Lab Detailed Results

In Table 8, we have shown the results on the Deepmind Lab datasets. It is possible see from these
numerica results that BR outperforms other approaches and B is still very competitive.
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Table 5: Atari experiments’ hyperparameters. The top section of the table corresponds to the shared hyperpa-
rameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of Online
vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.99
Mini-batch size 256
Target network update period every 2500 updates
Evaluation ε 0.48

Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Training Steps 2M learning steps
Hardware Tesla V100 GPU
Replay Scheme Uniform

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1M steps 2M steps
Double DQN No Yes

Table 6: Deepmind Lab experiments’ hyperparameters. The top section of the table corresponds to the shared
hyperparameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of
Online vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.997
Target network update period every 400 updates
Evaluation ε 0.48

Importance sampling exponent 0.6
Architecture Canonical R2D2 [25]

Hyperparameter Online Offline

Hardware 4x TPUv2 4x Tesla V100 GPU
Training Steps 50-200M actor steps 50K learning steps
Sequence Length 120 (40 burn-in) Full episode
Mini-batch size 32 8
Training ε (for ε-greedy exploration) 0.4, ..., 0.48 -
Replay Scheme Prioritized (exponent 0.9) -
Min replay size for sampling 600K steps -
Replay Memory size 12M steps 50-200M steps

D.4 bsuite Detailed Results

We generated datasets and performed experiments analogous to these in Section 3.1 for mountain_car
environment. We present results for all three environments in Table 9. BRr outperforms all the
baselines.

E Reparametrizing the Q-network

In all reparameterized critic experiments we have used the tanh(·) activation function with refine
gates to help with optimization [19]. We have not tuned the hyperparameters of the reparameterization
in our experiments, we have used four times larger minibatches to update the scale, since it is cheap
to update a single scalar and as shown in Algorithm 1, we have used twice smaller learning rate to
update the scale than the rest of the parameters of the network. This is a heuristic, but we found this
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Table 7: Atari Offline Policy Selection Results: In this table, we list the median normalized performance of
different baselines.

Name Normalized Score

BC 50.8

DDQN 83.1

CQL 98.9

BCQ 102.6

IQN 104.8

REM 104.7

QRr 108.2

Table 8: Detailed Results on the DeepMind Lab: We provide the detailed results for each DeepMind levels
along with the standard deviations.

BC R2D2 CQL B BR

explore_object_rewards_few 1.8 ± 1.0 19.8 ± 4.0 23.8 ± 5.1 23.7 ± 3.8 28.6 ± 1.7

explore_object_rewards_many 2.9 ± 1.4 8.5 ± 3.4 9.3 ± 2.5 7.6 ± 3.1 13.4 ± 11.8

rooms_watermaze 0.1 ± 0.1 2.7 ± 1.4 4.0 ± 3.7 9.9 ± 2.7 11.2 ± 4.2

rooms_select_nonmatching_object 1.1 ± 4.6 5.4 ± 2.3 3.4 ± 2.4 9.4 ± 6.3 10.4 ± 9.6

seekavoid_arena_01, ε = 0 28.02 ± 7.6 4.7 ± 3.0 12.8 ± 10.7 4.4 ± 0.9 17.07 ± 10.1

seekavoid_arena_01, ε = 0.01 33.0 ± 1.3 5.5 ± 1.6 12.7 ± 5.4 4.1 ± 1.8 19.8 ± 4.9

seekavoid_arena_01, ε = 0.1 18.9 ± 14.4 8.6 ± 3.0 16.3 ± 7.7 11.775 ± 4.5 31.8 ± 4.7

seekavoid_arena_01, ε = 0.25 17.46 ± 7.5 13.5 ± 5.1 13.5 ± 5.06 9.0 ± 0.25 25.57 ± 7.0

Environments DDQN BCQ REM CQL BRr QRr
cartpole (ε = 0.0) 203.5 244.3 383.7 354.6 933.8 358.3
cartpole (ε = 0.1) 240.5 244.6 218.0 673.7 886.8 732.7
cartpole (ε = 0.2) 134.5 215.7 295.6 528.3 786.1 566.0
cartpole (ε = 0.3) 265.9 432.8 248.2 594.6 937.3 642.0
cartpole (ε = 0.4) 278.9 418.4 263.8 791.3 814.5 745.2
catch (ε = 0.0) -0.04 0.96 0.3 1.0 1.0 1.0
catch (ε = 0.1) -0.19 0.85 0.18 1.0 1.0 1.0
catch (ε = 0.2) 0.08 0.91 0.34 1.0 1.0 0.99
catch (ε = 0.3) -0.08 0.92 -0.05 1.0 0.99 1.0
catch (ε = 0.4) -0.13 0.85 0.14 1.0 1.0 0.99
mountain_car (ε = 0.0) -196.5 -142.0 -116.3 -129.3 -130.3 -128.7
mountain_car (ε = 0.1) -231.5 -145.2 -167.0 -135.6 -127.1 -141.5
mountain_car (ε = 0.2) -158.3 -161.1 -118.6 -120.0 -116.7 -140.3
mountain_car (ε = 0.3) -316.6 -180.9 -128.3 -154.8 -125.0 -137.4
mountain_car (ε = 0.4) -125.1 -133.7 -127.6 -128.9 -127.1 -163.6

Table 9: BSuite mean results.

simple heuristic to work well across all the tasks that we have tried. Potentially it is possible to get
better results by tuning the hyperparameters for reparameterization more carefully.
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Algorithm 1 Algorithm of Reparametrized Q-Network
Inputs: Dataset of trajectories D, batch size to update θ: B1, batch size to update γ: B2, and number of
actors A.
Initialize Q̂ weights θ.
Initialize α to 1.
Initialize target policy weights θ′ ← θ.
for nsteps do

Sample transition sequences (st:t+m, at:t+m, rt:t+m) from datasetD to construct a mini-batch of size B.
Calculate loss L(st, at, rt, st+1; θ, α) using target network.
Update θ with GD: θ ← θ − η1∇θL(θ)
Update α with GD: α← α− η1

√
B1/B2∇γL(γ)

If t mod ttarget = 0, update the target weights and α, θ′ ← θ, α′ ← α.
end for

As seen in Algorithm 1, there is a two stage of optimization to update the parameters of Q-network θ
and the scale of the Q values α. They both use different learning rates, it is important to make sure
that we update the α with a smaller learning rate: η2 ≤ η1.

F Ranking Regularizer

We propose a family of methods that prevent the extrapolation error by suppressing the values of the
actions that are not in the dataset. We achieve that by ranking the actions in the training set higher
than the ones that are not in the training set. For the learned Q-function the absolute values of actions
do not matter, we are rather interested in relative ranking of the actions. Given at is the action from
the dataset. For all j 6= t and illustration purposes, the value iteration can be written as:

E[max
a

Q(s, a)] ≈ E [P (Q(s, at) > Q(s, aj))Q(s, at)|t ∈Max] + E [P (Q(s, at) ≯ Q(s, aj))Q(s, aj)|j ∈Max]

= E [P (Q(s, at) > Q(s, aj))Q(s, at)|t ∈Max] + E [(1− P (Q(s, at) > Q(s, aj)))Q(s, aj)|j ∈Max]

= αE
[
P (Q̂(s, at) > Q̂(s, aj))Q̂(s, at)|t ∈Max

]
+ αE

[
(1− P (Q̂(s, at) > Q̂(s, aj)))Q̂(s, aj)|j ∈Max

]
= α

(
E
[
P (Q̂(s, at) > Q̂(s, aj))Q̂(s, at)|t ∈Max

]
+ E

[
(1− P (Q̂(s, at) > Q̂(s, aj)))

])
ξ

where ξ is an irreducible noise, because we can not gather additional data on (st, aj), and we don’t
know the corresponding reward for it. This causes extrapolation error which accumulates through the
bootstrapping in the backups as noted by [27]. We implicitly pull down the P (Q(s, at) ≯ Q(s, at))
by ranking the actions in the dataset higher which pushes up P (Q(s, at) > Q(s, aj)). As a result,
the extrapolation error in Q-learning would also reduce.

F.1 Pairwise Ranking Loss for Q-learning

In this section, we discus the relationship between the pairwise ranking loss for Q-learning and the
list-wise pairwise ranking losses.

ptj = σ(Q̂)θ(s, at)− Q̂θ(s, aj))

π(at|s) ≈
|A|∏

i=0,i6=t

pti/Z

Z =

|A|∑
i=0

|A|∏
j=0,j 6=i

pij
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R(θ) = −
|A|∑
i=0

log(pti)

= −
|A|∑
i=0

log(σ(Q̂θ(s, at)− Q̂θ(s, aj)))

=

|A|∑
i=0

ζ(Q̂θ(s, aj)− Q̂θ(s, at))

We use a common approximation [12, 11] to the ζ-based log-likelihood is to use a hinge-loss which
can be seen as an approximation:

C(θ) =

|A|∑
i=0,i6=t

max
(
Q̂θ(s, a)− Q̂θ(s, at) + ν, 0

)2
(13)

Imposing the constraint in Equation equation 13 can be harmful if the dataset has lots of suboptimal
trajectories. Because this constraint will try to maximize the values of suboptimal actions in the
dataset. As a result, similar to [50], we propose a filtering function to impose that constraints only on
rewarding transitions:

C(θ) = exp(GB(s)− Es∼D[GB(s)])

|A|∑
i=0,i6=t

max
(
Q̂θ(s, ai)− Q̂θ(s, at) + ν, 0

)2
(14)

F.2 Relationship to the Policy Gradients

It is possible to drive the foirmulation that we use for the ranking regularizer from the policy gradient
theorem to show the relationship. The Ranking Policy Gradient Theorem formulates the optimization
of long-term reward using a ranking objective as done in [33]. The proof below illustrates the
formulation process. Let us note that we apply the ranking regularization on the offline and off-policy
data, such that thee formalism below only works when the behavior policy and target policy are
equivalent, when the transitions are coming from on-policy data. If the ranking regularizer is used on
the on-policy data it approximates the policy gradients, but it will not on the off-policy data.

Our construction is based on direct policy differentiation [36, 51] where the objective function is to
θ∗ = arg maxθ J(θ).

∇θJ(θ) =∇θ
∑

τ
pθ(τ)GB(s) (15)

=
∑

τ
pθ(τ)∇θ log pθ(τ)GB(s)

=
∑

τ
pθ(τ)∇θ log

(
p(s0)ΠT

t=1πθ(at|st)p(st+1|st, at)
)
GB(s)

=
∑

τ
pθ(τ)

∑T

t=1
∇θ log πθ(at|st)GB(s)

=Eτ∼πθ

[∑T

t=1
∇θ log πθ(at|st)GB(s)

]
=Eτ∼πθ

[∑T

t=1
∇θ log

(∏m

j=1,j 6=i
pij

)
GB(s)

]
=Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
log (σ(pij))G

B(s)

]
(16)

=− Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
ζ(pji)G

B(s)

]
≈− Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

)
GB(s)

]
, (17)
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with baseline Es∼D[GB(s)] it will be,

≈− Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

) (
GB(s)− Es∼D[GB(s)]

)]
(18)

Then we apply the exp(·) transformation on (GB(s)− Es∼D[GB(s)] to impose this loss loss mostly
on the rewarding trajectories, and we can turn the maximization problem to a minimization one with
a flip of sign:

=Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

)
exp

(
GB(s)− Es∼D[GB(s)]

)]
(19)

where the trajectory is a series of state-action pairs from t = 1, ..., T , i.e. τ = (s1, a1, s2, a2, ..., sT ).
The gradients in equation 19 is exactly the gradients of the ranking regularizer.
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