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ABSTRACT

In this paper, we first study the on-policy gradients for a range of fundamen-
tal policy optimization approaches from Q−learning, Policy Gradient to Imita-
tion Learning within a common framework and derive a novel characterization of
their relative differences under some natural assumptions. This analysis is also
extended to the offline RL scenario, which highlights the role of a simple two-
dimensional scaling function that depends on the prediction error and the log den-
sity ratio of the importance weights. Our characterization suggests several novel
types of approximate gradient updates, which show promise in an empirical anal-
ysis of synthetic experiments.

1 INTRODUCTION

Policy optimization in the context of reinforcement learning typically refers to learning a parame-
terized policy to maximize some notion of expected return, either via direct interactions with the
environment (on-policy) or via learning from a dataset (off-policy). A general approach to policy
optimization is based on the policy gradient theorem (Sutton et al., 1999), and learns a parameterized
policy using unbiased Monte Carlo estimates of the gradient of the expected reward). Alternately,
value-based methods attempt to solve a proxy task of fitting a parameterized Q−function, which
seeks to explicitly model the returns associated with arbitrary state, action pairs. Even though the
objective formulations are very different, it is not surprising that they are closely related. Indeed,
the equivalence has led to methods that bridge the gap between the two approaches (Nachum et al.,
2017; O’Donoghue et al., 2017). More explicitly, it has also been observed in prior work (Schulman
et al., 2018) that policy gradients andQ−learning gradients have an interesting relation under certain
assumptions. As one of our contributions, we offer a novel and simple perspective on the relation
between policy gradients and Q−learning gradients under some basic assumptions in the on-policy
case about the policy parameterization and an equivalence between the target return estimates.

Policy gradient algorithms can take a variety of forms corresponding to how the stochastic gradient
sample estimator is defined. These variations, called baselines (Weaver & Tao, 2001; Greensmith
et al., 2001), can result in different distributional properties for the stochastic gradient (e.g. its vari-
ance), while having the same mean. Traditionally, baselines are considered only a state dependent
function, but recent literature has considered different forms of state-action baselines and their ben-
efits (Wu et al., 2018; Gu et al., 2017; Tucker et al., 2018). In order to derive the relation between
policy gradient algorithms and Q−learning, we analyze a particular form of policy gradient with a
novel state-action baseline equal to the parameterized policy logits themselves. Our analysis shows
that theQ−learning gradients can be considered a biased version of policy gradient that results from
an ablation of two reward-free terms in the Policy Gradient with Policy Baseline (PGPB) expression.
In addition, we also show that dropping only one of the two terms leads to the gradient of a novel
objective that minimizes the variance of the prediction error.

Another approach to policy optimization is based on formulating policy search as an instance of
probabilistic inference (Levine, 2018), where a target policy whose likelihood is proportional to
exponentiated returns is considered. In this paper, we also derive a novel expression for the gradient
estimate of the maximum likelihood imitation learning objective with respect to the exponentiated
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returns target policy. This highlights a key difference between the imitation learning objective and
the squared error objective in Q−learning gradient as being an exponential, as opposed to linear
scaling applied to the return prediction error.

Prior work has also shown that it is important to consider distribution shifts from the behavior policy
(Espeholt et al., 2018; Wu et al., 2019) in practice, even with nominally off-policy value learning
algorithms. Taking these importance corrections into account, we characteirze a two-dimensional
scaling function that is present in all the gradient expressions derived, whose inputs comprise of the
prediction error as well as the log-density ratio of the importance weights. An important property of
this scaling function is that the behavior probability and the target return do not show up anywhere
else in the gradient expressions except as inputs into this function. We identify four key properties of
this scaling function that are common to all the cases considered, and use them to guide the design
of a more practical approximation alternative to the exponential scaling that was derived in the case
of the imitation learning gradient. We also find clear evidence of the benefits of such approximations
in our numerical evaluations.

Several prior works have made the case for surrogate objectives in policy optimization, even with a
well defined reward to be maximized (Chen et al., 2019; Oh et al., 2018; Liang et al., 2018; Schulman
et al., 2017; Kumar et al., 2020). Recent work (Kumar et al., 2019) has also studied a very general
class of gradient updates for policy optimization. By comparison, in this paper, the range of possible
gradient updates being considered is much more narrow and inspired by the specific objectives of
policy gradient, Q-learning and imitation learning (maximum likelihood). In particular, the scaling
function we refer to in this paper can not represent arbitrary state action dependent functions, and
the gradient approximations we consider capture any dependence of the final gradient on the reward
and the behavior probability weights within the scaling function.

In this work, we make certain key assumptions to enable the comparison between different objec-
tives. This includes an implicit on-policy assumption for the squared error objective in Q−learning.
Typically, RL methods also differ widely in how target return estimates are constructed1. We ignore
these variations in the theoretical analysis by using the exact return is used in place of empirical
target estimates.

2 SETTING

Consider the standard model-free RL setting of learning a parameterized policy using data sampled
from an unknown, infinite horizon MDP with a fixed discount factor. For simpler exposition, we
assume a discrete action space, but the core ideas also apply to continuous action settings. We
assume that the model can be represented with a combined set of learnable parameters denoted by θ,
even though many practical RL algorithms actually require use of a critic network with parameters
different from a separate actor network. More precisely, for a given state-action pair, (s, a), let
πθ(a|s) denote the conditional likelihood for action a at state s. Given the single model, in order
to derive our comparisons of various learning objectives and their gradients, we deliberately use
the notation qθ(s, a), that is suggestive of a parametric value function, to instead denote the policy
logits.

Assumption 1 Assume a softmax final layer for the policy network and denote the logits of the
policy parameterization by qθ(s, a):

πθ(a|s) , exp (qθ(s, a))/
∑
u

exp(qθ(s, u))

In order to quantitatively relate the different objective gradients, it is necessary to also define a spe-
cific sampling distribution on the data from which the learning objective is constructed. In the case of
policy gradient, this distribution is unambiguously defined to be the marginals corresponding to the
on-policy trajectory distribution. However, for value based methods like Q−learning, it is typically
not explicitly specified even though it has been observed that the learning is more challenging when
the data is significantly off-policy (Espeholt et al., 2018). We therefore assume that the standard
squared error loss for Q−learning comes with an on-policy assumption. More formally, assume

1unless it is a bandit setup.

2



Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

some initial state distribution denoted by µ(s), and let dπµ(s) denote the discounted state visitation
distribution on the trajectories induced by the policy π starting from an initial state distribution µ as

dπµ(s) = (1− γ)

∞∑
t=0

γt E
s0∼µ

[Prπ(st = s|s0)]

With this notation, we can write the on-policy assumption as being an expectation with respect to:

Dπ , dπµ(s)π(a|s) (1)

Additionally, let Qπ(s, a) denote the true value obtained in the MDP starting from a state-action
pair, (s, a), and subsequently following the trajectory generated using π. In practice, Qπ(s, a) is not
directly available during policy optimization, so a target estimate, T̂ (s, a), which is possibly biased
with respect to Qπ(s, a), is typically considered. For policy gradient algorithms, a Monte-Carlo es-
timate of the infinte horizon discounted reward is used. For value based methods like Q−learning, a
bootstrapped target estimate on top of the instantaneous reward sample is considered instead. Other
possibilities for the target estimates that trade-off bias for variance like TD-λ are also possible (Sut-
ton & Barto, 1998). Of special interest is the bandit scenario, for which the several variants to define
a target estimate all collapse into a single version, which is equal to the reward sample observed. In
order to derive a theoretical relation between the gradients of different possible approaches to policy
optimization, we also ignore these practical differences in constructing the return target estimates
and consider a version of the respective objectives’ gradients where the particular T̂ (s, a) is replaced
directly with Qπ(s, a).

3 GRADIENT ANALYSIS OF VARIOUS OBJECTIVES

In this section, we derive sample estimates for the gradients of four different objectives grounded
under the set of common assumptions from Section 2. For simplicity, we only consider the on-policy
expressions in this Section, which will be extended to the offline scenario in Section 4.

3.1 Q-LEARNING GRADIENT

We first consider the squared error minimization objective for Q−learning, which fits a parameter-
ized qθ(s, a) to the target return, T̂ (s, a) on a dataset D. Note that both D as well as the target
sample, T̂ (s, a) may implicitly even depend on the policy π, but these dependencies are never con-
sidered for the gradient calculation while minimizing the squared prediction error in Q−learning.
Under the assumptions from Section 2, we can write the gradient of the negative MSE objective as:

GQL = −∇θ
1

2
E

(s,a)∼D

[
(T̂ (s, a)− qθ(s, a))2

]
(2)

= E
(s,a)∼D

(T̂ (s, a)− qθ(s, a))∇θqθ(s, a) (3)

= E
(s,a)∼Dπ

[(Qπ(s, a)− qθ(s, a))∇θqθ(s, a)] using Equation 1 and assuming T̂ ≡ Qπ (4)

Written as a single sample stochastic gradient estimate of the maximization objective, we have:

GQL = E
(s,a)∼Dπ

ĜQL(s, a) (5)

where, ĜQL(s, a, θ) , (Qπ(s, a)− qθ(s, a))∇θqθ(s, a) (6)

3.2 POLICY GRADIENT WITH POLICY BASELINE (PGPB)

From the standard policy gradient theorem (Sutton et al., 1999):

GPG(θ) =
∑
s

dπµ(s)
∑
a

Qπ(s, a)∇θπθ(a|s) (7)

=
∑
s

dπµ(s)
∑
a

πθ(a|s)Qπ(s, a)∇θ log πθ(a|s) (8)

= E
(s,a)∼Dπ

[Qπ(s, a)∇θ log πθ(a|s)] (9)
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To derive an unbiased sample estimate for Equation 9, there are several versions corresponding to
particular choices of control variates, also commonly referred to as baselines. In order to relate to
the Q−learning gradients, consider a state-action baseline equal to the policy logits themselves, i.e.
qθ(s, a). Note that Assumption 1 implies the following identity:

∇θ log πθ(a|s) = ∇θqθ(s, a)−
∑
u

πθ(u|s)∇θqθ(s, u) (10)

Using this, we can write2:
GPG(θ) = E

(s,a)∼Dπ
[Qπ(s, a)∇θ log πθ(a|s)] (11)

= E
s∼dπµ

[
E

a|s∼π
[(Qπ(s, a)− qθ(s, a))∇θ log πθ(a|s)] + E

u|s∼π
[qθ(s, u)∇θ log πθ(u|s)]

]
(12)

= E
s∼dπµ

[
E

a|s∼π
[(Qπ(s, a)− qθ(s, a))∇θ log πθ(a|s)] +∇θ E

u|s∼πθ
[q̂θ(s, u)]

]
(13)

= E
s∼dπµ

[
E

a|s∼π

[(
Qπ(s, a)− qθ(s, a)

)(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)]
+∇θ E

u|s∼πθ
[q̂θ(s, u)]

]
(14)

In the last term in Equation 14, we use q̂θ rather than qθ to denote a partial derivative that does not
consider q̂θ for the gradient with respect to θ (i.e., a ‘stop gradient’). We can therefore define a
sample gradient estimate for GPG(θ) = E(s,a)∼Dπ ĜPGPB(s, a, θ) as:

ĜPGPB(s, a, θ) ,
(
Qπ(s, a)−qθ(s, a)

)(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ
[q̂θ(s, u)]

(15)
The gradient estimate ĜPGPB(s, a, θ) is unbiased for the expected reward objective. Notice that
there are two terms, Eu|s∼π [∇θqθ(s, u)] and ∇θ Eu|s∼πθ [q̂θ(s, u)] in Equation 15 which do not
depend on the sampled action, a or the reward estimate, Qπ(s, a). Therefore, both these terms can
be computed easily (with zero variance in case of discrete actions, or low variance with the reparam-
eterization trick in case of continuous actions for suitable parameterization; and without querying
the environment or the dataset). Comparing ĜPGPB(s, a, θ) with ĜQL(s, a, θ) from Equation 6, we
can interpret the Q−learning gradient as a biased version of policy gradient obtained by dropping
the two aforementioned terms in Equation 15.

3.3 VARIANCE MINIMIZATION GRADIENT

By contrast, consider an alternate gradient estimate that results from dropping only one of the two
additional terms in ĜPGPB compared to ĜQ, ∇θ Eu|s∼πθ [q̂θ(s, u)]. Denote this by ĜV :

ĜV (s, a, θ) ,
(
Qπ(s, a)− qθ(s, a)

)(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
(16)

As shown below, this is equivalent to the gradient of an objective which minimizes the variance,
instead of the expectation of the squared error across actions.

E
[
ĜV (s, a, θ)

]
= E

(s,a)∼Dπ

[(
Qπ(s, a)− qθ(s, a)

)(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)]
(17)

= E
s∼dπµ

[
E

a|s∼π

[(
Qπ(s, a)− qθ(s, a)

)
∇θqθ(s, a)

]
− E
a|s∼π

[
Qπ(s, a)− qθ(s, a)

]
E

u|s∼π

[
∇θqθ(s, u)

]]
(18)

= −1

2
E

s∼dπµ

[
∇θ E

a|s∼π̂

[
(Qπ(s, a)− qθ(s, a))2

]
−∇θ

(
E

a|s∼π̂
[Qπ(s, a)− qθ(s, a)]

)2
]

(19)

= −1

2
E

s∼dπµ
∇θ V

a|s∼π̂

[
Qπ(s, a)− qθ(s, a)

]
where V denotes variance. (20)

In the last two equalities above, we use π̂ rather than π to indicate that the gradient operator can pass
through the expectations without considering the implicit dependency of π on θ.

2We suppress π’s dependence on θ when there are no gradients through that term.
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3.4 IMITATION LEARNING

Next, consider the log-likelihood objective with respect to a target distribution defined by p̂T (a|s) ,
exp

(
Qπ(s, a)− F (Qπ)(s)

)
, where F (q)(s) , log

∑
a exp q(s, a) is used to denote the LogSum-

Exp reduction over actions for an arbitrary state-action value function q(s, a). Below, we derive an
expression for the gradient of a Maximum Likelihood objective, which highlights it’s differences
with respect to the squared error objective of Q−learning.

GIL , E
s∼dπµ

[
E

a|s∼p̂T
∇θ log πθ(a|s)

]
(21)

= E
s∼dπµ

[
E

a|s∼p̂T

[
∇θqθ(s, a)−

∑
u

πθ(u|s)∇θqθ(s, u)

]]
(22)

= E
s∼dπµ

[
E

a|s∼p̂T

[
∇θqθ(s, a)

]
−
∑
u

πθ(u|s)∇θqθ(s, u)

]
(23)

= E
s∼dπµ

[
E

a|s∼π

[
p̂T (a|s)
πθ(a|s)

∇θqθ(s, a)

]
− E
u|s∼π

[
∇θqθ(s, u)

]]
(24)

= E
s∼dπµ

[
E

a|s∼π

[(
p̂T (a|s)
πθ(a|s)

− 1

)
∇θqθ(s, a)

]]
(25)

= E
s∼dπµ

[
E

a|s∼π

[(
exp

(
Qπ(s, a)− qθ(s, a) + F (qθ)(s)− F (Qπ)(s)

)
− 1
)
∇θqθ(s, a)

]]
(26)

Now consider a biased gradient estimate which drops the log-normalizer difference term,
F (Qπ)(s)− F (qθ)(s), as ĜIL.

ĜIL(s, a, θ) ,
(

exp
(
Qπ(s, a)− qθ(s, a)

)
− 1
)
∇θqθ(s, a) (27)

In Oh et al. (2018), the authors propose a novel objective derived from modifying Q−learning by
clipping the prediction error below at 0, which is referred to as self imitation learning. We write the
gradient expression corresponding to the self imitation learning objective as ĜSIL next.

ĜSIL(s, a, θ) = max(Qπ(s, a)− qθ(s, a), 0)∇θqθ(s, a) (28)

This suggests that an alternate way to interpret the SIL gradient is by considering max(x, 0) as an
approximation to ex − 1.

4 GRADIENT SCALING FUNCTIONS WITH OFF-POLICY CORRECTION

Until now, we made an assumption that the sampling distribution for states and actions matches
the policy πθ. In this section, that assumption is relaxed. Let πb denote a behavior policy that is
different from the current policy. Note that πb may not be explicitly available, but can be estimated
using conditional maximum-likelihood as:

b = arg max
θ

∑
(s,a)∼D

log πθ(a|s) (29)

Consider off-policy importance weights for action conditionals3 between the behavior policy and
the current policy, πθ(a|s)

πb(a|s) . To simplify the expressions, denote the off-policy log density ratio and
the prediction error as the following two sample dependent scalar ‘learning signals’:

∆O , log
πθ(a|s)
πb(a|s)

(30)

3We consider exploration issues outside the scope of this work and ignore any mismatch in the state-
marginals while computing the importance weights.
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∆R , Qπ(s, a)− qθ(s, a) (31)
∆O is the logarithm of the off-policy importance weight ratio, and can also be viewed as a single
sample unbiased estimate of the KL divergence between the behavior and current policies. When the
dataset is on-policy, this implies ∆O = 0 for all samples, (s, a). By contrast, ∆R = 0 when the value
prediction error is zero at the current sample, (s, a). With this notation, the five gradient expressions
in Equations 6, 15, 16, 27, 28 can be extended to the off-policy case where the dependence on ∆O

and ∆R can be captured as a function f : R2 7→ R.

ĜQL(s, a, θ) = fSQ(∆O,∆R)
(
∇θqθ(s, a)

)
(32)

ĜIL(s, a, θ) = fIL(∆O,∆R)
(
∇θqθ(s, a)

)
(33)

ĜSIL(s, a, θ) = fSIL(∆O,∆R)
(
∇θqθ(s, a)

)
(34)

ĜPGPB(s, a, θ) = fSQ(∆O,∆R)
(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ
[q̂θ(s, u)]

(35)

ĜV (s, a, θ) = fSQ(∆O,∆R)
(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
(36)

The scaling functions, fSQ, fIL, fSIL used above are:

fSQ(∆O,∆R) = e∆O∆R (37)

fIL(∆O,∆R) = e∆O (e∆R − 1) (38)

fSIL(∆O,∆R) = e∆O max(∆R, 0) (39)

In all cases above, it is easy to verify that f ∈ {fSQ, fIL, fSIL} satisfies the properties listed below.
While we do not currently have a formal theoretical justification for why these properties might be
important, they seem like reasonable constraints to use in constructing closely related, but slightly
more general and improved alternative update rules.

Assumption 2 Let f : R2 7→ R denote a function that captures the dependence of a gradient update
on ∆O,∆R. Then, we require that f satisfies the following constraints:

1. f(∆O, 0) = 0, ∀ ∆O ∈ R.

2. f(−∞,∆R) = 0, ∀ ∆R ∈ R.

3. f(∆O,∆R) is non-decreasing and convex in ∆R for any fixed ∆O.

4. |f(∆O,∆R)| is non-decreasing and convex in ∆O for any fixed ∆R. ( |.| denotes absolute
value.)

4.1 A PRACTICAL APPROXIMATION TO THE IMITATION LEARNING GRADIENT

We now construct a piece-wise polynomial second order approximation4, fILA, to fIL(∆O,∆R) =

e∆O (e∆R − 1) used in ĜIL from Equation 33 that is consistent with the 4 constraints listed in
Assumption 2.

fILA(∆O,∆R) =

{
− 1

2 (1 + ∆O)2, if 1 + ∆O + ∆R ≤ 0 < 1 + ∆O

∆R max
(
1 + ∆O + ∆R

2 , 0
)
, otherwise

(40)

Using this, we define the approximate gradient estimate ĜILA as:

ĜILA(s, a, θ) = fILA(∆O,∆R)
(
∇θqθ(s, a)

)
(41)

A visualization for the projection of fILA along various slices of ∆O and ∆R is shown in Figures 1a
and 1b. When highly off-policy (∆O � 0), note that fILA(∆O,∆R) = 0 for ∆R less than a positive
threshold. This threshold increases as the sample becomes more off-policy (ie. as ∆O → −∞). For
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(a) Projection of fILA onto ∆R for varying ∆O (b) Projection of fILA onto ∆O for varying ∆R

Figure 1: One-dimensional projections for fILA(∆O,∆R) from Equation 40.

large values of ∆R, the update strength is quadratic in ∆R. Conversely, it saturates to a small
non-positive constant as ∆R → −∞.

The full range of gradients characterized are summarized in Table 1, which mixes the three types
of updates (squared error minimization, variance minimzation and PGPB), with various scaling
functions across the rows. In addition to the six types of updates derived in Equations 32, 33, 34,
35, 36, 41, the table also lists six natural additional variations for a total of twelve update rules being
considered in the numerical evaluations in Section 5.

Table 1: A summary of the various gradients derived and their relationships.

UQ(f) ≡ f(∆O,∆R)
(
∇θqθ(s, a)

)
UV (f) ≡ f(∆O,∆R)

(
∇θqθ(s, a)− Eu|s∼π [∇θqθ(s, u)]

)
UP (f) ≡ f(∆O,∆R)

(
∇θqθ(s, a)− Eu|s∼π [∇θqθ(s, u)]

)
+∇θ Eu|s∼πθ [q̂θ(s, u)]

f UQ(f) UV (f) UP (f)

fSQ(x, y) , exy ĜQ ĜV ĜPGPB

fIL(x, y) , ex(ey − 1) ĜIL ĜIL,V ĜIL,PGPB

fSIL(x, y) , ex max (y, 0) ĜSIL ĜSIL,V ĜSIL,PGPB

fILA(x, y) ,

{
− 1

2 (1 + x)2, if 1 + x+ y ≤ 0 < 1 + x

ymax
(
1 + x+ y

2 , 0
)
, otherwise

ĜILA ĜILA,V ĜILA,PGPB

5 EMPIRICAL ANALYSIS

In this section, we consider a synthetic example that allows for clear numerical comparison among
the tweleve update rules summarized in Table 1, without additional confounding issues. To avoid
ambiguities with the target sample definition, we consider a (state-dependent) bandit problem un-
der the batch policy optimization framework. The dataset consists of (s, a, r) tuples, where the
state space is two-dimensional, i.e. s = (x0, x1) ∈ R2 and the action space is discrete with
cardinality 8, i.e. a ∈ {0, . . . , 7}. The reward is defined as r(s, a) = σ(〈s,Ψ(a)〉), where
Ψ(a) , (cos(2πa/8), sin(2πa/8)) denotes a 2D embedding of the actions onto the unit circle;
〈a, b〉 denotes the dot product of a, b; and σ(t) = et/(1 + et) is the sigmoid function. To generate
the dataset, the states are sampled from a standard Gaussian and actions are sampled uniformly. We
consider a linear function approximator for the parametric model, qθ(s, a), which consists of only

4ILA is used as an abbreviation for ‘Imitation Learning Approximation’.
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Figure 2: Visualization of policy returns in
the parameter space

Figure 3: Final reward gap to optimal policy
for the twelve gradient update rules in Table
1.

two learnable parameters5, θ0, θ1 as: qθ(s, a) = 〈(θ0(1 + x0)− 1, θ1(1 + x1)− 1) ,Ψ(a)〉. Note
that the true reward can not be fit exactly using a linear function approximator due to the sigmoid
non-linearity. However, we can verify from the problem structure that the optimal parameters to
maximize the return are (θ0, θ1) = (1, 1). Figure 2 gives a numerical visualization of the problem
structure in terms of expected policy return as a function of the learnable parameters across the two-
dimensional search space traversed by the various gradient update rules. To compare the various
update rules, trajectories of θ starting from an intialization of (0, 0) are generated for each of the
twelve gradient updates listed in Table 1 using vanilla SGD with an initial learning rate of 0.01 and
decreasing linearly as O(1/t). In Figure 3, we plot the ‘reward gap’, i.e., J(πθ∗) − J(πθ) where6

J(πθ) denotes the expected reward of policy πθ at the end of 10000 SGD iterations for each of the
twelve update rules listed in Table 1. More detailed learning curves are provided in the Appendix
in Figure 4. The Euclidean distance of the parameter values to the optimal θ∗ at the end is also
shown in Figure 5 in the Appendix. We observe from Figure 3 that the best performing update is
the combination of the scaling function fILA derived from an approximation to Imitation Learning
in Equation 40 with the PGPB style update from Equation 35:

ĜILA,PGPB(s, a, θ) = fILA(∆O,∆R)
(
∇θqθ(s, a)− E

u|s∼π
[∇θqθ(s, u)]

)
+∇θ E

u|s∼πθ
[q̂θ(s, u)]

(42)

While the exponential scaling function fIL performs worse than fILA, it still does competitively
in these experiments. However, it is not practical in more complex settings where the reward and
the importance weights have a much bigger range. Within each style of the gradient update, we
find that the imitation learning scaling functions perform better than others in terms of both the
speed of convergence as well as the final objective value. By contrast, the vanilla squared error
objective, saturates at a suboptimal solution even as it gets there typically much faster compared to
policy gradient. By contrast, policy gradient converges to a good final solution in this problem, but
is consistently slow. Our generalizations show the potential to get the best of both worlds, which
suggests an intriguing possibility for further theoretical study about their convergence guarantees.

6 CONCLUSION

In this paper, we studied gradient expressions motivated by a range of common objectives in RL un-
der a unified framework, which provides novel insights about their relation. For the offline RL sce-
nario, the sample gradients depend on a simple scaling function comprised of two learning signals,
the prediction error and the log density ratio of the importance weights. A comparison of several
examples inspires the design for novel approximate updates, which show promise over baselines in
preliminary experiments. Applying these ideas to actor-critic settings with two separate models, and
theoretical questions about convergence guarantees are some natural questions for further research.

5The simpler alternative of qθ(s, a) = 〈(θ0x0, θ1x1) ,Ψ(a)〉 results in a policy parameterization that is
scale invariant wrt θ, and hence without a proper solution.

6θ∗ = (1, 1).
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A APPENDIX

A.1 DERIVATION FOR THE SCALING FUNCTION APPROXIMATION

Consider the following lower bound to e∆O (e∆R − 1) which is also exact upto second order around
(∆O,∆R) = (0, 0). Let X ∼ U [∆O,∆O + ∆R] be a continuous RV with uniform density. Then:

E[eX ] =

∫ ∆O+∆R

∆O

ex

∆R
dx =

e∆O+∆R − e∆O

∆R
and eE[X] = e∆O+

∆R
2

Jensen’s inequality implies that

0 < e∆O+
∆R
2 ≤ e∆O+∆R − e∆O

∆R
∀ ∆O,∆R ∈ R

Consider the following approximation inspired by the above inequality:

e∆O+
∆R
2 ≈ e∆O+∆R − e∆O

∆R
(43)

We then consider the following sequence of approximations:

e∆O (e∆R − 1) = e∆O+∆R − e∆O (44)

≈ ∆Re
∆O+

∆R
2 Using Eq 43 (45)

≥ ∆R max

(
1 + ∆O +

∆R

2
, 0

)
since ex ≥ max(1 + x, 0) ∀x ∈ R (46)

Unfortunately, f(∆O,∆R) , ∆R max
(
1 + ∆O + ∆R

2 , 0
)

satisfies the constraints 1, 2 and 4, but
not constraint 3, in Assumption 2. To check this, we can verify that it is non-decreasing and convex
in ∆R if and only if 1 + ∆O ≤ 0. Equation 40 makes a slight fix to ensure that all 4 constraints hold
while also remaining a good second order approximation when ∆O,∆R are small.
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(a) Learning curves for UQ(f): Col 1, Table 1 (b) Learning curves for UV (f): Col 2, Table 1

(c) Learning curves for UP (f): Col 3, Table 1

Figure 4: Gap to the optimal policy reward for the twelve updates listed in Table 1 grouped by the
update type in each column, and compared across scaling functions f ∈ {fSQ, fIL, fSIL, fILA}

Figure 5: Final euclidean distance to the optimal parame-
ters, θ∗ = (1, 1) for the tweleve update rules considered.
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