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Abstract

Thompson sampling (TS) has emerged as a robust technique for contextual bandit
problems. However, TS requires posterior inference and optimization for action
generation, prohibiting its use in many internet applications where latency and ease
of deployment are of concern. We propose a novel imitation-learning-based algo-
rithm that distills a T'S policy into an explicit policy representation by performing
posterior inference and optimization offline. The explicit policy representation en-
ables fast online decision-making and easy deployment in mobile and server-based
environments. Our algorithm iteratively performs offline batch updates to the TS
policy and learns a new imitation policy. Since we update the TS policy with obser-
vations collected under the imitation policy, our algorithm emulates an off-policy
version of TS. Our imitation algorithm guarantees Bayes regret comparable to TS,
up to the sum of single-step imitation errors. We show these imitation errors can
be made arbitrarily small when unlabeled contexts are cheaply available, which is
the case for most large-scale internet applications. Empirically, we show that our
imitation policy achieves comparable regret to TS, while reducing decision-time
latency by over an order of magnitude.

1 Introduction

In the past decade, Thompson sampling [54] has emerged as a powerful algorithm for contextual
bandit problems. The underlying principle is simple: an action is chosen with probability proportional
to it being optimal under the current posterior distribution. Driven by the algorithm’s strong empirical
performance [50, 15, 39] and rigorous performance guarantees [30, 7, 8, 25, 28, 47, 3], Thompson
sampling has gained popularity in a broad range of applications including revenue management [21],
internet advertising [26, 5, 49], and recommender systems [31].

Despite its conceptual simplicity and strong performance, Thompson sampling can be difficult to
deploy. Concretely, choosing an action with Thompson sampling consists of two steps: posterior
sampling and optimization. Posterior sampling requires evaluating a potentially large number of
actions from a well-calibrated probabilistic model. Uncertainty calibration is crucial for empirical
performance [45], since a well-calibrated model allows optimally trading off exploration and ex-
ploitation. In this regard, large-scale (probabilistic) machine learning models based on deep networks
show much promise as they can adaptively learn good feature representations. However, sampling
from these probabilistic models can be demanding in terms of both computation and memory. While
approximate inference methods with better runtime characteristics exist, they tend to produce poorly
calibrated uncertainty estimates that translate into poorer empirical performance on bandit tasks [45].
The second step, optimization, solves for a reward-optimizing action under the posterior sample. This
can be prohibitively computationally expensive when the action space is large or continuous. For
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example, an advertising platform deciding to match advertisers to users has to solve combinatorial
optimization problems in real-time in order to run Thompson sampling [38].

These challenges are pronounced in mobile applications; as of 2018, an estimated 52.2% of web traffic
was generated by mobile devices [52]. Mobile applications require decisions to be made in a fast
and memory-efficient manner, and on-device decision-making is critical to good user experience in
domains such as adaptive video streaming [37] and social media ranking [42]. However, the majority
of internet-connected mobile devices have limited memory, and rely on low-end processors that are
orders of magnitude slower than server-grade devices [10, 64]. Another practical consideration is
the technical debt of implementing contextual bandit algorithms in large-scale internet services. The
online nature of the complex routines required by Thompson sampling leads the overall system to be
cumbersome and hard to debug, making reliable software development challenging.

Motivated by challenges in implementing and deploying Thompson sampling in real production
systems, we develop and analyze a method that maintains an explicit policy representation designed
to imitate Thompson sampling, which allows efficient action generation without real-time posterior
inference or numerical optimization. In order to avoid complex and computationally demanding
routines online, our algorithm simulates a Thompson sampling policy offline and learns an explicit
policy parameterization that mimics the behavior of Thompson sampling. As in many production
systems, we consider the setting where the policy is updated offline with batches of new data [27]. At
each period, the imitation learning problem can be efficiently solved using stochastic gradient-based
methods, as it is equivalent to a log likelihood maximization (MLE) problem where the goal is to find
a policy parameterization maximizing the likelihood of observing the actions generated by Thompson
sampling. With this distilled policy in hand, actions can be generated efficiently by sampling from
this parameterized distribution, conditional on the observed context; if we use neural networks to
parameterize our imitation policy, this corresponds to a single forward pass. By virtue of moving
complex numerical routines offline, our imitation procedure allows arbitrary, state-of-the-art Bayesian
models and optimization solvers to be used even in latency and memory sensitive environments, and
can be easily implemented using modern machine learning pipelines [23, 22].

Since our updates to the Thompson sampling policy are based on observations generated by the
imitation policy, our algorithm emulates an off-policy version of Thompson sampling. Our main
theoretical result (Section 4) establishes that our imitation algorithm maintains performance compara-
ble to the true on-policy Thompson sampling policy, up to the sum of single-step imitation errors.
In particular, our results preclude the possibility of small deviations between our imitation policy
and Thompson sampling magnifying over time. We prove that each single-period imitation error
term can be controlled—with a sufficiently rich imitation model—at the rate O, (1/ V'N), where N
is the number of (potentially unlabeled, meaning those without corresponding actions or rewards)
available contexts. Combining this with our regret bound, our imitation algorithm achieves perfor-

mance comparable to Thompson sampling up to O, (T'/ V/N)-error. Despite the seemingly linear

regret, we often have 7' < v/N in internet applications where databases with entity features provide
abundant unlabeled contexts, often in the order of hundreds of millions. In contrast, the number of
model updates (horizon T) is relatively small, in tens or hundreds, due to complexities of reliable
software deployment and nonstationary user behavior. In practical problem settings where contexts
are abundant, our results show that the imitation policy enjoys Bayes regret comparable to that of
Thompson sampling, achieving optimal (gap-independent) regret in the wealth of examples where
Thompson sampling is known to be optimal.

We empirically evaluate our imitation algorithm on several benchmark problems and a real-world
dataset for selecting optimal video transcoding configurations (Section 5). In all of our experiments,
we find that that our imitation algorithm performs as well as Thompson sampling in terms of
cumulative regret, while reducing decision-time latency by an order of magnitude.

Related work Many authors have showed regret bounds for TS [6, 7, 30, 25, 28, 47, 3, 48]; we refer
the reader to the recent tutorial [48] for a comprehensive overview. We build on the insights of Russo
and Van Roy [47], and show that our imitation algorithm retains the advantageous properties of TS,
achieving (gap-independent) Bayes regret comparable to the best UCB algorithm.

The performance of explore-exploit algorithms like TS depend on having access to well-calibrated
probabilistic predictions. Obtaining a balance between predictive accuracy, time, and space can
be challenging in the context of large datasets with over-parameterized models. Exact posterior
sampling from even the simplest Gaussian linear models has a time complexity of O(n?), where n is



the number of model parameters; this assumes that the root decomposition of the covariance matrix
has been computed and cached, which incurs a cost of O(n3). A common strategy used by some
variational inference methods is to use a mean-field approach where parameters are assumed to be
independent [11]. This assumption can decrease sampling costs from O(n?) to O(n), where n is the
number of parameters. However, Riquelme et al. [45] found that TS using such approaches often
leads to poorer empirical performance.

When exact inference is not possible, approximate inference methods can be used for posterior
sampling. See Russo et al. [48] for a discussion of elementary approximation methods in relation
to TS (e.g. Laplace approximation for unimodal distributions). Bootstrapping [20, 41, 35] is a
simple procedure that fits multiple models to resampled versions of the dataset to approximate
samples from the posterior distribution; the computational burden of maintaining multiple models
can be prohibitive. MCMC-based methods for approximate inference, and Hamilton Monte Carlo
(HMC) [40] in particular, are largely regarded as the “gold standard” for approximate Bayesian
inference. HMC, and other MCMC-like approaches (e.g., Chen et al. [16], Welling and Teh [59])
generate an arbitrary number of posterior samples for all parameters. While such algorithms permit
rapid evaluation of posterior samples (since the parameters are already sampled), they require
substantial memory to store multiple samples of the parameters. Recent methods have also considered
decomposing the covariance or precision matrix into a diagonal and low-rank component [66, 36].
While this reduces computational complexity and memory costs relative to using the full covariance,
sampling still incurs a time complexity of O((n + 1)p) where p is the rank of the covariance (or
precision matrix) and p copies of the weights must be stored.

By pre-computing and distilling TS, our imitation learning framework allows the use of the most
appropriate inferential procedure for the task at hand, rather than what is feasible to run in an online
setting. In particular, the separation of online decision-making and offline computation allows the use
of state-of-the-art methods from the active research on deep Bayesian methods.

In contrast with previous works that consider one-shot, offline policy optimization [53, 29], our
method explicitly balances exploration and exploitation across multiple horizons, while using large
batch updates.

2 Thompson Sampling (TS)

We consider a (Bayesian) contextual bandit problem where the agent (decision-maker) observes
a context, takes an action, and receives a reward. Let P be a prior distribution over a parameter

space ©. At each time ¢, we denote the context .Sy S Pg, action A; € A, and reward R; € R. We
consider a well-specified reward model class {fp : A xS — R | € O} such that fy(a, s) = E[R; |
0,A; = a,S; = s]foralla € A,s € S. Let H, = (S1,A1,R1,...,S1-1,A4;1,Ri_1) be the
history of previous observations at time ¢, and assume regardless of H;, the mean reward at time ¢ is
determined only by the context-action pair E[R; | 0, H;, S; = s, Ay = s] = fg(a, s), or equivalently,
R: = fy(As, St) + € where €; is a mean zero i.i.d. noise.

We use 7; to denote the policy at time ¢ that generates the actions A;, based on the history Hy:
conditional on the history H;, we have A; | Sy ~ m(- | St), where we abuse notation to suppress
the dependence of 7, on H;. The agent’s objective is to maximize the cumulative sum of rewards by
sequentially updating the policy 7;’s based on observed context-action-reward tuples. The regret of
the agent compares the agent’s cumulative rewards to the rewards under the optimal actions; for any
fixed parameter value 6 € O, the (frequentist) regret for the set of policies {m; }cn is

Regret (T, {7t }1en, 0) := ZleE rar}eaj( fola, St) — fo(As, St) | 9]

For simplicity, we assume argmax, ¢ 4 fo(a, s) is nonempty almost surely. We assume the agent’s
prior, P, is well-specified, a key (standard) assumption that drives our subsequent analysis. Under the
prior P over § € O, the Bayes regret is simply the frequentist regret averaged over § ~ P:

BayesRegret (T, {m, hien) := Egp[Regret (T, {m }ren, 0)] = S0 Egop [glea} fola, So)—fo(As, St)} .

Based on the history so far, a TS algorithm plays an action according to the posterior probability
of the action being optimal. The posterior probabilities are computed based on the prior P and
previously observed context-action-reward tuples. At time ¢, this is often implemented by sampling



Algorithm 1 Imitating Thompson Sampling

1: Input: prior P on parameter space ©, reward model class { fy(-, -) }, imitation policy model class
{m™ : m € M}, notion of distance D for probabilities

:fort=1to T do
Update 7 ¥|H; and m}", where m < argmin,,c o Egopg [D (775, 7™ | S)]
Observe Sy, sample A, ~ 7} (- | St), receive Ry

end for

AN D

from the posterior 6, ~ P(6 € - | H;, S;), and setting ATS € argmax, ¢ 4 fo, (a,S;). By definition,

TS enjoys the optimality property ATS | H,, S, < A* | Hy, S; where A* € argmax,¢ 4 fo(a, St)
and 0 is the true parameter drawn from the prior P.

3 Imitation Learning

Motivated by challenges in implementing Thompson sampling real-time in production systems,
we develop an imitation learning algorithm that separates action generation from computationally
intensive steps like posterior sampling and optimization. Our algorithm maintains an explicit policy
representation that emulates the TS policy by simulating its actions offline. At decision time, the
algorithm generates an action simply by sampling from the current policy representation, which is
straightforward to implement and computationally efficient to run real-time.

At each time ¢, our algorithm observes a context S;, and plays an action drawn from its explicit
policy representation. Formally, we parameterize our policy 7™ (a | s) with a model class M (e.g.
a neural network that takes as input a context and outputs a distribution over actions) and generate
actions by sampling from the current policy A; ~ 7}"(- | S). Upon receiving a corresponding
reward R;, the agent uses the context-action-reward tuple to update its posterior on the parameter
0 € O offline. Although this step requires posterior inference that may be too burdensome to run
real-time, our method allows running it offline on a different computing node, so that it does not
affect latency. Using the updated posterior 6; ~ P(- | Hy), the agent then simulates actions drawn by
the TS policy by computing the maximizer ATS(s) € argmax,¢ 4 fo, (a, s), for a range of values
s € S. Using these simulated context-action pairs, we learn an explicit policy representation that
imitates the observed actions of the TS policy.

We summarize an idealized form of our method in Algorithm 1, where conditional on the history H;
generated by the imitation policy, we denote the off-policy TS policy at time ¢ as 715(a | s). This
policy is different from the true, on-policy TS since the imitation policy generates actions. Dropping
the subscript ¢ to simplify notation, the imitation learning problem that updates the agent’s policy is

minimize,,e pEsopg [D (775,77 | S)]. 1)

Imitation problem (1) finds a model m € M that minimizes a measure of discrepancy D (-, - | S)
between the two distributions on .4, conditional on the context S. This imitation objective (1) cannot
be computed analytically, and we provide efficient approximation algorithms below.

To instantiate Algorithm 1, we fix Kullback-Leibler (KL) divergence as a notion of discrepancy
between probabilities and present finite-sample approximations based on observed contexts and
simulated actions from the TS policy 775(a | s). For probabilities ¢! and ¢? on A such that
q', ¢* < v for some o-finite measure v on A, the KL divergence between ¢ and ¢? is Dy (q ! H(IQ) =

J 4 log %(a)d}"(a), where we use dq' /dv and dg? /dv to denote Radon-Nikodym derivatives of

q" and ¢? with respect to v. For policies 7! and 712, let Dy (7!, 7% | S) := Dy (7*(- | S)[=2(- | S)),

where we use 71, 72 to also denote their densities over .A. From the preceding display, the imitation

problem (1) with D (-,- | S) = Dy (-, - | S) is equivalent to a maximum log likelihood problem
maXimiZGmGMESNPS,ATSNﬂ.TS(.‘S) [log Wm(ATS | S)] (2)

We write B[] = Egpg, arsr7s(.|s)[-] for simplicity. The data comprises of context-action pairs;
contexts are generated under the marginal distribution S ~ Pg independent of everything else, and
actions are generated/simulated from the TS policy AT ~ 7T5(. | S). The MLE problem (2) finds
the model m € M that maximizes the log likelihood of observing these actions.



The imitation objective m + E[log 7™ (ATS | S)] involves an expectation over the unknown
marginal distribution of contexts Ps and actions generated by the TS policy 775(- | S). Although
the expectation over S ~ Pg involves a potentially high-dimensional integral over an unknown
distribution, sampling from this distribution is usually very cheap since the observations S' ~ Pg can
be “unlabeled” in the sense that no corresponding action/reward are necessary. For example, it is
common for internet services to maintain a database of features S for all of its customers. Using
these contexts, we can solve the MLE problem (2) efficiently via stochastic gradient descent [33, 19].

Accommodating typical application scenarios, Algorithm 1 and its empirical approximation applies to
settings where the agent has the ability to interact with the system concurrently. This is a practically
important feature of the algorithm, since most applications require the agent to concurrently generate
actions, often with large batch sizes. Using the imitation policy 7™ (a | s), it is trivial to parallelize
action generation over multiple computing nodes, even on mobile devices. Although our theoretical
developments focus on the non-concurrent case for ease of exposition, our regret bounds can be
extended to the batch setting; our experiments in Section 5 present large batch scenarios to illustrate
typical application scenarios. While we restrict discussion to TS in this work, offline imitation can
learn a explicit policy representation of any complicated policy and allow operationalization at scale.

For continuous actions with geometry, it may be natural to allow imitation policies to have slightly
different support than the Thompson sampling policy. We can instantiate Algorithm 1 with Wasser-
stein distances as our notion of discrepancy D (-, - | s). The subsequent theoretical development for
KL divergences has its analogue for Wasserstein distances, which we outline in Section A.

4 Imitation Controls Regret

In this section, we show that minimizing the KL divergence (1) between TS and the imitation
policy allows control on the Bayes regret of the imitation algorithm. In this sense, the imitation
learning loss (1) is a valid objective where better imitation translates to gains in decision-making
performance. By controlling the imitation objective (1), our results show that Algorithm 1 and its
empirical approximation enjoys the similar optimality guarantees as TS. Since the imitation policy is
responsible for generating actions in Algorithm 1, the observations used to update the Thompson
sampling policy are different from what the TS policy would have generated. In this sense, our
imitation algorithm does not emulate the true TS policy, but rather simply mimics its off-policy
variant, where the posterior updates are performed based on the history generated by the imitation
policy. Our analysis shows off-policy imitation is sufficient to achieve the same optimal regret bounds
available for on-policy TS [47]. In particular, our results guard against potential compounding of
errors resulting from imitating the off-policy variant of TS.

We relate the performance of our imitation policy with that of the off-policy TS, 75, and show that
7S admits a Bayes regret decomposition that allows us to show that it still achieves same optimal
Bayes regret as the (on-policy) TS policy. This allows proving Bayes regret bounds for the imitation
policy by utilizing existing proofs for bounding regret of UCB algorithms. We build on the flexible
approach of Russo and Van Roy [47], and extend it to imitation policies that emulate off-policy TS.

Regret decomposition Since our imitation learning problem (1) approximates off-policy Thompson
sampling, a pessimistic view is that any small deviation between the imitation and TS policy can
exacerbate over time. A suboptimal sequence of actions taken by the imitation policy may deteriorate
the performance of the off-policy TS policy 75 updated based on this data. Since the imitation
policy again mimics the off-policy Thompson sampler, this may lead to a negative feedback loop in
the worst-case. Our analysis precludes such negative cascades when outcomes are averaged over the
prior P: the Bayes regret of the imitation policy is comparable to that of the best UCB algorithm,
up to the sum of expected discrepancy between the off-policy TS policy and the imitation learner at
each period. Our bounds imply that each single-period approximation error does not affect the Bayes
regret linearly in 7" as our worst-case intuition suggests, but only as a one-time approximation cost.
To achieve near-optimal regret, it thus suffices at each period to control the imitation objective (1) to
the off-policy TS policy 7,°; in Section C, we show that the imitation objective can be efficiently
optimized using approximations based on unlabeled contexts.

We connect the performance of our imitation policy to that of the off-policy Thompson sampler and
in turn relate the latter method’s Bayes regret to that of the best UCB algorithm. Let Uy (-; Hy, S) :
A — R be a sequence of upper confidence bounds (UCB). Russo and Van Roy [47] showed that a
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TS algorithm admits a Bayes regret decomposition with respect to any UCB sequence. This allows
leveraging arguments that bound the regret of a UCB algorithm to bound the Bayes regret of TS.
Since the Bayes regret decomposition for TS holds for any UCB sequence, the performance of TS
enjoys Bayes regret guarantees of the best UCB algorithm. We can show a similar Bayes regret
decomposition for our imitation policy for any UCB sequence; the Bayes regret of the imitation
policy enjoys a UCB regret decomposition similar to TS, up to the cumulative sum of single-period
approximation errors. Recall that we denote ATS ~ 71S(. | S;), the action generated by the
off-policy Thompson sampler. See Section D.1 for the proof of the following result.

Lemma 1. Let {m; }1cn be any sequence of policies (adapted to history), and let U, (-; Hy, S¢) : A —
R be any upper confidence bound sequence that is measurable with respect to (Hy, St). Let there be
a sequence My(Hy, S¢) and L > 0 such that \/E[M;(Hy, S;)?] < L, and sup,¢ 4 |Us(a; Hy, St)| <
M;(Hy, St). Then, for all T € N, BayesRegret (T, {7 }+en) is bounded by

t=1 t=1

The above Bayes regret decomposition shows that performance analysis of any UCB algorithm can
characterize the regret of our imitation policy. In this sense, the imitation policy achieves regret
comparable to the optimal UCB algorithm, up to the sum of single-period imitation errors. The first
two terms in the regret decompositions can be bounded using canonical UCB proofs following the
approach of Russo and Van Roy [47]. We detail such arguments in concrete modeling scenarios in the
next subsection, where our results draw from regret guarantees for UCB algorithms [1, 2, 51]. The
last term in the decomposition is controlled by our imitation learning algorithm (Algorithm 1) and
its empirical approximation; we show in Section C that the cheap availability of unlabeled contexts
allows tight control of imitation errors, with a near-optimal dimension dependence.

The fact that we are studying Bayes regret, as opposed to the frequentist regret, plays an important
role in the above decomposition. We conjecture that in the worst-case, even initially small imitation
error (and consequently suboptimal exploration) can compound over time in a linear manner. It
remains open whether certain problem structures can provably preclude these negative feedback
cycles uniformly over 6, which is necessary for obtaining frequentist regret bounds under imitation.

Regret bounds Building on the Bayes regret decomposition, we now show concrete regret guarantees
for our imitation algorithm. By leveraging analysis of UCB algorithms, we proceed by bounding
the first two sums in the decomposition. Our bounds on the Bayes regret are instance-independent
(gap-independent), and shows that the imitation policy achieves optimal regret (or best known bounds
thereof) up to the sum of imitation error terms. We present two modeling scenarios, focusing first
on the setting where the mean reward function (a, s) — fy(a, s) can be modeled as a generalized
linear model. Secondly, we consider the modeling the mean reward function (a, s) — fy(a, s) as
a Gaussian process in Section B; in this nonparametric setting, our regret bounds scale with the
maximal information gain possible over 7' rounds.

Let the mean reward function fy(a, s) be modeled as a generalized linear model. We assume © C R4,
and that there exists a feature vector ¢ : A x S — R and a link function g : R — R satisfying
fola,s) = g0 ¢(a,s)) forall € ©,a € A, s € S. Armed with the regret decomposition in
Lemma 1, we obtain regret bounds by following an eluder dimension argument pioneered by Russo
and Van Roy [47]. We give its proof in Section D.2.

Theorem 1. Let g : R — Rand ¢ : A xS — R such that fo(a,s) = g(¢(a,s)"0) for all
0 € ©, where g is an increasing, differentiable, 1-Lipschitz function. Let c¢1,co,0 > 0 be such
that supgeg [|0]l, < 1, and sup,c 4 ses l|¢(a,s)lly, < ca, and assume that Ry — fo(Ay, Sy) is
o-sub-Gaussian conditional on (0, Hy, Sy, Ay). If r is the maximal ratio of the slope of g r :=
SUPgco.acases 9 (#(a,8)0)

infoco,aca,ses 9'(¢(a,s) 10)’

BayesRegret (T, {7 }1en) < C(o + 1)rdVT log rT + clcgthzl\/ﬂE [Dia (7S, | S¢)]. 3)
For linear contextual bandits g(z) = x, our upper bound on the Bayes regret is tight up to a factor
of log T" and the cumulative sum of the imitation errors [46]; for generalized linear models, the first
two terms are the tightest bounds on the regret available. We conclude that controlling the imitation
error directly controls Bayes regret. As we present in Section C, solving the empirical approximation
to the imitation problem (1) with a sufficiently rich imitation model class m € M guarantees low
imitation errors in typical application scenarios.

then there is a constant C' that depends on c1, ¢y such that

T T
A7 He, Sp)] + ZE[Ut(AﬁHmSt) — fo(As, Sp)] + LZ \/2]E [Da (75,7 | St)].
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Figure 1. For all benchmark problems, we report the mean cumulative regret (or running average regret
up to time ¢ for the video upload transcoding application) and two standard errors of the mean over 50
trials (except for the Wheel which we run for 100 trials due the rare large rewards).

MUSHROOM WHEEL VIDEO TRANSCODE WARFARIN
UNIFORMRANDOM 0.040 (£0.000)  0.039 (40.000) 0.040 (£0.000) 0.040 (£0.000)
NEURAL-GREEDY 0.242 (£0.001)  0.228 (£0.001) 0.231 (£0.001) 0.232 (£0.000)
LINEAR-TS 0.715 (£0.001)  1.142 (4+0.001) 1.575 (4+0.002) 3.963 (£0.002)
NEURALLINEAR-TS 0.826 (£0.001)  1.492 (40.001) 1.931 (£0.002) 4.814 (£0.004)
BOOTSTRAP-NN-TS 0.235 (£0.001)  0.235 (+0.001) 0.236 (£0.001) 0.226 (£0.001)
LINEAR-TS-IL 0.184 (+0.001)  0.178 (£0.000)  0.169 (+£0.000)  0.175 (4+0.000)
NEURALLINEAR-TS-IL  0.186 (+0.000)  0.179 (£0.001) 0.169 (£0.000) 0.175 (£0.000)
BOOTSTRAP-NN-TS-IL  0.190 (+0.001)  0.178 (£0.000) 0.175 (40.000) 0.179 (40.001)

Table 1. Decision-making latency in milliseconds. All latency measurements were made on a Intel
Xeon E5-2680 v4 @ 2.40GHz CPU with 32-bit floating point precision. For each latency measurement,
action generation is repeated 100K times and the mean latency and its 2-standard errors are reported.

5 Empirical Evaluation and Discussion

We now empirically demonstrate our imitation algorithm on real and simulated problems. As our
main real-world application, we consider a internet service receiving millions of video upload requests
per day. We learn policies that decide how to transcode a video at upload time, where latency of
decisions is important to the quality of service and keeping the user engaged. We observe that our
IL algorithm achieves regret comparable to that of TS, while significantly reducing latency on all
problems. We begin by providing a brief description of benchmark problems, deferring their details
to Section F.3.

MUSHROOM is a UCI dataset [18] containing 8,124 examples with 22 categorical features about the
mushroom and binary labels (poisonous or not). The agent decides whether to eat the mushroom
or not and receives a stochastic reward: with equal probability, eating a poisonous mushroom lead
to illness (R; = —35) or no harm (R; = 5), while a nonpoisonous mushroom is always harmless
(R: = 5). The reward for abstaining is always R; = 0. We use 50,000 contexts for each trial.
WARFARIN is a pharmacological dosage optimization example, where we learn optimal personalized
dosages for Warfarin, the most widely used anticoagulant in the US. The dataset [60, 65] contains
optimal dosages for 4, 788 patients, alongside 17-dimensional genetic and demographic features. We
construct a CB problem with 20 discrete dosage levels as actions, where the reward is the difference
between the patient’s prescribed and optimal dosage. We reshuffle contexts for each trial; similar
results hold when 50, 000 contexts are re-sampled each trial and 50 actions are used (Appendix



F). As our third benchmark, to evaluate our methods on examples where exploration matters, we
consider the Wheel problem, a 2-dimensional synthetic problem specifically designed to emphasize
exploration [45]. There are 5 actions and rarely seen contexts yield high rewards under one context-
dependent action. We sample 10, 000 contexts for each trial. As our last experiment, we consider a
real-world video upload transcoding optimization problem (VIDEO TRANSCODING). This logged
dataset contains 8M observations of video upload transcoding decisions collected by Facebook under
a uniform random policy. The 38-dimensional contexts contain information about the video and
network connection, and 7 actions corresponding to different video codec qualities. The rewards for
successful uploads are positive and are monotonically increasing with quality. The reward is zero
if the upload fails. We evaluate the performance of different contextual bandit algorithms using the
rejection sampling technique proposed by Li et al. [34]. We sample 50, 000 contexts for each trial.

We consider a variety of models among those reported by Riquelme et al. [45] to perform the
best in a broad range of benchmark problems. The hyperparameters for the Thompson sampling
algorithms are from Riquelme et al. [45], which we detail in Appendix F.2 along with those for
the imitation algorithm. Policies are updated every 1000 contexts (except for on the Warfarin
problem, where we update policies every 100 contexts due to the small size of the dataset) and
are initialized using a uniform random policy before the first batch update. LINEAR-TS uses a
exact Bayesian linear regression to model the reward distribution for each action a. Exact posterior
samples are used under the assumption that the data for action a were generated from the linear
function: 7, = 878, + & where e ~ N'(0, 02). For each action, we independently model the joint
distribution, P(0,0?) = P(8|0?)P(c?) as a normal-inverse-gamma distribution which allows for
tractable posterior inference (see Appendix F.2 for details). NEURALLINEAR-TS models rewards
using a neural network with two 100-unit hidden layers and ReLLU activations, and uses the last
hidden layer ¢(s) as the feature representation for a Linear-TS policy. The neural network takes the
context as input and has an output for each action corresponding to the reward under each action.
The parameters of the neural network are shared for all actions and are learned independently of
the Bayesian linear models. BOOTSTRAP-NN-TS trains multiple neural networks on bootstrapped
observations and randomly samples a single network to use for each decision. TS-IL imitates a TS
policy using a fully-connected neural network as its policy representation. The policy network has
two 100-unit hidden layers and tanh activations, and a final soft-max layer. We compare TS and its
imitation counterparts against two additional methods: a random policy (UNIFORMRANDOM) and a
greedy policy that uses a feed-froward neural network (NEURAL-GREEDY).

Figure 1 shows that each TS-IL method achieves comparable performance to its corresponding vanilla
TS algorithm on each respective benchmark problem. In terms of cumulative performance, each TS-IL
policy consistently matches its corresponding TS policy over time. For all methods, we also evaluate
decision-time latency—the time required for a policy to select an action when it is queried—and
time complexity for online action-generation. While BOOTSTRAP-NN-TS achieves low prediction
latency, it requires storing many replicates of the neural network and can significantly increase the
memory footprint. Table 1 shows that the imitation policies (TS-IL) have significantly lower decision
time latency compared to TS algorithms, often by over an order of magnitude on problems with
larger action spaces (Warfarin and video upload transcoding). This is because generating an action
under the vanilla TS policies requires drawing a sample from the joint posterior P(8,,c?) for each
of the actions a, which is quadratic with respect to the context dimension for LINEAR-TS or the
size of the last hidden layer for NEURALLINEAR-TS. TS-IL simply requires a forward pass through
policy network and a cheap multinomial sample. Latency and complexity may be even greater under
inference schemes not considered here (see Appendix G for a discussion).

Discussion In this paper, we demonstrated that Thompson sampling via imitation learning is a simple,
practical, and efficient method for batch Thompson sampling with desirable regret properties. By
distilling the Thompson sampling policy into easy-to-deploy explicit policy representations (e.g.
small neural networks), we allow state-of-the-art Bayesian approaches to be used in contextual
bandit problems. We hope that this work facilitates applications of modern Bayesian approaches in
large-scale contextual bandit problems.
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