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Abstract

The problem of Offline Policy Evaluation (OPE) in Reinforcement Learning (RL)
is a critical step towards applying RL in real life applications. Existing work on
OPE mostly focus on evaluating a fixed target policy ⇡, which does not provide
useful bounds for offline policy learning as ⇡ will then be data-dependent. We
address this problem by simultaneously evaluating all policies in a policy class ⇧
— uniform convergence in OPE — and obtain nearly optimal error bounds for a
number of global / local policy classes. Our results imply that the model-based
planning achieves an optimal episode complexity of eO(H3/dm✏2) in identifying
an ✏-optimal policy under the time-inhomogeneous episodic MDP model (H is the
planning horizon, dm is a quantity that reflects the exploration of the logging policy
µ). To the best of our knowledge, this is the first time the optimal rate is shown to
be possible for the offline RL setting and the paper is the first that systematically
investigates the uniform convergence in OPE.

1 Introduction

In offline reinforcement learning (offline RL), there are mainly two fundamental problems: offline
policy evaluation (OPE) and offline learning (also known as batch RL) (Sutton & Barto, 2018). OPE
addresses to the statistical estimation problem of predicting the performance of a fixed target policy
⇡ with only data collected by a logging/behavioral policy µ. On the other hand, offline learning is a
statistical learning problem that aims at learning a near-optimal policy using an offline dataset alone
(Lange et al., 2012).

As offline RL methods do not require interacting with the task environments or having access to
a simulator, they are more suitable for real-world applications of RL such as those in marketing
(Thomas et al., 2017), targeted advertising (Bottou et al., 2013; Tang et al., 2013), finance (Bertoluzzo
& Corazza, 2012), robotics (Quillen et al., 2018; Dasari et al., 2020), language (Jaques et al., 2019)
and health care (Ernst et al., 2006; Raghu et al., 2017, 2018; Gottesman et al., 2019). In these tasks,
it is usually not feasible to deploy an online RL algorithm to trials-and-error with the environment.
Instead, we are given a large offline dataset of historical interaction to come up with a new policy ⇡
and to demonstrate that this new policy ⇡ will perform better using the same dataset without actually
testing it online.

In this paper, we present our solution via a statistical learning perspective by studying the uniform
convergence in OPE under the non-stationary transition, finite horizon, episodic Markov decision
process (MDP) model with finite states and actions. Informally, given a policy class ⇧ and a logging
policy µ, uniform convergence problem in OPE (Uniform OPE for short) focuses on coming up with
OPE estimator bv⇡ and characterizing the number of episodes n we need (from µ) in order for bv⇡ to
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satisfies that with high probability
sup
⇡2⇧

|bv⇡ � v⇡|  ✏.

The focus of research would be to characterizing the episode complexity: the number of episodes n
needed as a function of ✏, failure probability �, the parameters of the MDP as well as the logging
policy µ.

We highlight that even though uniform convergence is the main workhorse in statistical learning theory
(see, e.g., Vapnik, 2013), few analogous results have been established for the offline reinforcement
learning problem. The overarching theme of this work is to understand what a natural complexity
measure is for policy classes in reinforcement learning and its dependence in the size of the state-space
and planning horizon.

In addition, uniform OPE has two major consequences (which we elaborate in detail in the following
motivation section): (1) allowing any accurate planning algorithm to work as sample efficient offline
learning algorithm with our model-based method; (2) providing finite sample guarantee for offline
evaluation uniformly for all policies in the policy class.

The Motivation. Existing research in offline RL usually focuses on designing specific algorithms
that learn the optimal policy ⇡? := argmax

⇡
v⇡ with given static offline data D. In the rich

literature of statistical learning theory, however, learning bounds are often obtained via a stronger
uniform convergence argument which ensures an arbitrary learner to output a model that generalizes.
Specifically, the empirical risk minimizer (ERM) that outputs the empirical optimal policy has been
shown to be sufficient and necessary for efficiently learning almost all learnable problems (Vapnik,
2013; Shalev-Shwartz et al., 2010).

The natural analogy of ERM in the RL setting would be to find the empirical optimal policy
b⇡? := argmax

⇡
bv⇡ for some OPE estimator bv⇡ . If we could establish a uniform convergence bound

for bv⇡ , then it implies that b⇡? is nearly optimal too via

0  v⇡
?

� vb⇡
?

= v⇡
?

� bvb⇡
?

+ bvb⇡
?

� vb⇡
?

 |v⇡
?

� bv⇡
?

|+ |bvb⇡
?

� vb⇡
?

|  2 sup
⇡

|v⇡ � bv⇡|.

Thus, uniform OPE is a stronger setting than offline learning with the additional benefit of accurately
evaluating any other (possibly heuristic) policy optimization algorithms that are used in practice.

From the OPE perspective, there is often a need to evaluate the performance of a data-dependent
policy, and uniform OPE becomes useful. For example, when combined with existing methods, it
will allow us to evaluate policies selected by safe-policy improvements, proximal policy optimization,
UCB-style exploration-bonus as well as any heuristic exploration criteria such as curiosity, diversity
and reward-shaping techniques.

Model-based estimator for OPE. The OPE estimator we consider in this paper is the standard
model-based estimator, i.e., estimating the transition dynamics and immediate rewards, then simply
plug in the parameters of empirically estimated MDP cM to obtain v̂⇡ for any ⇡. This model-based
approach has several benefits. 1. It enables flexible choice of policy search methods since it converts
the problem to planning over the estimated MDP cM . 2. Uniform OPE with model-based estimator
avoids the use of data-splitting that leads to inefficient data use. For example, Sidford et al. (2018)
learns the ✏-optimal policy with the optimal rate in the generative model setting, where in each
subroutine new independent data s(1)s,a, ..., s

(m)
s,a need to be sampled to estimate Ps,a and samples

from previous rounds cannot be reused. A uniform convergence result could completely avoid data
splitting during the learning procedure.

Our contribution. Our main contributions are summarized as follows.

• For the global policy class (deterministic or stochastic), we use fully model-based OPEMA
estimator to obtain an ✏-uniform OPE with episode complexity eO(H4S/dm✏2) (Theo-
rem 3.1) and in some cases this can be reduced to eO(H4/dm✏2), where dm is minimal
marginal state-action occupancy probability depending on logging policy µ.

• For the global deterministic policy class, we obtain an ✏-uniform OPE with episode com-
plexity eO(H3S/dm✏2) with an optimal dependence on H (Theorem 3.3).
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• For a (data-dependent) local policy class that cover all policies are in the O(
p
H/S)-

neighborhood of the empirical optimal policy (see the definition in Section 2.1), we obtain
✏-uniform OPE with eO(H3/dm✏2) episodes (Theorem 3.4).

• We prove a information-theoretical lower bound of ⌦(H3/dm✏2) for OPE (Theorem 3.5)
which certifies that results for local policy class is optimal.

• Our uniform OPE over the local policy class implies that ERM (VI or PI with empirically
estimated MDP), as well as any sufficiently accurate model-based planning algorithm, has an
optimal episode complexity of eO(H3/dm✏2) (Theorem 4.1). To the best of our knowledge,
this is the first rate-optimal algorithm in the offline RL setting.

• Last but not least, our result can be viewed as an improved analysis of the simulation
lemma; which demystifies the common misconception that purely model plug-in estimator
is inefficient, comparing to their model-free counterpart.

To the best of our knowledge, these results are new and this is the first work that derives uniform
convergence analogous to those in the statistical learning theories for offline RL.

Related work. Before formally stating our results, we briefly discuss the related literature in three
categories.

1. OPE: Most existing work on OPE focuses on the Importance Sampling (IS) methods (Li et al.,
2011; Dudík et al., 2011; Li et al., 2015; Thomas & Brunskill, 2016) or their doubly robust variants
(Jiang & Li, 2016; Farajtabar et al., 2018). These methods are more generally applicable even if the
the Markovian assumption is violated or the states are not observable, but has an error (or sample
complexity) that depends exponential dependence in horizon H . Recently, a family of estimators
based on marginalized importance sampling (MIS) (Liu et al., 2018; Xie et al., 2019; Kallus &
Uehara, 2020, 2019; Yin & Wang, 2020) have been proposed in order to overcome the “curse of
horizon” under the additional assumption of state observability. In the tabular setting, Yin & Wang
(2020) design the Tabular-MIS estimator which matches the Cramer-Rao lower bound constructed by
Jiang & Li (2016) up to a low order term for every instance (⇡, µ and the MDP), which translates
into an O(H2/dm✏2) episode complexity in the (pointwise) OPE problem we consider for all ⇡.
Tabular-MIS, however, is identical to the model-based plug-in estimator we use, off-policy empirical
model approximator (OPEMA), as we discuss further in Section 2.3. These methods do not address
the uniform convergence problem. The only exception is (Yin & Wang, 2020), which has a result
analogous to Theorem 3.4, but for a data-splitting-type estimator.

2. Offline Learning: For the offline learning, most theoretical work consider the infinite horizon
discounted setting with function approximation. Chen & Jiang (2019); Le et al. (2019) first raises the
information-theoretic considerations for offline learning and uses Fitted Q-Iteration (FQI) to obtain
✏Vmax-optimal policy using sample complexity eO((1 � �)�4Cµ/✏2) where Cµ is concentration
coefficient (Munos, 2003) that is similar to our 1/dm. More recently, (Xie & Jiang, 2020b) improves
the result to Õ((1� �)�2Cµ/✏2). However, these bounds are not tight in terms of the dependence
on the effective horizon1 (1� �)�1. More recently, Xie & Jiang (2020a); Liu et al. (2020) explore
weaker settings for batch learning but with suboptimal sample complexity dependences. Our result is
the first that achieves the optimal rate (despite focusing on the finite horizon episodic setting).

3. Uniform convergence in RL: There are few existing work that deals with uniform convergence
in OPE. However, we notice that the celebrated simulation lemma (Kearns & Singh, 2002) is actually
an uniform bound with an episode complexity of O(H4S2/dm✏2). Several existing work uses
uniform-convergence arguments over value function classes for online RL (see, e.g., Jin et al., 2020,
and the references therein). The closest to our work is perhaps (Agarwal et al., 2020), which studies
model-based planning in the generative model setting. We are different in that we are in the offline
learning setting. In addition, our local policy class is optimal for a larger region of ✏opt (independent
to n), while their results (Lemma 10) imply optimal OPE only for empirically optimal policy with
✏opt 

p
(1� �)�5SA/n. Lastly, we discovered the thesis of Tewari (2007, Ch.3 Theorem 1), which

discusses the pseudo-dimension of policy classes. The setting is not compatible to ours, and does not
imply a uniform OPE bound in our setting.

1The optimal rate should be (1� �)�1C/✏2, analogous to our H3/dm✏2 bound. The additional H2 is due
to scaling — we are obtaining ✏-optimal policy and they obtain ✏Vmax-optimal policy (Vmax = H in our case).
See Table 1 for a consistent comparison.
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2 Problem setup and method

RL environment is usually modeled as a Markov Decision Process (MDP) which is denoted by
M = (S,A, r, P, d1, H). The MDP consists of a state space S, an action space A and a transition
kernel Pt : S ⇥A⇥ S 7! [0, 1] with Pt(s0|s, a) representing the probability transition from state s,
action a to next state s0 at time t. In particular here we consider non-stationary transition dynamics
so Pt varies over time t. Besides, rt : S ⇥ A 7! R is the expected reward function and given
(st, at), rt(st, at) specifies the average reward obtained at time t. d1 is the initial state distribution
and H is the horizon. Moreover, we focus on the case where state space S and the action space
A are finite, i.e. S := |S| < 1, A := |A| < 1. A (non-stationary) policy is formulated by
⇡ := (⇡1,⇡2, ...,⇡H), where ⇡t assigns each state st 2 S a probability distribution over actions at
each time t. Any fixed policy ⇡ together with MDP M induce a distribution over trajectories of the
form (s1, a1, r1, s2, ..., sH , aH , rH , sH+1) where s1 ⇠ d1, at ⇠ ⇡t(·|st), st+1 ⇠ Pt(·|st, at) and rt
has mean rt(st, at) for t = 1, ..., H .2

In addition, we denote d⇡
t
(st, at) the induced marginal state-action distribution and d⇡

t
(st) the

marginal state distribution, satisfying d⇡
t
(st, at) = d⇡

t
(st) · ⇡(at|st). Moreover, d⇡1 = d1 8⇡.

We use the notation P⇡

t
2 RS·A⇥S·A to represent the state-action transition (P⇡

t
)(s,a),(s0,a0) :=

Pt(s0|s, a)⇡t(a0|s0), then the marginal state-action vector d⇡
t
(·, ·) 2 RS⇥A satisfies the expression

d⇡
t+1 = P⇡

t+1d
⇡

t
. We define the quantity V ⇡

t
(s) = E⇡[

P
H

t0=t
rt0 |st = s] and the Q-function

Q⇡

t
(s, a) = E⇡[

P
H

t0=t
rt0 |st = s, at = a] for all t = 1, ..., H . The ultimate measure of the

performance of policy ⇡ is the value function:

v⇡ = E⇡

"
HX

t=1

rt

#
.

Lastly, for the standard OPE problem, the goal is to estimate v⇡ for a given ⇡ while assuming that n

episodic data D =
n
(s(i)

t
, a(i)

t
, r(i)

t
, s(i)

t+1)
ot2[H]

i2[n]
are rolling from a different behavior policy µ.

2.1 Uniform convergence problems

Uniform OPE extends the pointwise OPE to a family of policies. Specifically, for an policy class
⇧ of interest, we aim at showing that sup

⇡2⇧ |bv⇡ � v⇡| < ✏ with high probability with optimal
dependence in all parameters. In this paper, we consider three policy classes.

The global policy class. The policy class ⇧ we considered here consists of all the non-stationary
policies, deterministic or stochastic. This is the largest possible class we can consider and hence the
hardest one.

The global deterministic policy class. Here class consists of all the non-stationary deterministic
policies. By the standard results in reinforcement learning, there exists at least one deterministic
policy that is optimal (Sutton & Barto, 2018). Therefore, the deterministic policy class is rich enough
for evaluating any learning algorithm (e.g. Q-value iteration in Sidford et al. (2018)) that wants to
learn to the optimal policy.

The local policy class: in the neighborhood of empirical optimal policy. Given empirical MDP
cM (i.e. the transition kernel is replaced by bPt(st+1|st, at) := nst+1,st,at

/nst,at
if nst,at

> 0
and 0 otherwise, where nst,at

is the number of visitations to (st, at) among all n episodes3), it
is convenient to learn the empirical optimal policy b⇡? := argmax

⇡
bv⇡ since the full empirical

transition bP is known. Standard methods like Policy Iteration (PI) and Value Iteration (VI) can be
leveraged for finding b⇡?. This observation allows us to consider the following interesting policy
class: ⇧1 := {⇡ : s.t. ||bV ⇡

t
� bV b⇡?

t
||1  ✏opt, 8t = 1, ..., H} with ✏opt � 0 a parameter. Here we

consider b⇡? (instead of ⇡?) since by defining with empirical optimal policy, we can use data D to
really check class ⇧1, therefore this definition is more practical.

2Here rt without any argument is random reward and E[rt|st, at] = rt(st, at).
3Similar definition holds for nst+1,st,at

.
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2.2 Assumptions

Next we present some mild necessary regularity assumptions for uniform convergence OPE problem.

Assumption 2.1 (Bounded rewards). 8 t = 1, ..., H and i = 1, ..., n, 0  r(i)
t

 1.
Assumption 2.2 (Exploration requirement). Logging policy µ obeys that mint,st d

µ

t
(st) > 0, for any

state st that is “accessible”. Moreover, we define quantity dm := min{dµ
t
(st, at) : d

µ

t
(st, at) > 0}.

State st is “accessible” means there exists a policy ⇡ so that d⇡
t
(st) > 0. If for any policy ⇡ we always

have d⇡
t
(st) = 0, then state st can never be visited in the given MDP. Assumption 2.2 simply says µ

have the right to explore all “accessible” states. This assumption is required for the consistency of
uniform convergence estimator since we have “sup

⇡2⇧” and is similar to the standard concentration
coefficient assumption made by Munos (2003); Le et al. (2019). As a short comparison, offline
learning problems (e.g. offline policy optimization in Liu et al. (2019)) only require dµ

t
(st) > 0

for any state st satisfies d⇡
?

t
(st) > 0. Last but not least, even though our target policy class is

deterministic, by above assumptions µ is always stochastic.

2.3 Method: Offline Policy Empirical Model Approximator

The method we use for doing OPE in uniform convergence is the offline policy empirical model
approximator (OPEMA). OPEMA uses off-policy data to build the empirical estimators for both
the transition dynamic and the expected reward and then substitute the related components in real
value function by its empirical counterparts. First recall for any target policy ⇡, by definition:
v⇡ =

P
H

t=1

P
st,at

d⇡
t
(st, at)rt(st, at), where the marginal state-action transitions satisfy d⇡

t+1 =

P⇡

t+1d
⇡

t
. OPEMA then directly construct empirical estimates for bPt+1(st+1|st, at) and brt(st, at) as:

bPt+1(st+1|st, at) =

P
n

i=1
1[(s(i)

t+1
, a(i)

t
, s(i)

t
) = (st+1, st, at)]

nst,at

, brt(st, at) =

P
n

i=1
r(i)
t

1[(s(i)
t
, a(i)

t
) = (st, at)]

nst,at

.

and bPt+1(st+1|st, at) = 0 and brt(st, at) = 0 if nst,at
= 0 (recall nst,at

is the visitation fre-
quency to (st, at) at time t) and then the estimates for state-action transition bP⇡

t
is defined as:

bP⇡

t
(st+1, at+1|st, at) = bPt(st+1|st, at)⇡(at+1|st+1).The initial distribution is also constructed

using empirical estimator bd⇡1 (s1) = ns1/n. Based on the construction, the empirical marginal
state-action transition follows bd⇡

t+1 = bP⇡

t+1
bd⇡
t

and the final estimator for v⇡ is:

bv⇡OPEMA =
HX

t=1

X

st,at

bd⇡t (st, at)brt(st, at). (1)

OPEMA is model-based method as it uses plug-in estimators (bd⇡
t

and brt) for each model components
(d⇡

t
and rt). Traditionally, the error of OPEMA is obtained via the simulation lemma (Kearns &

Singh, 2002), with O(H4S2/dm✏2)-episode complexity. Recent work (Xie et al., 2019; Yin & Wang,
2020; Duan et al., 2020) reveals that there is an importance sampling interpretation of OPEMA

bv⇡OPEMA =
1
n

nX

i=1

HX

t=1

d̂⇡(s(i)
t
)

d̂µ
t
(s(i)

t
)
r̂⇡t (s

(i)), (2)

and the effectiveness of MIS of recent work partially explains why OPEMA could work, even for the
Uniform OPE problem.

3 Main results for Uniform OPE

3.1 Uniform OPE for global policy class

We present the following result Theorem 3.1 for global policy class.
Theorem 3.1. Let ⇧ consists of all policies, then there exists an absolute constant c such that if
n > c · 1/dm · log(HSA/�), then with probability 1� �, we have:

sup
⇡2⇧

|bv⇡ � v⇡|  c

0

@

s
H4 log(HSA

�
)

dm · n +

r
H4S log(nHSA)

dm · n

1

A .
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Moreover, if failure probability � < e�S , then above can be further bounded by
2c
q

H4

dm·n log(nHSA

�
).

Our result improves over the simulation lemma by a factor of HS but is suboptimal by another
factor HS comparing to the lower bound (Theorem 3.5). In the small failure probability regime (
� < e�S) we can get rid of the dependence on S except for the implicit dependence through dm.
This is meaningful since we usually consider deriving results with high confidence.

3.2 Uniform OPE for deterministic policies

Lemma 3.2 (Convergence for fixed policy). Fix any policy ⇡. Then there exists absolute constants
c, c1, c2 such that if n > c · 1/dm · log(HSA/�), then with probability 1� �, we have:

|bv⇡ � v⇡|  c1

s
H2 log( c2HSA

�
)

n · dm
+ Õ

✓
H2

p
SA

n · dm

◆
.

Note if we absorb the higher order term, our result implies sample complexity of eO(H2/dm✏2) for
evaluating any fixed target policy ⇡. Notice that the total number of deterministic policies is AHS in
our problem, a standard union bound over all deterministic policies yields the following result.
Theorem 3.3. Let ⇧ consists of all deterministic policies, then there exists absolute constants c, c1, c2
such that if n > c · 1/dm · log(HSA/�), then with probability 1� �, we have:

sup
⇡2⇧

|bv⇡ � v⇡|  c1

s
H3S log( c2HSA

�
)

n · dm
+ Õ

✓
H3S1.5A0.5

n · dm

◆
.

Theorem 3.3 implies an episode complexity of eO(H3S/dm✏2), which is optimal in H but suboptimal
by a factor of S. While the deterministic policy class seems restrictive, it could be useful in many
cases because the optimal policy is deterministic, and many exploration-bonus based exploration
methods use deterministic policy throughout.

3.3 Uniform OPE for the local (near empirically optimal) policy class

For the local (near empirically optimal) policy class we described in Section 2.1, the following
theorem obtains the optimal episode complexity.
Theorem 3.4. Suppose ✏opt 

p
H/S and ⇧1 := {⇡ : s.t. ||bV ⇡

t
� bV b⇡?

t
||1  ✏opt, 8t = 1, ..., H}.

Then there exists constant c1, c2 such that for any 0 < � < 1, when n > c1H2 log(HSA/�)/dm, we
have with probability 1� �,

sup
⇡2⇧1

��� bQ⇡

1 �Q⇡

1

���
1

 c2

s
H3 log(HSA/�)

n · dm
.

This uniform convergence result is presented with l1 norm over (s, a). A direct corollary is
sup

⇡2⇧1

���bV ⇡

1 � V ⇡

1

���
1

achieves the same rate. Theorem 3.4 provides the sample complexity of

O(H3 log(HSA/�)/dm✏2) and the dependence of all parameters are optimal up to the logarithmic
term. Note that our bound does not explicitly depend on ✏opt, which is an improvement over
(Agarwal et al., 2020) as they have an additional O(✏opt/(1� �)) error in the infinite horizon setting.
Besides, our assumption on ✏opt is mild since the required upper bound is proportional to

p
H .

Lastly, this result implies a O(✏+ ✏opt)-optimal policy for offline/batch learning of the optimal order
O(H3 log(HSA/�)/dm✏2) (Theorem 4.1), which means statistical learning result enables offline
learning.

3.4 Information-theoretical lower bound

Finally, we present a lower bound for the uniform OPE problem. In order to obtain a fine-grained lower
bound that depends on dm, we set up the a family of problems (µ,M) pairs that are parameterized
by dm.
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Table 1: A comparison of related policy learning results.

Method/Analysis Setting Guarantee Sample complexityb

Agarwal et al. (2020) Generative model ✏+O(✏opt/(1� �))-optimal eO(SA/(1� �)3✏2)
Le et al. (2019); Chen & Jiang (2019) 1-horizon offline ✏-optimal policy eO((1� �)�6Cµ/✏2)
Xie & Jiang (2020b) 1-horizon offline ✏-optimal policy eO((1� �)�4Cµ/✏2)
SIMPLEX for exact empirical optimala H-horizon offline ✏-optimal policy eO(H3/dm✏2)
PI/VI for ✏opt-empirical optimal H-horizon offline (✏+ ✏opt)-optimal policy eO(H3/dm✏2)
Minimax lower bound (Theorem G.2) H-horizon offline over class Mdm

⌦(H3/dm✏2)
a PI/VI or SIMPLEX is not essential and can be replaced by any efficient empirical MDP solver.

b Episode complexity in H-horizon setting is comparable to step complexity in 1-horizon setting because our
finite-horizon MDP is time-inhomogeneous. Informally, we can just take (1� �)�1 ⇣ H and Cµ ⇣ 1/dm.

Theorem 3.5 (Minimax lower bound for uniform OPE). For all 0 < dm  1
SA

, let the class of
problems be Mdm

:=
�
(µ,M)

�� mint,st,at
dµ
t
(st, at) � dm

 
. There exists universal constants

c1, c2, c3, p (with H,S,A � c1 and 0 < ✏ < c2) such that

inf
bv

sup
(µ,M)2Mdm

Pµ,M

✓
sup
⇡2⇧

|bv⇡ � v⇡| � ✏

◆
� p

if n  c3H3/dm✏2. Here ⇧ consists of all deterministic policies.

On optimality. Above result provides the minimax lower bound of complexity ⌦(H3/dm✏2). As
a comparison, Theorem 3.3 gives eO(H3S/dm✏2) is one factor away from the lower bound and
Theorem 3.4 has the same rate of the lower bound up to logarithmic factor.

4 Main results for offline learning

In this section we discuss the implication of our results on offline learning. As we discussed earlier
in the introduction, a uniform OPE bound of ✏ implies that the corresponding ERM algorithm finds
a 2✏-suboptimal policy. But it also implies that all other offline policy-learning algorithms that
are not ERM, we could gracefully decompose their error into optimization error and statistical
(generalization) error.
Theorem 4.1. Let ⇡̂⇤ = argmax

⇡
v̂⇡ — the empirically optimal policy. Let ⇡̂ be any data-dependent

choice of policy such that v̂⇡̂
⇤ � v̂⇡̂  ✏opt, then. There is a universal constant c such that w.p. � 1��

1. v⇡
⇤ � v⇡̂  c

q
H4S log(HSA/�)

dm·n + ✏opt.

2. If � < e�S , the bound improves to c
q

H4S log(HSA/�)
dm·n + ✏opt. And if in addition ⇡̂ is

deterministic, the bound further improves to c
q

H3 min{H,S} log(HSA/�)
dm·n + ✏opt.

3. If ✏opt 
p
H/S and that ||bV ⇡̂

t
� bV b⇡?

t
||1  ✏opt, 8t = 1, ..., H , then v⇡

⇤ � v⇡̂ 
c
q

H3 log(HSA/�)
dm·n + ✏opt.

The third statement implies that all sufficiently accurate planning algorithms based on the empirically
estimated MDP are optimal. For example, we can run value iteration or policy iteration to the point
that ✏opt  O(H3/ndm).

Comparing to existing work. Previously no algorithm is known to achieve the optimal sample
complexity in the offline setting. Our result also applies to the related generative model setting by
replacing 1/dm with SA, which avoids the data-splitting procedure usually encountered by specific
algorithm design (e.g., Sidford et al., 2018). The analogous policy-learning results In the generative
model setting (Agarwal et al., 2020, Theorem 1) , achieves a suboptimality of Õ((1� �)�3SA/n+
(1� �)�1✏opt) with no additional assumption on ✏opt. Informally, if we replace (1� �)�1 with H ,
then our result improves the bound from H✏opt to just ✏opt for ✏opt 

p
H/S. These results are

summarized in Table 1.
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Figure 1: Log-log plot showing the dependence on horizon of uniform OPE and pointwise OPE via
learning (|v? � vb⇡

? |) over a non-stationary MDP example.

5 Numerical simulation

In this section we use a simple simulated environment to empirically demonstrate the correct scaling
in H . Direct evaluating sup

⇡2⇧ |bv⇡ � v⇡| empirically is computationally infeasible since the policy
classes we considered here contains either AHS or 1 many policies. Instead, in the experiment we
will plot the sub-optimality gap |v? � vb⇡

? | with ⇡̂? being the outputs of policy planning algorithms.
The sub-optimality gap is considered as a surrogate for the lower bound of sup

⇡2⇧ |bv⇡ � v⇡|. Details
for simulations are explained in the Appendix.

Figure 1(b) use a fixed number of episodes n = 2048 while varying H to examine the horizon
dependence for uniform OPE. We can see for fixed pointwise OPE with OPEMA (blue line), |v⇡�bv⇡|
scales as O(

p
H2) which reflects the bound of Lemma 3.2; for the model-based planning, we ran

both VI and PI until they converge to the empirical optimal policy b⇡?. The figure shows that for
this MDP example |v? � vb⇡

? | scales as O(
p
H3/dm) for fixed n since it is parallel to the reference

magenta line. This fact empirically shows O(
p
H3/dm) bound is required confirms the scaling of

our theoretical results.

6 Discussion

Simulation Lemma. Our result can be viewed as a strengthened version of the simulation lemma
(Kearns & Singh, 2002) (see also the exposition in (Jiang, 2018), which uses similar notations to us).
The OPE bound that can be obtained by applying the simulation lemma is

|bv⇡ � v⇡|  H2 sup
t,st,at

��� bP (·|st, at)� P (·|st, at)
���
1

 eO
 r

H4S2

ndm

!

which implies an episode complexity4 of eO(H4S2/dm✏2). The main limitation of the simulation
lemma is that it does not distinguish between pointwise / uniform convergence (and their bound is in
fact a uniform OPE bound), thus will suffer from a loose bound when applied to fixed policies or
data-dependent policies that qualify for the smaller policy classes that we considered. For example,
our Lemma 3.2 shows that for the same plug-in estimator, the bound improves to eO(H2/dm✏2)
for pointwise OPE and Theorem 3.4 shows that we can knock out a factor of HS2 in the uniform
convergence of near empirically optimal policies.

7 Conclusion

This work represents the first systematic study of uniform convergence in offline policy evaluation.
We derive near optimal results for three representative policy classes. By viewing offline policy
evaluation from the uniform convergence perspective, we are able to unify two central topics in offline
RL, OPE and offline learning while establishing optimal rates in a subset of these settings including
the first rate-optimal offline reinforcement learning method. We hope the work could inspire a more
general statistical learning theory for RL in the near future.

4See Section J for more calculation details.
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