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ABSTRACT

Offline Reinforcement Learning (RL) aims to turn large datasets into powerful
decision-making engines without any online interactions with the environment.
This great promise has motivated a large amount of research that hopes to repli-
cate the success RL has experienced in simulation settings. This work ambitions to
reflect upon these efforts from a practitioner viewpoint. We start by discussing the
dataset properties that we hypothesise can characterise the type of offline methods
that will be the most successful. We then verify these claims through a set of ex-
periments and designed datasets generated from environments with both discrete
and continuous action spaces. We experimentally validate that diversity and high-
return examples in the data are crucial to the success of offline RL and show that
behavioural cloning remains a strong contender compared to its contemporaries.
Overall, this work stands as a tutorial to help people build their intuition on today’s
offline RL methods and their applicability.

1 INTRODUCTION

Offline Reinforcement Learning holds the promise of bridging the gap between reinforcement learn-
ing algorithms and real-world applications. By taking advantage of large pre-collected datasets, it
can mitigate the technical concerns associated with online data acquisition, as it is often expensive
or dangerous to interact with real environments. These promises have triggered a surge of interest
for research around this problematic and yielded notable improvements (Kumar et al., 2020; Wang
et al., 2020; Nair et al., 2020). However, the fast publication pace ends up being confusing for
non-experts, as it is not straightforward to know which offline algorithm should be used to address
a particular application. Consequently, this might prevent its wide adoption, similar to what super-
vised learning has experienced with the availability of large datasets. Recent attempts were made to
overcome this obstacle. Levine et al. (2020) provides the reader with the conceptual tools needed to
get started on research on offline RL. Fu et al. (2020) and Gulcehre et al. (2020) try to facilitate the
measure of progress of research on offline RL by introducing benchmarks specifically designed for
the offline setting. Despite these efforts, a hands-on up-to-date comparison of recent methods still
ought to be carried out. The objective of this article is to provide the reader with a ”cooking recipe”
where we first focus on the ingredients, namely the offline methods and the dataset specifications.
We then apply these algorithms on various datasets designed to highlight which method performs
best in each setting. Finally, we discuss these findings so as to help the reader to build intuition on
what might be the most appropriate method for their use case and start off the right foot.
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2 BACKGROUND

We consider a classic Reinforcement Learning (RL) framework with a Markov Decision Process
(MDP), defined by the tuple (S,A, p, r, γ, ρ0). S andA are the state and action spaces, respectively,
and γ ∈ (0, 1] is the discount factor. The dynamic or transition distribution is denoted as p(s′|s, a),
the initial state distribution as ρ0(s), and the reward function as r(s, a). RL aims to maximize the
expected sum of (discounted) rewards over trajectories τ by finding the optimal policy:

π∗ = argmax
π

Eτ∼pπ(τ)

[
T∑
t=0

γtr(st, at)

]
.

Distributional shift: the key difficulty in offline RL. RL algorithms, even the ones that can
be trained from off-policy data, can not usually learn an optimal behaviour without additional on-
policy interactions. This well-known issue, referred to as distributional shift (also described as
extrapolation/bootstrapping error accumulation (Fujimoto et al., 2019b; Kumar et al., 2019)) occurs
when the used function approximator is trained under one distribution, i.e. the offline dataset, but
evaluated on a different one – the learned policy induces a different visited state-action distribution.
Indeed, when entering states that are far outside the training distribution, even with strong inductive
bases, we can hardly provide any convergence guarantee on the agent’s behaviour. Over the last few
years, a considerable amount of algorithmic solutions has been published to address this problem.
So far, the different approaches can be split into three different groups: explicit policy constraint
methods, Q-values regularisation approaches and implicit policy constraint methods.

Solution 1: Explicit Policy Constraint Methods. A first solution to address the distributional
shift is to constrain how much the learned policy might differ from the behaviour policy having cre-
ated the dataset so that the distributional shift is bounded. Practically, one can force the parametrised
policy being learned πφ to take actions close to the behavioural distribution πβ through a divergence
measure Dm:

argmax
φ

Es∼D
[
Ea∼πφ(.|s) [Qθ(s, a)]

]
s.t. Dm(πφ, πβ) ≤ ε.

This type of method fundamentally favors pessimism over risky exploration (Fujimoto et al., 2019b;
Kumar et al., 2019). This approach is mostly effective on expert demonstrations as it operates more
like an imitation process rather than an offline algorithm (Fujimoto et al., 2019a). They also suffer
from some limitations as (i) the estimated Q-values are often too conservative; (ii) the (unknown)
behavioural policy πβ has to be modeled.

Two categories of solutions appeared to overcome those limitations. We chose to focus on the latest,
most promising and best representative methods from each, namely Critic Regularised Regression
(CRR) (Wang et al., 2020; Nair et al., 2020) and Conservative Q-Learning (CQL) (Kumar et al.,
2020). Neither of the two require modelling the prior policy, nor enforce an explicit constraint to
avoid out-of-distribution actions.

Solution 2: Q-values Regularisation. The CQL algorithm inserts an additional regularisation
term on top of standard policy evaluation steps to learn a conservative Q-function and avoids over-
estimation issues, highly detrimental when boostrapping:

argmin
θ

αEs∼D

[
log
∑
a

expQθ(s, a)− Ea∼πβ(.|s) [Qθ(s, a)]

]
+

1

2
E(s,a,s′)∼D

[
(Qθ − BπφQ)2

]
(1)

Intuitively, the LogSumExp term squashes down the Q-values, especially the overestimated ones.
The second term compensates the ”push down” effect by maximizing the Q-values of (state-action)
pairs sampled from the dataset. The resulting modified objective prevents overestimation without
constraining the policy to stay close the behavioural distribution. This new critic update yields strong
theoretical guarantees: the expected Q-value under π is actually a lower bound of its true value. In
Section 4, we provide further practical implementation remarks for CQL.
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Solution 3: Implicit Policy Constraint Methods. Another approach is to implicitly apply a con-
straint on the policy to dissuade it from selecting out-of-distribution actions. The idea is to create
a weighted behavioural cloning objective where bad actions are discarded and good ones are used
to train the agent. In practice, the policy update re-weights the state-action pairs from the buffer
leveraging the advantage estimations coming from the critic:

argmax
φ

E(s,a)∼D [log (πφ(a | s)) f(Qθ, πφ, s, a)] ,

where the so-called filtered function pushes the policy towards the most reward-promising transitions
sampled from the buffer. Note that in the past years, several methods tried to implicitly induce
constraints in the RL objective (Ghasemipour et al., 2020; Siegel et al., 2020; Wu et al., 2019). We
focus on the latest up-and-coming method CRR which was published approximately at the same
time as AWAC (Nair et al., 2020). Both algorithms implement the implicit constraint similarly. See
Appendix A.2 for the definitions used in practice for the filtered function and the advantage.

3 DATASET CHARACTERISTICS

In this section, we explore the main characteristics of offline RL datasets. The experimental dataset
setup is further detailed in Appendix A.1 for our experiments presented in Section 4.1 and the
characteristics of each dataset are presented in Appendix B.

Online RL is effectively a feedback loop: the chosen actions determine the training data. In offline
RL, the dataset and amount of exploratory behaviour are kept fixed. We are therefore limited to
finding the best policy for the MDP defined by the dataset rather than solving the true MDP that
exists in the real world. Therefore, having a limited dataset is detrimental to the performance of an
offline agent.

Trajectories quality vs state-action coverage? This trade-off underpins offline RL analogously
to the exploration vs. exploitation dilemma in online RL. On one hand, the dataset must include
high-quality actions i.e. leading to high-reward episodes. On the other hand, learning a policy that
outperforms the behavioural policy requires the dataset to include ”bad” (exploratory) actions that
the behavioural policy would not have taken. That is, a dataset with a higher state-action coverage.
See the first experiment in Section 4.1 as well as Figures 7–9, App. B and the interpretation therein.

At one extreme lies a fully-random behavioural policy which collects a dataset with very good ac-
tion space coverage but only for the states that are reachable by such policy. Therefore, in environ-
ments requiring elaborate exploration strategies, the dataset might not contain enough high-reward
transitions to learn a satisfactory policy. Furthermore, datasets collected by random policies are not
very common in practice.

At the other end is a fully-deterministic behavioural policy, e.g. logs generated by a deterministic
heuristic. It is very difficult to learn policies from offline data that outpreform such heuristics: each
state is only paired with a single action leading to a poor action-state coverage. Current approaches
rely on the generalization, or extrapolation capability of the function approximation. This provides
few guarantees and usually leads to overestimation errors that accumulate (distributional shift). The
field of Causal Inference provides a more extensive treatment of such scenarios with more underlying
assumptions that provide additional guarantees. It introduces the concept of counterfactual queries,
which attempt to estimate the value—or so-called effect—of unobserved actions (Pearl, 2009).

To summarise, neither a fully random nor a fully deterministic behavioural policy are suitable for
collecting offline RL datasets. There are two key properties the behavioural policy should have
to obtain an actionable dataset: 1) Sufficient quality to reach all high-reward regions (Fig. 1). 2)
Sufficient coverage to allow for fruitful exploration (Section 4.1 on outperforming the dataset).

This being said, quantifying the level of exploration in an offline dataset is a difficult problem in
itself. Proxies can be used to better understand what type of behaviour is available within a dataset.
Some examples include: (i) reward distribution, (ii) actions distribution (e.g. policy entropy), (iii)
episode length distribution, (iv) maximum reward in dataset / maximum attainable reward, (v) state
coverage, (vi) state-action coverage. We plot the first five metrics for each of the datasets used in
our experiments in Appendix B. It is important to note that visualizing the last two metrics is not
always trivial in high dimensional environments.
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4 EXPERIMENTS AND RESULTS

The goal of this section is to help the reader better understand how current state-of-the-art methods
(CQL and CRR) perform as a function of the dataset quality and coverage ; we also highlight some
common failure modes. We first show how the chosen offline algorithms perform in a simple inter-
pretable grid world environment with discrete actions. We then run the same experiments on more
realistic tasks which include higher dimensional environments with continuous action spaces. We
also compare CQL and CRR approaches with naive off-policy baseline algorithms (DQN/SAC) and
Behaviour Cloning (BC). Baseline implementation details can be found in Appendix A.2.

4.1 EXPLORING DATASET EDGE CASES

In this section, we run three experiments on a simple MiniGrid environment (Chevalier-Boisvert
et al., 2018) to help the reader develop a better understanding of the core issues specific to offline RL.
The goal is to strip away any confounding factor such as the need perception in pixel observations
or a stochasticity in the environment that could make the results more convoluted.

How much does performance vary with dataset quality? As mentioned in the previous section,
dataset quality can be described in many ways. Here, we use an ε-greedy expert with 3 different
values of ε as described in Appendix A.1. As ε gets larger, the action selection becomes more
stochastic and deviates from the expert baseline.

Figure 1: Comparison of CQL, CRR (with exponential filter), DQN and BC on datasets of different
quality. The red dotted line shows the average episode return for each dataset (0.991, 0.947, 0.796
respectively).

We carried out experiments across datasets of varying quality and a grid search over the key hyper-
parameters for each algorithm. All the results can be found in Appendix C. Figure 1 depicts the
results obtained when training each agent on an expert, medium-quality and fully random dataset,
respectively. CQL consistently achieves the highest returns. However, this comes at the cost of a
high sensitivity to the value of alpha which had to be tuned precisely for each dataset. CQL with
small alpha (α = 0.01) performs better on datasets that contain more randomness, but fails on expert
data (see Fig. 12). The opposite is true for large values of alpha, i.e. for α = 1. This is expected,
since alpha determines how much weight is put on the regularising term (Eq. 1) which implicitly
constrains the policy to lie close to the dataset distribution. CRRexp (CRR with an exponential
filter) achieves lower returns but is more robust to the choice of hyper-parameters, such that the
same value performs well across all experiments. Finally, the baselines also behave as expected,
the performance of BC is upper-bounded by the average return of the trajectories in each dataset:
only preforms well on the expert dataset. DQN, on the other hand, fails in the expert settings due to
distributional shift (discussed in sec. 2), but performs well on a fully random dataset thanks to its
high state-action space coverage.

How much can we improve upon the dataset performance? To test this, we construct a highly
stochastic dataset with very sparse rewards. It is essential to employ RL methods in such settings,
since other approaches, such as behavioural cloning, are unable to exploit the sequential nature of the
problem. We collect a dataset by a random agent acting in the Lava environment shown in Figure 4.
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Figure 2: Red and blue dotted lines show the av-
erage and maximum episode return respectively.

A detailed visualization of the dataset charac-
teristics can be found in Figure 10, Appendix
B. Note that it only includes 3.1% of posi-
tive trajectories with an average episode re-
turn of 0.024. Figure 2 on the right shows
the performance of our selected methods on
this highly sparse dataset. We can see that
CRRexp exceeds the maximum episode return
in the dataset (blue dotted line), which means
it must piece together parts of different trajec-
tories. This behaviour has been previously re-
ferred to as stitching (Fu et al., 2020). CQL,
with the right alpha still greatly improves upon
the average dataset behaviour, but does not ex-
ceed the maximum. BC and DQN fail in this
settings which is why we didn’t include them.

Method Hyperparameters Ep. length
CQL α = 0.001 500

α = 0.01 13
α = 0.1, α = 1 17

CRRexp β = 1 17
β = 0.01 500

CCRR α = 0.01, β = 1 17
α = 0.01, β = 0.01 13

BC 17

Table 1: Final episode length on the multi-modal
dataset described in Appendix A.1.

Can existing methods extract optimal policies
from multi-modal datasets? The experiment
described in Appendix A.1 aims to test the
agents ability to recover the optimal behaviour
from a dataset containing trajectories of policies
of various qualities. The most straightforward
way to tackle out-of-distribution actions is to
constrain the policy to lie close to the behaviour
policy. Methods that use such approach e.g.
CQL, are expected to fail in this setting. Indeed,
we can see in Table 1 that CQL with a high value
of alpha converges to the incorrect sub-optimal
policy. On the other hand, if we decrease alpha
too much, it fails to learn at all and suffers from
the distributional shift. There is a value of alpha
for which CQL converges to the correct policy, but the algorithm is highly sensitive and was
difficult to tune correctly. BC and CRR with an exponential filter fail to learn the correct policy. We
tested a variant of CRR by incorporating a conservative critic that uses the CQL penalty (CCRR).
The conservative critic made the advantage estimates more accurate and successfully learned the
optimal policy, but introduced the additional complexity of tuning the value of alpha.

From these experiments, practitioners might want to keep in mind that the quality of the offline
dataset is crucial to train efficient decision-making agents, even more than in the supervised setting.
In scenarios where the dataset contains highly stochastic behaviours, it is worth trying an off-policy
online method such as DQN, which directly optimizes the true objective without imposing any con-
straints. In most practical scenarios however, the dataset will have gaps in its state-action coverage
and online methods will fail due to distributional shift. This is where CQL and CRR prove use-
ful. Properly tuned CQL usually yields the best results, but CRR is more robust to hyper-parameter
selection and works better on datasets with sparse rewards. Lastly, if we have a dataset that was
collected by a highly deterministic policy, BC is going to be very difficult to outperform. Under-
standing how these methods perform on environments with increasing complexity is what we deal
with in the next section.

4.2 MAKING THE MOST OUT OF OFFLINE RL FOR CONTINUOUS CONTROL

We present here experiments on challenging continuous control tasks for people looking to leverage
their dataset in more realistic settings. Similarly to the previous experiments with discrete action
spaces, we created three generic datasets to cover a wide range of real-world scenarios while keep-
ing it as simple as possible: high quality data (expert policy behaviour), medium quality (average
performance) and purely random data. We intentionally selected environments with an increasing
complexity to evaluate the algorithms in various contexts: a simple 2D grid (PointMaze-v0) and
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two classic MUJOCO benchmark tasks (HalfCheetah-v2 and Humanoid-v2). Additional de-
tails on the datasets creation protocol and the environments can be found in Appendix A.1 and A.5
respectively. The experiments below depict how the offline methods actually perform when they
are implemented following the instructions from the papers, as well as when using the suggested
hyper-parameter values.

Figure 3: Comparison of CQL, CRR, SAC and BC on different environments and datasets of var-
ious qualities. The red dotted line indicates the average episode return and the normalized return
distributions are plotted in the bottom left for each dataset.

What is the best offline training strategy when dealing with continuous control tasks? The
experiments depicted in Figure 3 first show that naive application of an off-policy algorithm like
SAC fails when applied in the offline setting. As for BC, it reaches a near-optimal strategy with
medium and high-quality data but automatically fails when a large part of random or low-performing
behaviours is present in the dataset.

As shown in Figure 3 top-center, CRR is the only offline method able to partly retrieve the perfor-
mance contained in the medium quality dataset on HalfCheetah-v2 but does not improve upon
it. By definition, CRR is only able to mimic a subset of good action decisions. Indeed, the agent
is implicitly constrained to lie in the vicinity of the best performing trajectory in the static dataset
through the use of the filtered function. Therefore, it cannot extract information across trajectories
and therefore cannot outperform the dataset performance. Note that it fails when the action dis-
tribution is narrow or when its entropy is high (no useful information to extract). In practice, the
exponential filtered function can cause numerical instabilities leading to crashes during the train-
ing. Therefore, we mainly use the binary function (CRRbin) with both mean and max advantage
estimates.

As far as CQL is concerned, it remains unstable and is unable to learn robustly across all the
dataset-task pairs. Moreover, we found it difficult to implement: the authors recommend using
the LogSumExp function provided by Torch or TensorFlow libraries for the discrete actions set-
ting and suggest otherwise for the continuous case, while the official repository seems to use
it in either case. They also use an additional term in their code for the Q-value regulariser:∑N
ait+1∼π(at+1|st+1)

exp
{
Q(st+1, a

i
t+1)− log π(ait+1 | st+1)

}
, which is not mentioned in the pa-

per. Intuitively, they likely include these additional samples (from the region of interest where we
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might find higher Q-values) to improve the accuracy of the regularisation term∗. Finally, they also
use a temperature hyper-parameter to make the soft-maximum estimate more accurate and remove
the non-deterministic part of the Q-value target (additional entropy term) which are not mentioned in
the paper. Overall, applying the CQL method is appealing but even after fixing all these discrepan-
cies, we were not able to replicate the results. We believe the fragile hyper-parameters equilibrium
makes practical implementations difficult and subject to high variance. Finally, in a simpler contin-
uous environment like PointMaze-v0, CQL and BC interestingly perform best and retrieve the
expert behaviour whereas CRR gets stuck in a local minimum.

Overall, offline RL is undeniably a tough problem. The takeaway is that spending a lot of resources
on data collection and/or algorithm customization does not guarantee a robust strong performance
for complex continuous control tasks as the latest methods are unable to generalize well on most new
dataset-task pairs. A safe bet is BC which remains a strong and robust baseline for any continuous
settings as long as the dataset contains qualitative data. We provide further fine-tuning experiments
in Appendix C to evaluate whether it is possible to get further gains of performance with a limited
additional exploration after offline training when a simulator can be used.

5 CONCLUSION AND DISCUSSION

In this paper, after presenting three methods from recent offline RL contributions, we take a step
back from the literature to return to practical considerations: data and algorithms. For the former,
we discuss various dataset properties that may play a role in a successful deployment of offline RL.
Both the quality of the trajectories therein contained and their coverage of the state-action space
offer a key trade-off when it comes to data. We devise a collection of experiments to document
their interface through the lens of three algorithms (BC, CRR and CQL) and three dataset quality
levels (random, medium and expert). Since the problems we tackle are undocumented, we provide
foundations to help the reader better grasp the issues and suitability of different offline RL methods.
We hypothesise that datasets that are of interest in offline RL are generated by medium quality
policies, ideally with high stochasticity which lead to a dataset in which we can expect to be able to
outperform the data generating process. Overall, BC strengthens its position as baseline with a robust
performance across datasets with qualitative data by matching the near-optimal strategy contained
in the buffer. On discrete action spaces, CQL exhibits good recovery properties for medium quality
data and CRR occasionally outperforms the dataset baseline. Furthermore, when testing the methods
on more complex environments, we found it even harder to beat the baselines. Even though CQL
was shown to preform well on very complex environments, it can be difficult and expensive to tune
because of the fragile hyper-parameter equilibrium.

The selection of the offline RL method to use and its success cannot be made without the afore-
mentioned considerations, that is, no method performs uniformly better independently of the use
case. However, dealing with custom datasets uncovers many practical pitfalls that have not been
addressed in the literature such as algorithms’ fitness for different levels of data quality. Given the
pace at which the field of offline RL is evolving, we expect it to become a central question in the
near future.

∗After contacting the authors, they confirmed that all the available sample sources are needed to evaluate
the regulariser more accurately. They also suggest a higher number of samples (N ≈ 50–100) instead of the
paper-recommended value (N ≈ 10).
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A SPECS AND PROTOCOLS

A.1 DATASET CREATION PROTOCOL

Discrete action spaces We used a simple double-DQN to train an expert agent on each environ-
ment. The fully trained expert is then used to collect datasets for each experiment.

EXPERIMENT 1: we use an ε-greedy expert policy with increasing ε values to interact with a simple
empty 6x6 MiniGrid environment (Chevalier-Boisvert et al., 2018). The state in this environemnt
is defined by cell position and orientation and there are 3 actions: turn left/right and move forward.
The dataset used in the experiment are also visualized in Appendix B.

EXPERIMENT 2: we use a fully random agent to collect data in the Lava environment shown in
Figure 4. Most random walks in this environment end up in Lava which terminates the episode with
zero reward. This results in a dataset which is very sparse.

EXPERIMENT 3: the multi-modal dataset used in the third experiment contains data collected by
agents with two different policies.

(a) Expert trained with greedy Q-learning up-
dates to learn the shortest path to the goal (13
steps).

(b) Expert trained with SARSA updates with
high epsilon to converge to a safe path (17
steps).

Figure 4: The two expert trajectories used for data collection.

To collect the final dataset, we generate 20% of the trajectories using expert A and the remaining
80% of the trajectories using expert B. Both experts are epsilon-greedy with ε = 0.1. As usual, the
final dataset can be visualized in Appendix B, see Figure 11. The goal is to create a dataset that
contains a majority of relatively high reward, but sub-optimal trajectories, with a smaller proportion
of optimal trajectories.

Continuous action spaces We used QD-RL (Cideron et al., 2020), TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018) to generate homemade offline datasets on PointMaze-v0,
HalfCheetah-v2 and Humanoid-v2 benchmarks respectively. Each dataset contains 106 tran-
sitions. We chose three generic settings in which most of real-world situations can be classified:

• ”Random”:
To collect the dataset, we simply let a random agent wandering around in the environment. Al-
legedly, random datasets show the largest state-action coverage even though it is not enough to
ensure deep exploration. In a realistic setting, it corresponds to situations where the logged data
is meaningless but still represents a possible physical state of the system under consideration. For
example, let’s say we want to train a decision making agent to optimize a power plant operational
efficiency. Arbitrary data does not feature any relevant operation strategy, yet it outlines possible
values.

• ”Medium”:
The RL agent is trained online until an average return of approximately 5000 is reached on
HalfCheetah-v2 and 2500 on Humanoid-v2. Then, the transitions are saved. This setting
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is the most realistic as it represents a wide range of possible real-word scenarios where datasets
with some sub-optimal strategies can be easily collected (hand-engineered policies or human
demonstrations for instance). Going back to the power plant example, let’s consider that human
operators handle the energy production. Logs of the relevant plant parameters are collected and
may reflect poor production performance every now and then (non-expert policy).
In general, medium quality datasets are also interesting to investigate because this setting makes
it ultimately easier to detect potential improvements of an offline agent upon the best performing
trajectory of the static data.

• ”Expert”:
Same data acquisition protocol as ”medium” but with a return around 10000 on
HalfCheetah-v2, 5000 on Humanoid-v2 and -26 on PointMaze-v0. This setting high-
lights near-expert behaviours. A successful offline RL agent is expected to reach at least the same
level of performance as contained in the buffer. But mostly it should be able to generalize to new
situations and perform similarly.

The histograms of the return distributions are represented at the bottom left of Figure 3. The return
profiles for HalfCheetah-v2 show sharp and narrow distributions. For Humanoid-v2, the
distribution contains multi-modal transitions because of the larger return coverage in the medium
and expert settings.

A.2 BASELINES IMPLEMENTATION DETAILS

• Naive off-policy algorithms in the offline setting:
As a reference baseline, we naively apply off-the-shelf off-policy RL algorithm in the offline set-
ting (DQN (Mnih et al., 2013) and SAC (Haarnoja et al., 2018) for discrete and continuous control
tasks respectively) to show its failure for every dataset-algorithm-task configurations caused by
the distributional shift problem.

• Behavioural Cloning (BC):
This is the simplest form of imitation learning as it does not require environment interactions. In
practice, it is the easiest method to implement as it just copies/mimics actions from the batch,
so no RL process is involved. BC only controls in-distribution errors and does not address the
out-of-distribution actions problem:

argmin
φ

E(s,a)∼D
[
Ea′∼πφ(.|s) [Dm (a′, a)]

]
where Dm is a divergence measure. We use the cross-entropy and the mean square error loss for
discrete and continuous control domains respectively.

• Critic Regularised Regression (CRR):
The CRR algorithm acts more like a smart BC method as it cannot pull information across the
best performing trajectory in the buffer. The filtered function which exploits the best actions and
discards the bad ones has several definitions in practice:

f(Qθ, πφ, s, a) = 1 [Aπφ(s, a) > 0] or exp (Aπφ(s, a)/λ) .

Moreover, CRR mainly uses two definitions for the advantage Aπ .

– The mean advantage: Âmean(st, at) = Qθ(st, at)−m−1
∑m
j=1Qθ(st, aj).

– the max advantage: Âmax(st, at) = Qθ(st, at)−maxmj=1Qθ(st, aj)

where aj ∼ πφ(· | st). We perform experiments with both in Section 4. Additionally, we provide
a batch size sensitivity analysis for CRR in Figure 15 : the key message is that training is faster
with a larger batch size. This results does not modify our conclusions Section 4.2.

• Conservative Q-Learning (CQL):
We limited at 500k timesteps the runs on the Humanoid-v2 environment as it is sufficient
to clearly conclude its failing. We used the recommended MuJoCo hyper-parameters from the
paper. The dual gradient ascent trick to tune the weight of the Q-value regulariser α in the policy
evaluation step didn’t bring about better results. We believe the robustness of CQL is largely
affected by this hyper-parameter and may therefore be the reason why CQL fails in our high
dimensional continuous tasks.
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Figure 5: Comparison of evaluation protocols taken from (Gulcehre et al., 2020). (left) online policy
selection - gives overly optimistic results as it allows perfect policy selection. (right) offline policy
selection - closest to a real world use case where it is too expensive to query the environment.

The different methods were implemented using TensorFlow and Pytorch in the discrete and contin-
uous setting respectively.

A.3 EVALUATION PROTOCOL

Within the scope of this work, we make a simplifying assumption that we have access to the envi-
ronment for evaluation. It is important to note that this is usually not the case in practice, since the
very motivation for doing offline reinforcement learning is that interacting with the environment is
expensive or unsafe. The key difference is highlighted in the Figure 5, which shows the two most
common evaluation protocols in offline reinforcement learning literature.

Due to the additional complexity that Offline Policy Evaluation (OPE) methods entail, we decided
to use an online policy evaluation protocol within this work. More specifically, the performance is
measured as the average trajectory return across the workers every 5000 steps. Our figures show the
mean and the variance over 3 random seeds for each run.

A.4 HYPER-PARAMETER CHOICES

Hyper-parameter Value
RL batch size 256

Discount factor 0.99
Reward scaling 1

Replay buffer size 106

Actor hidden layers [256, 256]
Actor hidden activation ReLu

Actor learning rate 3 · 10−4
Critic hidden layers [256, 256]

Critic hidden activation ReLu
Critic learning rate 3 · 10−4

Soft target τ 5 · 10−2
Offline evaluation frequency 5 · 103

Table 2: Default SAC hyper-parameters used for continuous control tasks.

CRR mostly relies on default SAC hyper-parameters shown in table 2. However, CQL introduces
and modifies heavily the hyper-parameters, notably the policy learning rate (3 ·10−5) and the weight
coefficient α of the Q-value regulariser.
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A.5 ENVIRONMENT-SPECIFIC DETAILS

Environments Observation space dimension Number of actions
MiniGrid-Empty-Random-6x6-v0 108 3

MiniGrid-DistShift1-v0 189 3

Table 3: Environments with discrete observation and action spaces

Environments Observation space dimension Action space dimension
PointMaze-v0 2 2

HalfCheetah-v2 17 6
Humanoid-v2 376 17

Table 4: Environments with continuous action spaces.

Specific Details about the PointMaze Environment

PointMaze is a simple 2D maze where the agent
controls a 2D material point initialized randomly
in [−0.1, 0.1] × [−0.1,−0.7]. The goal is to exit
from the three corridors maze as fast as possi-
ble. The states correspond to the agent’s posi-
tion (xt, yt) ∈ [−1, 1] at time t. The two con-
tinuous actions are mini-step increments: (δx, δy)
∈ [−0.1, 0.1]. The episode ends once the agent
reaches the exit square or the If the length of
an episode exceeds 200 time steps (unsuccess-
ful episode). At last, the reward is computed as:
rt = −(xt − xgoal)2 − (yt − ygoal)2. Figure 6: PointMaze-v0 environment

and 104 random states samples from the ex-
pert dataset

B DATASET VISUALISATION

In this section, we present the dataset characteristics for the discrete action spaces experiments from
Section 4.1. Each 3 × 3 figure consists of heatmaps and histograms organised as follows: the
heatmaps at the center of each side are state counts conditional on the agent facing the direction
given by the position of the plot in the figure. The middle heatmap is a sum of all the directions. The
total count of transitions in the dataset is in the title of each combined heatmap (center). Histograms
are placed in the corners: distribution of rewards (Upper LHS), distribution of positive rewards
(Upper RHS), episode length distribution (Lower LHS) and the proportion of actions within the
dataset (Lower RHS).

The state-action coverage conditional on each facing direction can be assessed using those heatmaps:
green/browning squares are for highly visited states whilst the lavender colour is for states sparsely
visited.

By comparing the heatmaps and action count histogram of Figures 7, 8 and 9, we notice that the
state coverage gets higher across all facing directions and the action counts is closer a uniform
distribution, the mean reward goes down from 0.991 to 0.796. Also, the episode length increases
with epsilon: we can see that while the expert dataset only contains 6k transitions, the fully random
dataset has more than 113k for 1,000 episodes.
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B.1 EXPERIMENT 1

Figure 7: Expert dataset with with 1000 episodes and ε = 0.

Figure 8: Expert dataset with with 1000 episodes and ε = 0.8.
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Figure 9: Expert dataset with with 1000 episodes and ε = 1.

B.2 EXPERIMENT 2

Figure 10: Dataset collected by a random agent acting in the Lava gird world.
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B.3 EXPERIMENT 3

Figure 11: Multi-modal dataset with with 1000 episodes as described in A.1
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C SUPPLEMENTAL RESULTS

C.1 HYPERPARAMETER SEARCH

Experiments below are ran on datasets collected by an ε-greedy expert in the Empty-Random Mini-
Grid world as described in Appendix A.1.

Epsilon avg. reward avg. ep. length
0 0.991 6

0.3 0.986 8.54
0.6 0.974 15.52
0.8 0.947 30.43
0.9 0.908 51.86
1 0.796 113.32

Table 5: Summary of the key characteristics of each dataset.

Figure 12: Performance of CQL as a function of the dataset quality.
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Figure 13: Performance of CRR as a function of the dataset quality.

D ONLINE FINE-TUNING STUDY

I have access to a simulator, is it possible to get further gains of performance with fine-tuning?
Sometimes in real-world scenarios, environment simulators can be accessible but they can be com-
putationally costly and/or time-consuming. Nevertheless, after purely offline training, the policy
can be deployed in a simulated environment to perform a limited extra exploration which we refer
as fine-tuning. This technique is investigated as a way to boost the agent performance with a small
number of online trial-and-error interactions (Nair et al., 2020). We first train offline an agent for
106 timesteps then fine-tune the policy for 105 online interactions in the simulator (see Figure 14).

In the medium quality setting, BC suffers from performance collapse before slowly going back up
again. CRRbin performance first reaches the average return contained in the dataset. Then, the
performance crumbles entirely. Combining offline RL methods like CRR (CQL is not tested here as
the offline training was not successful) with fine-tuning seems to require more care and tuning and
doesn’t seem to be applicable out-of-the-box.

Further investigation on CRR: batch size analysis. We show in Figure 15 that batch size hyper-
parameter can play an important role for CRR, especially in the medium dataset setting. Sampling
more examples simply gives a better estimate of the filtered function and therefore the policy is
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Figure 14: Fine-tuning for 105 timesteps after 106 fully offline training steps on
HalfCheetah-v2.

Figure 15: Batch size sensitivity analysis for CRR on HalfCheetah-v2.

more efficiently pushed towards the best actions. However, a larger batch size does not affect the
conclusions in Section 4.2.
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