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Abstract

We study the problem of off-policy evaluation in RL settings where reward signals
are sparse. We introduce a new model-based control variate for variance reduction
in off-policy evaluation inspired by reward shaping, and provide conditions under
which our these shaped control variates may be used to reduce the variance of
standard importance sampling-based methods, whilst remaining unbiased. In dense
settings, we show that our resulting estimator behaves like the class of doubly
robust estimators, but can be easier to train, while under sparse reward signals, our
new estimator leads to improved performance.

1 Introduction

Reliably estimating the performance of a proposed policy from observational data is essential for
many domains. For instance, if a health system is using reinforcement learning (RL) to identify
potentially useful policies from past ICU records, one would want to be as sure as possible about its
benefits prior to a costly human inspection and validation and a prospective trial with real risks. To
this end, the field of off-policy evaluation (OPE) aims to estimate the performance of an evaluation
policy based on data sampled by following a different behaviour policy. It is well-studied across
reinforcement learning (Precup), |2000; [Thomas)}, [2015; Thomas and Brunskill, 2016} |Jiang and Li,
2016)), contextual bandits (Dudik et al., 2011; Wang et al., 2017), causal inference (Tennenholtz et al.|
2019} (Oberst and Sontag, [2019)), as well as applied settings such as healthcare (Liao et al.| [2019;
Parbhoo et al.|[2017,[2018; |Gottesman et al.,2019), education (Mandel et al.| | 2014)), and marketing
(Silver et al., [2013)).

A common approach to OPE is importance sampling (IS) (Precup, 2000), which computes the average
of trajectories’ outcomes in the data, properly weighted to account for the difference between the
evaluation and behaviour policies. Unfortunately, when evaluating deterministic policies, the weights
of a trajectory will be zero whenever an observed action in the data is different from the action the
evaluation policy would have chosen, leading to very small effective sample-sizes (Gottesman et al.,
2018)). This problem can be overcome by per-decision variants of the IS estimator which can gain
statistical power from only parts of the trajectories, even if the entire trajectory has weight zero.
These estimators significantly reduce the estimation variance, but rely on frequent observations of the
rewards and tend to perform poorly in settings where these observations are sparse. Another class
of methods known as Doubly Robust (DR) algorithms (Jiang and Lil 2016; [Thomas and Brunskill,
2016; Rotnitzky and Robins| 1995} |[Robins et al., [1994; |Bang and Robins} 2005) improve standard IS
methods by using model-based control variates to reduce variance.

In this work, we propose learning a new type of model-based control variate for sparse reward settings
to overcome the high variance of IS. Specifically, we draw upon a popular approach for accelerating
on-policy RL known as reward-shaping(Ng et al.l [1999; Harutyunyan et al.l2015), to learn a new
shaped control variate which can be integrated into existing OPE estimators to reduce their variance.
The shaping control variate serves as a means of densifying the signal where rewards are sparse,
thereby guiding the off-policy estimate. Unlike popular doubly robust methods such as (Dudik et al.,
2011} Jiang and Li| 2016]) that also use control variates for variance reduction, our approach has fewer

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, NeurIPS 2020.



parameters (only one per state, rather than one per state-action); we find this results in it being much
easier to optimise for variance reduction in practice.

Our specific contributions are as follows: (i) We introduce a new shaped control variate for vari-
ance reduction and integrate this into a family of traditional per-step IS estimators. (ii) We prove
theoretically that using shaped control variates with per-step IS produces an unbiased, consistent
estimator that only requires a model over states for variance reduction. (iii) We derive the variance of
this estimator such that it can be minimised, and provide intuition for when this variance is expected
to be lower than doubly robust methods in sparse reward settings, and when the estimator behaves
similarly to doubly-robust methods. (iv) On benchmark problems, we demonstrate that integrating
shaped control variates into per-step IS produces off-policy estimates that are more accurate than
both IS and DR baselines.

2 Related Work

There is a vast literature on several methods and techniques for performing off-policy evaluation.
Direct Methods (DM) try to build a model of the environment from a batch of data. The value of
the evaluation policy can subsequently be computed by simulating trajectories using the model (e.g.
Paduraru| (2013)); |Chow et al.|(2015); |[Hanna et al.|(2017); [Fonteneau et al.| (2013); [Liu et al.|(2018))).
In general, it can be difficult to choose the loss function for model learning without knowing the
evaluation policy in advance. Moreover, it may not be straightforward to minimise the bias of these
models because of the lack of counterfactual data, which may play an important role in learning the
dynamics of the model under the evaluation policy (Shalit et al., 2017} [Johansson et al., 2016)).

As a result, a second class of OPE estimators exists based on Inverse Propensity Scores or using
IS to correct the sampling bias in off-policy data, such that an unbiased estimator may be obtained
(e.g. [Precup| (2000); Horvitz and Thompson| (1952); [Thomas and Brunskill| (2016)). The value
of the evaluation policy is approximated using a weighted average of the returns over trajectories,
where the weights reflect the distributional mismatch between the evaluation and behaviour policies.
Unfortunately, these methods can suffer from high variance, particularly for longer time horizons.
Our approach falls into the category of approaches that seek to manage this variance via adding
control variates e.g. Advantage Sum or DR (e.g. Jiang and Li(2016)); Thomas and Brunskall| (2016);
Wang et al.| (2017)). Closest is the More Robust Doubly Robust (MRDR) estimator (Farajtabar et al.}
2018)), which specifically attempts to optimise for the control variate in DR.

Our approach uses ideas from reward shaping to design a control variate specifically targeted to
minimise the variance of OPE in sparse reward settings. In dense settings, our new estimator can be
seen as a variant of MRDR, where we learn a control variate based only on the state information.

Finally, we note that there exist other ways to manage the variance of IS-based estimates in long
horizon settings. For example, works such as DualDICE and others (Nachum et al., 2019} [Zhang
et al.,[2020) apply IS-type weighting to the stationary distribution. Our approach may be viewed as
complementary to these, applicable both in settings where the required assumptions of stationary
distributions are appropriate and when more traditional IS is needed.

3 Preliminaries and Notation

3.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple of the form M = (S, A, P,v, R), where S is the set of
all possible states, A is the set of available actions, P(s, a, s’) is the distribution of transitions from a
state s to a subsequent state s’ when applying a particular action a, R(s, a) defines the reward for
performing action a in state s, and v < 1 is a discount factor that trades off the relative importance of
immediate and long-term rewards. A (stationary) policy 7 : S x A — [0, 1] is a stochastic mapping
from states to actions, with 7(a|s) being the probability of taking action « in state s.

We denote by 7 = (sg, ag, ro, - - . , S7) a T-step trajectory generated by policy 7, and by Ro.r—1(7) =

ZtT:_Ol ~tr; the return of trajectory T, where state sy 11 ~ P(:|ss,az), and action a; ~ 7(-|s;)
Vi = t,...T. A policy 7 is evaluated by computing the expectation of the return of the 7T-step
trajectories it generates, V™ = E,[Ro.7—1(7)]. Further, we denote the value and action-values of a



policy 7 for a state s and state-action pair (s, a) as V™ (s) and Q™ (s, a) respectively. These are the
expected returns of a T'-step trajectory generated by starting at state s, or state s and taking a, and
following policy 7 respectively.

3.2 Off-Policy Evaluation Task

The general off-policy evaluation problem is when we are given a set of T'-step trajectories D =
{T(i)}?zl each independently generated by behaviour policy T, while our goal is to have a good
estimate of the performance of a different policy, 7., known as the evaluation policy. In general, the
estimator V™ is a good estimator if it produces a low mean square error (MSE),

MSE(V™ V™) =Epmn [(V™ — V7™)?], 1)
where P’ denotes the distribution of trajectory 7 under behaviour policy 7.

In what follows, we make the following regularity assumption. This is a standard assumption in OPE
and typically prevents the use of deterministic behaviour policies.

Assumption 1. (Absolute Continuity). For all state-action pairs (s,a) € S X A, if mp(a|s) = 0 then
me(als) = 0.

Our second assumption states we are given a single behaviour policy.

Assumption 2. (Single Behaviour Policy). Foralli,j € 1,...n, 71'17;“) = TrZw.

3.3 Potential-based Reward Shaping (PBRS)

Reward shaping is a technique that is used to modify the original reward function using a reward-
shaping function ' : § x A x & — R to typically make RL methods converge faster with more
instructive feedback. The original MDP M = (S, A, P,v, R) is transformed into a shaped-MDP
M’ =S8, A,P,v,R = R+ F). Although it is possible to perform reward shaping with various
kinds of reward-shaping functions, PBRS [Ng et al.|(1999) retains the optimal policy, as we summarise
below.

Definition 1. (Potential-based Reward Shaping Ng et al.|(1999)). F : Sx A xS — Risa
potential-based shaping function if there exists a real-valued function ¢ : S — R, such that

V(s,a,8') € Sx AxS,

F(Sa a, S/) = ’Y¢(sl) - ¢(8)7 (2)
where ¢(s) is known as a potential function.
Theorem 1. (Policy Invariance under PBRS |Ng| (2003)). The condition that F is a potential-
based shaping function is necessary and sufficient for it to guarantee consistency with the optimal
policy. Formally, for M = (S, A, P,y,R) and M' = (S, A,P,v,R' = R+ F), if F(s,a,s') =
vo(s') — P(s) thenV(s,a) € S x A,

Vir(s) = Vir(s) — o(s) 3)
Qhr(s,a) = Qyls,a) — d(s) O]
Var(s) = Var(s) — o(s) (5)
Q}K\W(&a) = Q}F\/[(S,a) - (;5(8) (6)

Hence the optimal policy derived from Q},, or Vi, remains the same as the optimal policy derived
from the original MDP M.

Another way of writing Eq. {4|is as the following Bellman Equation,
Q% (s,a)=Ey[R(s,a,s") + F(s,a,s") +~ max Qhr (s, a)]

=E.[R/(s,a,s") +7mg§QL,(s,a)]- )

4 Shaping Control Variates for Off-Policy Evaluation

In this section, we introduce a new shaped control variate for off-policy evaluation in sparse reward
settings. We define a new estimator called Shaping Control for Off-Policy Evaluation (SCOPE) that



integrates control variates based on reward shaping into per-step IS estimators for OPE. The main
idea of SCOPE is to learn shaping parameters such that the variance of the estimator is minimised.

Definition 2. (Shaping Control Variates for Off-Policy Evaluation). The SCOPE estimator for OPE
is given by:
n T-1

Vicops = Zvaé’Z ) + ye(s) 15 B) — o(s; B)), ®)

21t0

where ¢(s) is a potential function parameterised by f.

In this form, the SCOPE estimator may be viewed as a variant of step—IﬂT] where we introduce an
importance weighted shaping term based on PBRS to the step-IS estimate. Note however that the idea
of using control variates based on shaping is general enough to be integrated into various other OPE
estimators such as weighted-IS variants, as well as DR and DualDICE to produce a family of shaped
OPE estimators. Next, we state the bias and consistency of the SCOPE estimator given Assumptions
1 and 2.

Lemma 1. The SCOPE estimator for stochastic evaluation policy 7. is an unbiased estimator of the
shaped value function Vf,. Proof: See appendix for details.

Lemma 2. SCOPE is a strongly consistent estimator of V5, i.e. lim,,_, Vs%o pp = Vi almost
surely. As a result, this implies that SCOPE estimators are well-posed.

Proof Sketch: Since we know the estimate is unbiased from Lemmal[l|and our data set D consists of n
independent and identically distributed samples, we can infer from Khintchine’s Strong Law of Large

Numbers that lim,, oo Vaspp = Vii. See appendix for details.

Since SCOPE is an unbiased estimate of i.i.d. trajectories, standard concentration inequalities for
uncertainty in our off-policy estimates such as Hoeffding’s Inequality and others [Thomas| (2015)

apply.

4.1 Variance Analysis

Just because an estimator is unbiased and consistent does not mean that it is useful; it may still have
high variance given a finite number of samples. In this section, we present the variance of the SCOPE
estimator for any choice of shaping control variate; next we will describe how the choice of variate
can be optimised to minimise the variance of the estimator.

Lemma 3. The variance of the SCOPE estimator in Equation|8|for stochastic evaluation policy .
is given by,
Vpm (Vicops) = Vpm W;;Epzs] + 2E pr [Re (0 + Y wo.r—18(s1; B) — ¢(s0; B))]
— 2ViEEpm [0 + v wor—16(s7; B) — (505 B)] + V pr [0]?
+ Vpm [(v"wor—10(s73 B) — ¢(50: 8))]
— 2Epm [§ (v wo.r—10(s73 B) — (505 B))]
+ 2Epm [0]Epm [V wor—16(s1; B) — d(s0; B)] )

where § = Zt 1 ¢(5tvﬂ)(w0:t—l — wWo:t).
Proof: See appendix for details.

The variance formulation in Equation [9] holds for any parameterisation of ¢ and can be minimised in
general as we discuss Section@ Like |Thomas and Brunskill| (2016), we note that it is also possible
to derive the weighted SCOPE estimator where the per-step IS weights in SCOPE are replaced by
per-step weighted IS (step-WIS). This results in the introduction of some bias, but can potentially
reduce the overall variance and thus the MSE.

"Note that in general, the notion of PBRS would not be expected to help in the standard (non-step) version of
IS because if the weight of a full trajectory is zero, then no control variate—SCOPE or otherwise—will help.



4.2 Optimising the variance of SCOPE

Equation [9] provides a closed form expression for the variance of the SCOPE estimator. Hence we
can compute all the expectations with respect to P> using Monte Carlo gradients to determine the
optimal parameters 3 that minimise the variance for arbitrary ¢. We examine the case where the
potential function ¢(s; 3) = 371/ (s) for some for some K -dimensional vector of feature functions
1(s). Here, the variance formulation in Equation E] is a quadratic convex function that is smooth in .
In this case, optimising over 3 yields,

% o e e
VeV(Vséorr) = VeEpm[Vséoprl = 2Epm [Vicoprl VeErm Vitors]
o2 Or T
= VlViiprs 2IBTA‘/S1‘,ZpIS +B8TAATS] - 2V Epm [A], - (10)

since the estimator is unbiased and A = Z;‘F:_Ol Yiwo.t (Y (s141) — ¥(st)). Thus if we minimise the
variance by setting Equation [I0]to 0 we get,

B=Epm [AAT] T VIEEpm [A] — Epro [AVE 1 6]] (11)

When the potential function & is constant, this is analogous to having a constant DM component in
DR which produces some improvements over classic IS (see for instance, [Voloshin et al.| (2019)).

Some intuition can also be gained from contrasting SCOPE with MRDR—both algorithms learn a
control variate whose sole purpose is to minimise variance, relying on the unbiasedness of DR to
take care of the overall bias. However, while MRDR learns a state-action dependent control variate,
SCOPE learns a control variate which only depends on the state. This property makes it easier to
estimate and optimise, and less susceptible to noise due to action stochasticity. For domains where
some states can be thought of as having intrinsic values (for example, being physically close to a
goal in a navigational domain or having a low number of diseased cells in a healthcare setting), this
simplification can reap the benefit of ease of optimisation, without sacrificing important aspects of
the dynamics. Moreover, in sparse reward settings using a poor estimate of the true value function as
a control variate in DR may result in high variance. In these instances, it can be easier to estimate a
shaping control variate dependent only on the state for OPE to still produce a lower variance estimate
overall.

Learning an appropriate ¢ is key to the performance of SCOPE. Though in practice it may be easier
to obtain a reasonable estimate of ¢ than learning an approximate model of the value function, like
DR-based methods, SCOPE requires us to subset our data to empirically estimate (3, while using the
remaining samples to perform OPE. For this purpose, we use bootstrapping over different splits of
the data. The optimal data split minimises the MSE. This procedure is summarised in Algorithm 1.

Algorithm 1 Off-Policy evaluation using SCOPE

Input: 7., 7, D, confidence ¢ and number of bootstrap estimates B
Output: Vit pp

J=1

While j < B{ ‘ . ‘
Partition D into D\D; and D; = {H7, ..., H;} of histories Hj,
Estimate /3 using D; from Eqn. [I0]and obtain ¢

VggopEj = SCOPE(7, mp, ¢, D\D;)

}

Sort Vséopm,

l=cB

Return V¢ o pp,

5 Gridworld Demonstration

Domain Description and Baselines: We consider the 2D rectangular gridworld environment of size
3 x 4, where the agent tries to move a start state sq in the bottom left to a goal state in the bottom
right. We assume that the initial state s is fixed. We train an e-greedy policy with € = 0.3 with an
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Figure 1: (a) Comparison of MSE in sparse setting. The SCOPE estimator outperforms other
estimators in sparse reward settings. Moreover, the SCOPE estimator is empirically consistent. (b)
Comparison of MSE in dense reward setting. SCOPE and MRDR exhibit similar performance. (c)
Comparison of MSE over different degrees of sparsity. SCOPE outperforms baselines in sparse
reward settings. (d) MSE of SCOPE according to the proportion of data used for training potential
functions. The optimal data split where the MSE is minimised uses 30% of the data for training ¢.
(e) Performance over varying horizon lengths. SCOPE is less sensitive to longer horizons.

average time of 100 time steps to complete the task. The true on-policy value estimate V™ is the
Monte Carlo estimate via 1000 rollouts of .. We compared the performance of SCOPE to step-IS,

WIS, DR and MRDR trained with a linear model for Q as baselines

Improvement in performance under sparse rewards: To assess the influence of varying sparsity
on our estimates, we introduce a metric  to measure the reward sparsity per trajectory as the ratio of
the number of non-zero rewards per trajectory over the trajectory length. We compared SCOPE to
each of the baselines under (i) a sparse setting (¢ = 0.01) where the reward is 50 for entering the

2See appendix for further experiments and details on setup.



goal state and O for all other steps in a trajectory, and (ii) a dense reward setting (¢ = 0.9) where
intermediate rewards of -5 are given for entering pit cells, and rewards of +1 are provided for 90% of
the other steps. The results are shown in Figures 1(a) and 1(b). Overall, both sets of results serve as
an empirical check for consistency of SCOPE. As the number of observed trajectories grows, the
MSE decreases. In the dense setting, the performance of MRDR and SCOPE estimators is similar as
both shaped and MRDR control variates operate similarly. In the sparse setting however, SCOPE
outperforms MRDR. This is a result of SCOPE’s ability to compensate for the lack of reward signal
using the shaping control variate. We also show the performance of SCOPE for varying degrees of
reward sparsity in Figure 1(c) for n = 1000 trajectories. SCOPE performs significantly better than the
other baselines when rewards sparser.

Efficiency of learning shaping control variates ¢: We used Algorithm 1 to determine the
influence of the proportion of data used to determine ¢. Figure 1(d) shows the bootstrapped variance
over different splits of the data. The MSE is minimised when 30% of the data is used for shaping.
Algorithm 1 enables us to compute the optimal data split such that we can minimise the variance.
Importantly, the proportion of data required to learn the optimal shaping parameters is less than the
amount of data required to learn a reasonable Q-function estimate in DR.

Robustness against varying horizon lengths: Traditional IS methods tend to be very sensi-
tive to horizon length since 7. and 7, may have little overlap over longer horizons. We assess
the performance of our estimator over horizon lengths of 100 and 500 respectively in Figure 1(e).
SCOPE is less sensitive to increases in horizon. As we get closer to the goal, the effect of shaping is
more pronounced since states near the goal state carry more information about the goal. The shaping
control variate allows us to exploit this information for variance reduction.

6 Discussion and Conclusion

A lack of intermediate reward signal often increases the variance of standard OPE estimates. Control
variates can help by introducing intermediate rewards in a principled way, and here we presented
a new method for OPE based on reward shaping particularly well-suited to the sparse reward
setting. Our approach achieves state-of-the-art performance whilst being straightforward to optimise.
Specifically, we find

Shaped control variates outperform existing methods for OPE under sparse reward set-
tings. SCOPE achieves optimal performance in comparison to existing baselines in sparse settings.
Reward shaping serves as a special type of control variate that can be used instead of the standard
value function for sparse problems. Here, the introduction of shaping terms densifies rewards to learn
an improved control variate, where standard value function estimates would otherwise be poor as a
result of reward sparsity.

For dense reward settings, linear SCOPE has performance equivalent to MRDR. In
dense settings, the additional shaping terms in SCOPE in Eqn. [§]reduce to value function estimates.
Learning the optimal shaping parameter is then equivalent to learning the model parameter that
minimises the variance of DR estimators as in the MRDR approach. As a result, the performance of
SCOPE is equivalent to that of MRDR.

Unlike MRDR, shaping control variates with more expressive function classes still al-
lows for easy optimisation. When we perform SCOPE with higher order function classes that are
not necessarily linear, the performance of SCOPE significantly improves regardless of whether we
are in a sparse or dense reward setting. For instance, we see reductions in MSE to +/- 1.26 for the
Gridworld task. Regardless of the function class, SCOPE can still be optimised easily.

Optimising SCOPE requires splitting data appropriately, but has a closed-form. An es-
sential design consideration for the performance of SCOPE is how to divide the training data set
appropriately to estimate the shaping parameters. In our experiments, this is done by bootstrapping
over different data splits. Since we can in general, write out a closed form expression for the variance
of SCOPE, optimisation is fairly straightforward in comparison to existing techniques.
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