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ABSTRACT

Offline reinforcement learning (ORL), also known as RL from logged data or
batch RL, is an important avenue for deploying RL in real-world scenarios, like
robotics. However, existing hyperparameter selection methods for ORL break the
offline assumption because they evaluate policies for each hyperparameter setting
in the environment. This online execution is often infeasible and hence under-
mines the main aim of ORL. To make progress, this work advances the study
of offline hyperparameter selection (OHS) methods, which select the best policy
from a set of many policies trained with different hyperparameters, using only
logged data. Through large-scale empirical evaluation we show that: (1) ORL
algorithms are not robust to hyperparameter choices, (2) factors such as the ORL
algorithm and method for estimating Q values can have a big impact on hyperpa-
rameter selection, and (3) when we control those factors carefully, we can reliably
rank policies across hyperparameter choices, and therefore choose policies which
are close to the best policy in the set. Overall, our results present an optimistic
view that OHS is within reach, even in challenging control tasks with pixel obser-
vations, high dimensional action spaces, and long horizon.

offline reinforcement learning, hyperparameter selection, control

1 INTRODUCTION

The desire to apply reinforcement learning to real-world problems has prompted renewed interest in
offline reinforcement learning (ORL), i.e. methods that can learn a policy from logged data (Fuji-
moto et al., 2019; Levine et al., 2020). These methods are useful when it is challenging, dangerous
or expensive to execute a policy on the environment, for example in self-driving cars, health-care
(Futoma et al., 2020), dialogue (Jaques et al., 2019), and robotics (Cabi et al., 2020).

Despite strong results, the quality of different ORL algorithms depends heavily on hyperparameter
choice. The standard way of performing hyperparameter selection in RL is to evaluate policies
online by interacting with the environment. In contrast, hyperparameter selection for ORL should
only involve logged data, where direct interaction with the environment is not allowed, as pointed
out, for instance, by Wu et al. (2019). Therefore, we must devise offline statistics to rank policies
produced by different hyperparameter settings.

This paper presents a thorough empirical study of offline hyperparameter selection for ORL. In par-
ticular, this study: (1) presents several methods for ORL hyperparameter selection that only use
logged data, (2) introduces simple and scalable evaluation metrics to assess the various ORL hyper-
parameter selection methods, (3) incorporates challenging domains with high-dimensional action
and observation spaces, and long time horizons, and (4) focuses on common important hyperparam-
eters associated with the model architecture, optimizer, and loss function.

Our experiments confirm that ORL algorithms are not robust to hyperparameter choices, strengthen-
ing the case for developing reliable offline hyperparameter selection methods. Additionally, through
our experiments we identify three important choices that affect hyperparameter selection:
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• The choice of ORL algorithm: We find that algorithms that encourage policies to stay close
to the behavior policy are easier to evaluate and rank.

• The choice of Q estimator: We find Q values estimated by the OPE algorithm we use, Fitted
Q-Evaluation, to be more accurate than ORL estimates.

• The choice of statistic for summarizing the quality of a policy: The average critic value of
the initial states works better than alternatives.

2 OFFLINE HYPERPARAMETER SELECTION

Figure 1: Offline hyperparameter selec-
tion compared to offline policy evalua-
tion. (A) In offline hyperparameter selec-
tion, we learn a set of N policies using
ORL with different hyperparameters, and
attempt to pick the best policy π∗. For both
learning and hyperparameter selection, we
have access to the same logged data, and
not to online interactions with the environ-
ment. (B) Offline Policy Evaluation is a
closely related problem where the goal is
to estimate the value of a policy given data.

ORL enables RL in real scenarios where only logged data
can be used. Thus, hyperparameter selection for ORL
should follow the same assumption (see Figure 1).

Offline hyperparameter selection (OHS) is closely related
to offline policy evaluation (OPE), which focuses on es-
timating a value function based on offline data. 1 There
are two salient differences between OHS and OPE. First,
in OHS there is a known relationship between the data
and the policies which may be leveraged to simplify the
problem, whereas in OPE this relationship is generally un-
known. Second, in OHS we mainly care about picking the
best policy (or close to the best) from a set, not precisely
assessing the quality of a policy as OPE aims to do. As
a result, OHS and OPE may focus on optimizing different
performance metrics (see Figure 2).

This paper is concerned with hyperparameter selection,
which is subtly different from hyperparameter tuning. Hy-
perparameter selection refers to picking the best out of a
set of given policies that were trained with different hyper-
parameters, whereas tuning includes both selection and a
strategy for searching the hyperparameter space.

Figure 2: Evaluating performance of of-
fline hyperparameter selection. Each
point represents a policy in the set, plot-
ted according to its actual and estimated
value. OPE aims to minimize the error be-
tween the value and the estimate (moving
points closer to the diagonal). In contrast,
in OHS it is sufficient to (i) rank the poli-
cies as measured by spearman rank corre-
lation, or (ii) select a policy whose value
is close to the value of the best policy (i.e.
low regret).

We use standard RL nomenclature (Sutton & Barto, 1998).
In short, the agent policy takes s as input states to generate
actions a which yields rewards r that are discounted using
γ. They all can be subscripted with a discrete timestep
t ≥ 0 and batched. The policy πφ and critic Qθ are
parametrized by φ and θ, respectively.

2.1 OFFLINE STATISTICS FOR POLICY RANKING

The challenge when performing OHS is to rank several
policies using statistics computed solely from offline data.
We envision the following workflow to apply OHS in prac-
tice: (1) Train ORL policies using several different hy-
perparameter settings, (2) for each policy, compute scalar
statistics summarizing the policy’s performance (without
interacting with the environment), and (3) pick the top k
best policies according to the summary statistics.

The statistics considered in this paper are based on the es-
timated value functions (also referred to as ”critics”) for policies trained by ORL with different
hyperparameter settings. We obtain these critics in two ways.

1Offline policy evaluation is in turn very closely related to off-policy evaluation. Both estimate the value
function of an evaluation policy using data produced by a different policy, typically called the behavior policy,
but off-policy evaluation can be performed online. In this paper, since we are only concerned with the offline
setting, they are equivalent and we use the same acronym (OPE) for both.
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ORL We can simply use the critic learned during ORL training for that hyperparameter setting.
For methods which do not usually leverage a critic, we additionally train a critic which does not
impact the training but can be used to obtain statistics, see Section 3.2.

OPE We use Fitted Q Evaluation (FQE, see Section 3.3) to retrain a critic for the policy generated
by the ORL algorithm.

We then compute scalar values for the purpose of ranking policies by calculating a statistic based on
the critic Qθ, the evaluation policy πe, and the dataset D. We do this in one of two ways:

• V̂ (s0) We use an estimate of the expected value of the evaluation policy for the initial
state distribution Es0∼D[Qθ(s0, πe(a)]. This is an estimate of what we care about, i.e. the
value we would achieve by running the policy in the environment from initial states.

• Soft OPC We use the soft off-policy classification (OPC) statistic proposed in Irpan et al.
(2019). This statistic can be written as E(s,a)∼D,success[Qθ(s, a)] − E(s,a)∼D[Qθ(s, a)].
Here success indicates whether (s, a) is part of a successful trajectory, namely one whose
return is above a certain threshold; we try different values for this threshold in our experi-
ments and pick the best one.

We also considered two additional statistics: the average Q across all states, which performed simi-
larly but slightly worse than V̂ (s0), as well as the average TD error, which clearly underperformed
the main statistics considered. We defer these additional statistics to Appendix C.

2.2 METRICS FOR EVALUATING OFFLINE HYPERPARAMETER SELECTION

We use evaluation metrics that aim to capture how useful different statistics are for ranking multiple
policies and selecting the best one(s). To compute the metrics, we first obtain a reliable estimate
of the actual expected discounted return for each policy when starting in the environment’s initial
state distribution, by running that policy in the actual environment. This estimate will be used as the
ground truth, and will be referred to as the actual value. We then compute the following metrics:

• Spearman’s rank correlation First compute the rank values of the different policies ac-
cording to both the summary statistics and the actual values. Spearman’s rank correlation
is the Pearson correlation between the two sets of rank values.

• Regret @ k First compute the top-k set, i.e. the k policies with the highest summary
statistic values. Regret @ k is the difference between the actual value of the best policy
in the entire set, and the actual value of the best policy in the top-k set. This metric aims
to answer the question ”If we were able to run policies corresponding to k hyperparameter
settings in the actual environment and get reliable estimates for their values, how far would
the best in the set we picked be from the best of all hyperparameter settings considered?”.

• Absolute error The absolute value of the difference between the statistic V̂ (s0) and the
actual values. This does not measure ranking quality directly, but we include it here be-
cause zero absolute error would correspond to perfect ranking, and because it is a standard
measure in the OPE literature.

3 EXPERIMENTAL SETUP

In the previous section, we described offline hyperparameter selection, and the statistics and metrics
we consider. In this section, we describe additional elements of the experimental setup including the
tasks, ORL algorithms, OPE algorithms, and hyperparameters considered.

3.1 TASKS

Real-world problems are diverse, spanning a range of challenging properties. We want to verify
offline hyperparameter selection for high dimensional action space, observation space, long time
horizon problems. To achieve this end, we use ten tasks spanning two domains included in the RL
Unplugged (Gulcehre et al., 2020) benchmark suite, as well as one robotic manipulation domain
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Figure 3: Tasks considered. We consider tasks from three continuous control domains: 1) DM Control Suite
involves low dimensional action spaces from features of the MDP state, 2) Manipulation playground involves
low dimensional action spaces from proprioceptive features of a Jaco arm, as well as visual representation of
the scene, 3) DM Locomotion involves control of a high action space humanoid avatar, from visuals provided
by an egocentric camera controlled by the policy.

(Wang et al., 2020). In Figure 3, we illustrate some of those tasks and below we describe them in
detail. For additional details about the datasets we used see Appendix F.

DM Control Suite A set of continuous control tasks introduced by (Tassa et al., 2018) implemented
in MuJoCo (Todorov et al., 2012). We choose four tasks with various levels of difficulty from the
subset included in Gulcehre et al. (2020). For all tasks in this domain we use a feature representation
of the MDP state, including proprioceptive information such as joint positions and velocities.

Manipulation tasks These tasks require continuous control of a Kinova Jaco robotic arm with 9
degrees of freedom (simulated in MuJoCo (Todorov et al., 2012)). The tasks include manipluation
problems such as picking up a block and placing it in a box. We use joint velocity control (at 20HZ)
of all 6 arm joints and the 3 joints of the hand. The agent observes the proprioceptive features
directly, but can only infer the objects on the table from pixel observations. Two camera views of
size 64 × 64 are provided: one frontal camera covering the whole scene, and an in-hand camera for
closeup of the objects. The episodes are of length 400 and the reward function is binary depending
on whether the task is successfully executed.

DM Locomotion A set of continuous control tasks which involve controlling a 56 degrees of free-
dom humanoid avatar, resulting in a large action spaces (Tassa et al., 2020). For all tasks, we learn
directly from large observation spaces (i.e. 64x64 RGB images). These images are generated by an
egocentric camera under the control of the policy. We focus on humanoid corridor and humanoid
gaps, which are difficult tasks but do not require long-term memory.

3.2 ORL ALGORITHMS

Our experiments select among policies produced using different hyperparameter settings for three
offline reinforcement learning algorithms listed below.

Table 1 — Policy updates for considered
algorithms. BC and CRR regress to ac-
tions logged in the data while D4PG relies
on critic estimates.

Algorithm Policy Update

BC −∇φ log πφ(at|st)
CRR −∇φ log πφ(at|st) · w∗
D4PG ∇φQθ(st, πφ(st))
FQE None
∗w reflects CRR weighting as in (Wang et al., 2020)

Behavior Cloning (BC; Pomerleau (1989)) BC’s policy
objective attempts to match the actions from the behav-
ior data. Standard behavior cloning does not train a value
function, but we do train a value function alongside the
policy to enable downstream policy evaluation. We note
that the training procedure is agnostic to the critic trained.

Critic Regularized Regression (CRR; Wang et al.
(2020)) The policy objective of CRR attempts to match
the actions from the behavior data, while also preferring
actions with high value estimates. This encourages the pol-
icy to be close to the behavior policy for some, but not all
states.

Distributed Distributional Deep Deterministic Policy Gradient (D4PG; Barth-Maron et al.
(2018)) D4PG’s policy objective directly optimizes the critic. As a result, there is no regularization
towards the behavior policy.

4



Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

By design, all the algorithms share the same value update, which is

−∇θd(Qθ(st, at), rt + γEa∼πφ(st+1)Qθ(st+1, a)), (1)

where d is a divergence measure. As the value update is the same for all the algorithms, they are
defined by their policy updates which are shown in Table 1. This allows us to isolate the effect of
the policy update on downstream policy evaluation.

Finally, we want to reiterate that two of the algorithms, BC and CRR, encourage the policy to stay
close to the behavior policy, whereas D4PG does not, allowing the policy to freely optimize against
the critic. As shown in our experiments (see Section 4), this characteristic strongly influences the
OHS accuracy.

3.3 OFFLINE POLICY EVALUATION ALGORITHMS

We re-evaluate the policies generated by the ORL algorithms described above using FQE.

Algorithm 1 Fitted Q Evaluation
Input: Dataset D, policy πe to evaluate
For nupdates do

Sample {si, ai, ri, s′i}batch sizei=1 from D
Update critic according to Eq. 1

Fitted Q Evaluation (FQE; Le et al. (2019))
Our FQE algorithm employs the same value
function updates as the above ORL methods but
keeps the policy fixed. Pseudocode for it can be
found in Algorithm 1, and a simplified version
of the code we use can be found in Appendix E.

FQE was shown to work well in a recent suite of experiments on relatively simple problems
(Voloshin et al., 2019). Using it allows us to interrogate how much re-evaluation with the same
objective and dataset improves policy evaluation. In our experiments, we assume that the ORL
algorithms and FQE have access to the same data.

There are many possible OPE algorithms we could try, as discussed in Section 5. We focus on Fitted
Q Evaluation due to its simplicity and scalability. Other OPE methods have to solve difficult estima-
tion problems, such as learning a transition model from pixels or computing importance sampling
corrections for continuous actions. Fitted Q Evaluation foregoes estimating these complex quantities
by directly estimating the value function of the policy being evaluated.

3.4 HYPERPARAMETERS AND OTHER IMPLEMENTATION DETAILS

Table 2 — Hyperparameters consid-
ered. We consider parameters specific to the
model architecture, the optimizer, and loss
function.

Hyperparameter Values

Hidden size 64, 1024
Num blocks 1, 5
Learning rate 0.001, 0.00001
Learner steps range(50k, 250k, 25k)
Algorithms BC, CRR, D4PG
Beta (for CRR) 0.1, 10

For each task, we train policies using the hyperparameters
described in Table 2, resulting in 256 policies per task (64
BC, 128 CRR, 64 D4PG). We considered hyperparame-
ters that affect the model architecture (hidden size, num
blocks2), the optimizer (learning rate and learner steps),
and loss function (algorithm and loss term beta), since
these are known to be important for many machine learn-
ing problems. The search space in grid search grows
rapidly with respect to the number of hyperparameters
considered and unique hyperparameter settings. Thus,
we tried to choose a small representative set that is rea-
sonably broad in terms of performance. Our implemen-
tations are based on open-sourced D4PG implementation
from Acme (Hoffman et al., 2020).

Each policy comes with an associated critic Qθ, which we use to calculate ORL statistics. In ad-
dition, we re-evaluate each policy and hyperparameter choice using FQE for each combination of
the hyperparameters in Table 2, meaning that we run the FQE algorithm 256 times per task. We use
these resulting critics to generate the OPE statistics. Finally, to obtain the actual value, we run each
policy in the environment for 100 episodes. In the experiments we compare the actual values to the
ORL and OPE statistics.

2The CRR paper (Wang et al., 2020) uses blocks composed of two linear layers followed by layer-norm and
residual connections. We used the same architecture.
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Figure 4: Value estimates vs actual values. Each point represents a policy trained using different hyperparam-
eters including different algorithms (� BC, � CRR, � D4PG). (top) Value estimates from ORL algorithms.
Notice nearly all values are over-estimated (i.e. lay above the diagonal) to some degree. D4PG over-estimates
the most, followed by CRR, then BC. (bottom) Value estimates from re-evaluating policies using offline pol-
icy evaluation, specifically FQE. Re-evaluation significantly reduces over-estimating in these domains, though
D4PG deviates the most from the actual values.

In this paper, we use distributional critics (Bellemare et al., 2017) for all our algorithms, including
FQE. This means that the value function Qθ in Eq. 1 is represented as a discrete distribution, and
the discrepancy measure d is the cross-entropy between the two distributions, as in Barth-Maron
et al. (2018) and Wang et al. (2020). In Appendix D we compare FQE estimates with and without a
distributional critic and find they are similar.

4 RESULTS

Our experiments confirm that hyperparameter choice does play an important role in the performance
of the ORL algorithms we use on our set of tasks (see for example the range of actual values (x axis)
on the graphs in Figure 4). The results presented in this section aim to shed light on the conditions
under which the statistics in Section 2.1 rank these hyperparameter choices well.

4.1 OVERESTIMATION

Figure 5: Distribution of over-estimation.
Summary of the distribution of over-
estimation for each algorithm (� BC, �
CRR, � D4PG) and task domain. Re-
evaluation by OPE (bottom plot) signifi-
cantly reduces over-estimation across all do-
mains and algorithms. Y-axis is probability
density.

In the top row of Figure 4 and 5 we compare the actual
values against the ORL V̂ (s0) statistics. We show that,
on all tasks, ORL’s V̂ (s0) overestimates the value. In ex-
treme cases (e.g. humanoid environments; see Figure 4
(top)), according to the ORL statistics, D4PG deceptively
looks to produce the best policy, while actually being the
worst.

We find a clear over-estimation trend – statistics tend to
over-estimate the most on D4PG, followed by CRR, fol-
lowed by BC. Again, we note that BC and CRR attempt
to produce policies that are similar to the behavior pol-
icy, whereas D4PG does not. This may make it easier
to estimate the value of the policies they produce, given
only the behavior data. In terms of task domains, statis-
tics tend to over-estimate the most on DM Locomotion,
followed by Manipulation Playground, followed by DM
Control Suite.

In the bottom row of Figure 4 and 5, we compare the ac-
tual values against the OPE V̂ (s0) statistics. We show
that re-evaluation using FQE significantly reduces over-estimation across all algorithms and tasks.
Unfortunately, the over-estimation trends described above remain. Specifically, for D4PG on DM
Locomotion, the statistic still over-estimates significantly.

Finally, the plots in Figure 4 suggest better performing policies overestimate less. This finding
highlights the importance of reducing overestimation for ORL to learn better policies.
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Figure 6: Rank correlation within algorithm and across all algorithms. We compare the rank correlation
between the actual value and two policy statistics: V̂ (s0) and Soft OPC (see additional statistics in Appendix
C). We use both ORL and OPE critics. Note that each set of bars (same color and tone) represents an offline
hyperparameter selection procedure with different design choices. Prior work Irpan et al. (2019) is most similar
to ORL Soft OPC on D4PG. We find the best set of design choices OPE V̂ (s0) on CRR to work significantly
better.

Figure 7: Regret@5 within algorithm and across all algorithms. We compare the normalized regret@5
between the actual value and various policy statistics from ORL and OPE critics (V̂ (s0), Soft OPC, additional
statistics in Appendix C). We normalize by the value of the best policy. The black horizontal line indicates the
regret associated with the policy of median value. The regret follows similar trends to rank correlation. Note
that prior work Irpan et al. (2019) is most similar to ORL Soft OPC on D4PG. We find the best set of design
choices ORL/OPE V̂ (s0) on CRR to work significantly better, with low regret across all tasks, much lower
than the regret associated with picking the policy with median value, and often close to zero.

4.2 RANKING QUALITY

In Figure 6 we compute the rank correlation between the actual values and various statistics, broken
down by ORL algorithm, and across all algorithms. The ORL V̂ (s0) statistic has better rank corre-
lation for BC and CRR (algorithms that encourage the policy to stay close to the behavior policy)
than for D4PG. The ORL V̂ (s0) statistic also performs better on environments which showed less
overestimation like DM Control Suite, and worse on environments with more overestimation like
DM Locomotion. For the hardest combination, D4PG on the DM Locomotion tasks, the rank cor-
relation is quite low. Because D4PG is hard to rank in this setting, it is also hard to rank policies
across all algorithms.

The same general trends hold for the OPE V̂ (s0) statistic, but it has higher correlation than ORL
V̂ (s0) across the board. Especially for BC and CRR on the DM Locomotion tasks. For BC and CRR,
OPE V̂ (s0) rank correlation is above 0.9 for most tasks. But for D4PG and across all algorithms on
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DM Locomotion is still quite low. In Appendix B we analyze how OPE V̂ (s0) performance varies
with number of FQE learner steps.

Similar trends for ORL and OPE V̂ (s0) statistics can be seen in the regret plots in Figure 7. BC and
CRR have generally low regret across all tasks, usually much lower than the regret associated with
picking the policy with median value, and often close to zero. Regret for D4PG is often low, and
usually better than the median choice. For D4PG the regret for OPE V̂ (s0) tends to be lower than
for ORL V̂ (s0).

Figures 6 and 7 indicate that ranking based on V̂ (s0) is preferable to ranking based on the Soft OPC
statistic in terms of both ranking correlation and regret. For instance, OPE V̂ (s0) has higher rank
correlation than OPE Soft OPC for nearly all tasks. It is not clear why this is the case. One potential
explanation is Soft OPC depends on the value estimates along unsuccessful trajectories. It is possible
the learned policies deviate from the behavior policy greatly on these states, and the value estimates
end up being poor, making the difference in value between successful vs unsuccessful states less
meaningful. This may be exacerbated by the challenging properties of these tasks, such as the high
action dimension or long time horizon.

5 RELATED WORK

There is a large body of work on OPE including importance sampling methods (Precup, 2000;
Precup et al., 2001; Munos et al., 2016) marginal importance sampling methods (Liu et al., 2018;
Nachum et al., 2019; Uehara et al., 2020), model-based methods (Mannor et al., 2004), and doubly
robust methods which combine importance sampling and model-based methods (Dudı́k et al., 2011;
Jiang & Li, 2016; Thomas & Brunskill, 2016; Farajtabar et al., 2018). Importance sampling based
approaches can be difficult to apply in domains with large continuous action spaces, and model based
approaches can be difficult to apply in domains with high dimensional observation spaces. This
makes pixel-based robotics applications particularly difficult for a broad range of OPE methods.
One approach to OPE that avoids both importance sampling corrections and learning transition
models is Fitted Q Evaluation (Le et al., 2019). A comprehensive empirical study of OPE methods
was carried out in Voloshin et al. (2019). The study considered most of the aforementioned OPE
methods and finds FQE to be surprisingly effective despite its simplicity. Compared to this work,
Voloshin et al. (2019) does not address model selection, only standard policy evaluation using MSE
as the evaluation metric. Additionally, they consider simpler environments and datasets.

Hyperparameter tuning has been an essential tool for improving the performance of algorithms on
many tasks and domains (Bergstra & Bengio, 2012; Snoek et al., 2012; Jaderberg et al., 2017; Melis
et al., 2018). However, offline hyperparameter tuning for ORL has received relatively little atten-
tion. Farahmand & Szepesvári (2011) have proposed BerMin for offline model selection, and they
investigated the convergence and other theoretical properties of it. Their method, however, resolves
around the Bellman error which does not correlate well with policy performance in complicated
domains. Irpan et al. (2019) proposed Off-Policy Classification (OPC) and evaluated it using rank
correlation on goal-directed continuous control tasks. Their evaluation scheme is similar to ours, but
we 1) focus on more thorough evaluation in more challenging simulated domains, and 2) extend the
evaluation to examine several important factors such as the provenance of the policies, provenance
of the q estimator, and additional offline statistics. More recently, Gulcehre et al. (2020) have pro-
posed protocols for evaluating ORL methods that involve evaluation on a set of tasks that are not
available for online hyperparameter tuning.

6 CONCLUSIONS

We provide evidence that by carefully considering the choice of ORL algorithm, Q estimator, and
statistic, we can achieve a strong strategy for offline hyperparameter selection across challenging
tasks. In particular, we find that using algorithms that encourage policies to stay close to the behavior
policy such as CRR, re-estimating the Q value using FQE, and using V̂ (s0) as our ranking statistic
is sufficient for performing offline hyperparameter selection in the tasks we considered. This is true
even in the DM Locomotion tasks, which require control of a 56 degrees of freedom humanoid
avatar from visuals provided by an egocentric camera.
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Appendix

A ABSOLUTE ERROR RESULTS

In the main paper we provide over-estimation results, summarized for each task domain. In this
section we show the absolute error for each task individually.

Figure 8: Absolute Error. We compute the absolute error between the actual values and V(s0) statistics, using
the ORL and OPE critics. We find two main error trends: first in terms of algorithms, statistics tend to have
highest error on D4PG, followed by CRR, followed by BC. Second in terms of task domains, statistics tend to
have highest error on DM Locomotion, followed by Manipulation Playground, followed by DM Control Suite.
And OPE statistics have lower error and ORL statistics.

B FQE SENSITIVITY TO ITS OWN HYPERPARAMETERS

Figure 9: Rank correlation vs FQE learner
steps. (� BC, � CRR, � D4PG) FQE is relatively
stable to the number of learner steps. Though
D4PG on cartpole swingup eventually diverges.

Our FQE implementation was based on an existing
CRR implementation and we used its default hyper-
parameters for all tasks (hidden size = 1024, num
blocks = 4, learning rate = 0.0001, learner steps =
250k). We did not perform an exhaustive investiga-
tion of FQE’s sensitivity to hyperparameters, but we
did look into its sensitivity to the number of learner
steps on the control suite. Figure 9 suggests that
FQE is not very sensitive to the number of learner
steps and, in general, does not seem to get worse as
it runs for longer. Finding a good way to tune FQE
hyperparameters remains an open problem for future
research.
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C ADDITIONAL RANKING RESULTS

In addition to V̂ (s0) and Soft OPC, we also considered two additional offline statstics:

• avg q Use the expected value across all states in the dataset Es∼D[Qθ(s, π(s))]. This
differs slightly from what we care about, it corresponds to running the policy from any
state along a trajectory in the behavior data. Nevertheless this statistic performs similarly
to V̂ (s0).

• td err Use the average temporal difference error across all (s,a,r,s’) tuples in dataset.
E(s,a,r,s′)∼D[r+γQθ(s

′, π(s′))−Qθ(s, a)]. This statistic is more indicative of the quality
of the critic than the quality of the policy, which may explain why it performs quite poorly
for our purposes.

Figure 10: Rank correlation within algorithm and across all algorithms cont’d. We compare the rank
correlation between the actual value and additional policy statistics from ORL and OPE critics (avg q, td err).
In general, avg q follows similar trends to V̂ (s0), but its slightly worse, and td err performs quite poorly
overall.

Figure 11: Regret@5 within algorithm and across all algorithms cont’d. We compare the normalized
regret@5 between the actual value and additional policy statistics from ORL and OPE critics (avg q, td err).
The regret follows similar trends to rank correlation. In general, avg q follows similar trends to V̂ (s0), but its
slightly worse, and td err performs quite poorly overall.
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D FITTED Q EVALUATION WITHOUT DISTRIBUTIONAL CRITIC

We aimed to keep the critic loss consistent for all experiments in the main paper. But some read-
ers may be curious how FQE would perform without a distributional critic. We re-ran our FQE
evaluation with and without a distributional critic on the DM Control Suite tasks.

Figure 12: Comparing FQE estimates with and without distributional critics. (� With, � Without) Overall
estimates fall within a similar range. FQE with a distributional critic has a few outliers with high values that
FQE without does not. On closer inspection we found these corresponded to experiments that were terminated
early.
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E FITTED Q EVALUATION CODE

We wrote our FQE code using TensorFlow 2 and Acme (Hoffman et al., 2020). Listing 1 is a
simplified version of the code we used.

Listing 1: Simplified code for of Fitted Q Evaluation. The code is functional despite its simplicity.

# C o p y r i g h t 2020 DeepMind T e c h n o l o g i e s L i m i t e d .
# SPDX−L i c e n s e− I d e n t i f i e r : Apache−2.0

d i s c o u n t = 0 . 9 9
t a r g e t u p d a t e p e r i o d = 100

n u m s t e p s = 0

f o r o tm1 , a tm1 , d t , i s t e r m i n a l , o t in d a t a s e t :
q t = t a r g e t c r i t i c n e t w o r k ( o t , p o l i c y n e t w o r k ( o t ) )

# O p e r a t i o n s t h a t w i l l be d i f f e r e n t i a t e d s h o u l d be e x e c u t e d i n
# t h i s c o n t e x t .
wi th t f . G r a d i e n t T a p e ( ) a s t a p e :

q tm1 = c r i t i c n e t w o r k ( o tm1 , a tm1 )

# Use 0 d i s c o u n t a t t e r m i n a l s t a t e s .
c u r r d i s c o u n t = 0 . 0 i f i s t e r m i n a l e l s e d i s c o u n t
c r i t i c l o s s = l o s s e s . c a t e g o r i c a l ( q tm1 , r t , c u r r d i s c o u n t , q t )

# Get t r a i n a b l e v a r i a b l e s .
v a r i a b l e s = c r i t i c n e t w o r k . t r a i n a b l e v a r i a b l e s

# Compute g r a d i e n t s .
g r a d i e n t s = t a p e . g r a d i e n t ( c r i t i c l o s s , v a r i a b l e s )

# Apply g r a d i e n t s .
o p t i m i z e r . apply ( g r a d i e n t s , v a r i a b l e s )

# Update o n l i n e −> t a r g e t p a r a m e t e r s i f n e c e s s a r y .
s o u r c e v a r i a b l e s = c r i t i c n e t w o r k . v a r i a b l e s
t a r g e t v a r i a b l e s = t a r g e t c r i t i c n e t w o r k . v a r i a b l e s
i f n u m s t e p s % t a r g e t u p d a t e p e r i o d == 0 :

f o r s r c , d e s t in z i p ( s o u r c e v a r i a b l e s , t a r g e t v a r i a b l e s ) :
d e s t . a s s i g n ( s r c )

n u m s t e p s += 1
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F DATASET DETAILS

Table 3 — Dataset sizes in number of episodes.

Task No. Episodes
Cartpole Swingup 100
Cheetah Run 2000
Finger Turn Hard 2000
Walker Walk 800
Box 8000
Stack Banana 8000
Insertion 8000
Slide 8000
Humanoid Corridor 16000
Humanoid Gaps 16000

In this section, we provide details regarding the
datasets used in this paper. For the sizes of all
datasets used, please refer to Table 3.

DM Control Suite We largely follow the proce-
dures of generating data as described in Gulcehre
et al. (2020). All datasets used in the DM control
suite domains are generated by 3 independent runs
of a D4PG agent. Episodes from the entire training
run is saved to increase diversity. Unlike in Gulcehre
et al. (2020), we do not further filter out successful
episodes and the size of the datasets used in this pa-
per is larger than that in Gulcehre et al. (2020).

Manipulation tasks These datasets are the same
as the robotics datasets used in Wang et al. (2020).
The dataset for each task is generated from 3 independent runs of a D4PGfD agent3 where 100
human demonstrations are used for each task to assist with exploration. The dataset contains 8000
episodes from the entire training process and thus consists of both successful and unsuccessful
episodes.

DM Locomotion We largely adhere to the procedures of generating data as described in Gulcehre
et al. (2020). For each task, three policies are trained following Merel et al. (2019). Episodes from
the entire training runs are saved and sub-sampled to include both successful and failed episodes.
Unlike in Gulcehre et al. (2020), we do not further filter out successful episodes and the size of the
datasets used in this paper is larger than that in Gulcehre et al. (2020).

3D4PGfD is similar to DDPGfD but is augmented with distributional critics.
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