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1 Introduction

Finding optimal treatment strategies that can incorporate patient heterogeneity is a cornerstone of
personalized medicine. When treatment options can change over time, optimal sequential treatment
rules (STR) can be learned using longitudinal patient data. With increasing availability of large scale
longitudinal data such as electronic health records (EHR) data in recent years, reinforcement learning
(RL) has found much success in estimating such optimal STR [1, 2, 3, 4, 5] and directly maximizing
the value function [6]. Although G-estimation and A-learning models can be more efficient and
robust to miss-specification, Q-learning is widely adopted due to its ease of implement, flexible and
interpretable [3, 7, 8].

Learning STR with EHR data, however, often faces an additional challenge that outcome information
is readily available. Outcome information such as development of a clinical event or whether a patient
is considered as a responder is often not well coded but rather embedded in clinical notes. Proxy
variables such as diagnostic code or mentions of relevant clinical terms in clinical notes via natural
language processing (NLP), while predictive of the true outcome, are often not sufficiently accurate
to be used directly in replace of the outcome [9, 10, 11]. On the other hand, extracting precise
outcome information often requires manual chart review, which is resource intensive particularly
when aiming to learn STR since the outcome needs to be annotated over time. This signifies the need
for semi-supervised learning (SSL) that can efficiently leverage a small sized labeled data L with
true outcome observed and a large sized unlabeled data U for predictive modeling. It is worthwhile
to note that the SSL setting differs from the standard missing data setting in that the probability of
missing tends to 1 asymptotically, which violates the positivity assumption required by the classical
missing data methods [12].

While SSL methods have been well developed for prediction, classification and regression tasks
[13, 14, 15, 16, 17, 12, e.g.]. Recently, [11, 18] proposed SSL methods for estimating an average
causal treatment effect. [19] proposed a semi-supervised RL method which achieves impressive
empirical results and outperforms simple approaches such as direct imputation of the reward. However,
to the best of our knowledge there is no previous work on SSL methods for off-policy policy evaluation
(OPE). OPE differs from estimating the average treatment effect as the estimand depends on a dynamic
conditional treatment rule (policy function) and not a pre-specified treatment. In this paper, we fill
this gap by proposing a theoretically justified SSL approach to OPE using a large unlabeled data U
which contains sequential observations on features O, treatment assignment A, and surrogates W
that are imperfect proxies of reward (or health outcome) R as well as a small set of labeled data L
which contains true outcome R at multiple stages along with O, A and W. The policy evaluation
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we use is defined as the expected counterfactual outcome under the optimal STR. We further show
that our approach is robust to miss-specification of the imputation models. Additionally, our OPE is
doubly robust, meaning if either the regression models for the Q functions or the propensity score
functions are correctly specified, our estimator is consistent for the true value function. Finally,
our value function estimator is flexible enough to allow for standard off-the-shelf machine learning
tools and is shown to perform well in finite-sample numerical examples. An extended version with
additional theoretical and empirical results are shown in [20]. In Section 2 we go over the problem
set-up and notation, in Section 3 we give a brief overview of Q-learning used to derive optimal STR,
in Section 4 we derive our proposed Semi Supervised Off-Policy Evaluation of the Policy. Finally in
Section 5 we show empirical results and conclude in Section 6.

2 Problem setup

We consider a longitudinal observational study with outcomes, confounders and treatment indices
potentially available over multiple stages. Although our method is generalizable for any number
of stages, for the ease of presentation we’ll use two time points of (binary) treatment allocation as
follows. For time point t ∈ {1, 2}, let Ot ∈ RdSt denote the vector of covariates measured prior at
stage t of dimension dSt ; At ∈ {0, 1} a treatment indicator variable; and Rt+1 ∈ R the outcome
observed at stage t + 1, for which higher values of Rt+1 are considered beneficial. Additionally
we observe surrogates Wt ∈ Rdωt , a dωt -dimensional vector of post-treatment covariates potentially
predictive of Rt+1. In the labeled data where R = (R2, R3)T is annotated, we observe a random
sample of n independent and identically distributed (iid) random vectors, denoted by

L = {Li = (~UT

i ,R
T

i )
T}ni=1, where Uti = (OT

ti, Ati,W
T
ti)

T and ~Ui = (UT
1i,U

T
2i)

T.

We additionally observe an unlabeled set consisting of N iid random vectors, U = {~Uj}Nj=1 with
N � n. We denote the entire data as S = (L ∪ U). To operationalize our statistical arguments
we denote the joint distribution of the observation vector Li in L as P. In order to connect to the
unlabeled set, we assume that any observation vector ~Uj in U has the distribution induced by P.

We are interested in estimating the optimal STR value function, defined as expected counterfactual
outcomes under the optimal regime. To this end, let R(a)

t be the potential outcome for a patient at
time t had the patient been treated at time t − 1 with treatment a ∈ {0, 1}. A dynamic treatment
regime is a set of functions D = (d1, d2), where dt(·) ∈ {0, 1} , t = 1, 2 map from the patient’s
history up to time t to the treatment choice {0, 1}. We define the patient’s history as S1 ≡ [ST

10,S
T
11]T

with S1k = φ1k(O1), S2 = [ST
20,S

T
21]T with S2k = φ2k(O1, A1,O2), where {φtk(·), t = 1, 2, k =

0, 1} are pre-specified basis functions, for example wavelets basis, natural cubic splines, etc. We
use St0, St1 t = 1, 2 to denote baseline features, and treatment effect features respectively for the
Q functions, more detail will follow in Section 3. For ease of presentation, we also let Š1 = ST

1,
Š2 = (R2,S

T
2)T.

Let ED be the expectation with respect to the measure that generated the data under regime D.
Then these sets of rules D have an associated value function which we can write as V (D) =

ED
[
R

(d1)
2 +R

(d2)
3

]
. Thus, an optimal dynamic treatment regime is a rule D̄ = (d̄1, d̄2) such that

V̄ = V
(
D̄
)
≥ V (D) ∀D, whereD belongs to a suitable class of admissible decisions [7]. To identify

D̄ and V̄ from the observed data we will require the following sets of standard assumptions [21, 8]:
(i) consistency – Rt+1 = R

(0)
t+1I{At=0}+R

(1)
t+1I{At=1} for t = 1, 2, (ii) no unmeasured confounding

– R(0)
t+1, R

(1)
t+1 |= At|St for t = 1, 2 and (iii) positivity – P(At|St) > ν, for t = 1, 2, At ∈ {0, 1}, for

some fixed ν > 0.

3 Q-learning for STR

Q-learning is a backward recursive algorithm to identify optimal STR by optimizing two stage
Q-functions defined as:

Q2(Š2, A2) ≡ E[R3|Š2, A2], and Q1(Š1, A1) ≡ E[R2 + max
a2

Q2(Š2, a2)|S1, A1]
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[4, 22]. See [20] for discussion of a semi-supervised Q learning approach. In its simplest form one
assumes a (working) linear model for some parameters θt = (βT

t ,γ
T
t)

T, t = 1, 2, as follows:

Q1(Š1, A1;θ0
1) =ST

10β
0
1 +A1(ST

11γ
0
1),

Q2(Š2, A2;θ0
2) =R2β

0
21 + ST

20β
0
22 +A2(ST

21γ
0
2).

(1)

Note that in model (1), parameters γ0
1,γ

0
2 correspond to the treatment effect as At ∈ {0, 1},

t = 1, 2. Typical Q-learning consists of performing a least squares regression for the sec-
ond stage to estimate θ̂2 followed by defining the stage 1 pseudo-outcome as Ŷ ∗2i = R2i +

max
a2

Q2(Š2i, a2; θ̂2), for i = 1, ..., n. One then proceeds to estimate θ̂1 using least squares again,

using Ŷ ∗2 as the outcome variable. Indeed, valid inference on D̄ using the method described above
crucially depends on the validity of the model assumed. However as we shall see, even without
validity of this model we will be able to provide valid inference on the value function using a doubly
robust type estimator. Based on the Q-learning models, we can then obtain an estimate for the optimal
treatment protocol as:

d̂t ≡ dt(St; θ̂t), where dt(St;θt) = argmax
a∈{0,1}

Qt(Št, a;θt), t = 1, 2.

As we explain next, this in turn yields desirable statistical results for evaluating the resulting policy
d̄t ≡ dt(St; θ̄t) = argmaxa∈{0,1}Qt(Št, a; θ̄t), for t = 1, 2.

4 Semi Supervised Off-Policy Evaluation of the Policy

To evaluate the performance of the optimal policy D̄ = {d̄t(St; θ̄t), t = 1, 2} derived under the
Q-learning framework, one may estimate the expected population outcome under the policy D̄:

V̄ ≡ V̄ (θ̄) = E
(
E[R2 + E{R3|Š2, A2 = d̄2(S2; θ̄2)}|S1, A1 = d̄1(S1; θ̄1)]

)
,

where θ̄ = (θ̄
T

1, θ̄
T

2)T. Recall that both U and L have distribution P, thus we can equivalently define
V̄ = ED̄

[
R

(d̄1)
2 +R

(d̄2)
3

]
, with expectation over P holding D̄ fixed. If models in (1) are correctly

specified then under standard causal assumptions (consistency, no unmeasured confounding and
positivity), an asymptotically consistent supervised estimator for the value function can be obtained
as V̂Q = Pn

[
Qo1(Š1; θ̂1)

]
, where Qot (Št;θt) ≡ Qt{Št, dt(St;θt);θt}. However, V̂Q is likely to

be biased when the outcome models in (1) are miss-specified which arise frequently in practice since
Q1(Š1, A1) is especially difficult to specify.

To improve the robustness to model miss-specification, we propose an SSL doubly robust (SSLDR)
estimator for V̄ by augmenting V̂Q via propensity score weighting. To this end, we define propensity
scores πt(Št) = P{At = d̄t|Št}, t = 1, 2. To estimate {πt(·), t = 1, 2}, we impose the following
generalized linear models (GLM):

πt(Št; ξt) =σ
(
ŠT

tξt
)
, with σ(x) ≡ 1/(1 + e−x) for t = 1, 2. (2)

We use the logistic model with potentially non-linear basis functions Š for simplicity of presentation
but one may choose other GLM or alternative basis expansions to incorporate non-linear effects in the
propensity model. We estimate ξ = (ξT

1, ξ
T

2)T based on the standard maximum likelihood estimators
using labeled data, denoted by ξ̂ = (ξ̂

T

1, ξ̂
T

2)T. Denote the limit of ξ̂ as ξ̄ = (ξ̄
T

1, ξ̄
T

2)T, which is equal
to the true model parameter under correct specification of (2).

4.1 SUPDR Value Function Estimation

To derive a supervised doubly robust (SUPDR) estimator for V̄ overcoming confounding in the
observed data, we let Θ = (θT, ξT)T and define the inverse probability weights (IPW) using the
propensity scores

ω1(Š1, A1,Θ) ≡ I{A1 = d1(Š1,θ1)}
π1(Š1; ξ1)

, and ω2(Š2, A2,Θ) ≡ ω1(Š1, A1,Θ)
I{A2 = d2(Š2,θ2)}

π2(Š2; ξ2)
.
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Then we augment Qo1(S1; θ̂1) based on the estimated propensity scores via

VSUPDR
(L; Θ̂) = Qo1(S1; θ̂1)+ω1(Š1, A1, Θ̂)

[
R2 −

{
Qo1(S1, θ̂1)−Qo2(Š2; θ̂2)

}]
+ω2(Š2, A2, Θ̂)

{
R3 −Qo2(Š2; θ̂2)

}
and estimate V̄ as

V̂SUPDR
= Pn

{
VSUPDR

(L; Θ̂)
}
. (3)

The augmented importance sampling estimator in (3) is similar to those previously proposed in
[23] and [24]. The construction of augmentation in V̂SUPDR

also differs from the usual augmented
IPW estimators [7]. As we are interested in the value had the population been treated with D̄ and
not a fixed sequence (A1, A2), we replace the weights for a fixed treatment (i.e. At = 1) with the
propensity score weights for the optimal regime I(At = d̄t). Finally, we note that this estimator can
easily be extended to incorporate non-binary treatments.

4.2 SSLDR Value Function Estimation

We next detail our robust imputation based semi-supervised procedure that leverages the unlabeled
data U to replace the unobserved Rt in (3) with their properly imputed values for subjects in U .
Our SSL procedure includes three key steps: (i) imputation, (ii) refitting, and (iii) projection to
the unlabeled data. In step (i), we develop flexible imputation models for the conditional outcome
mean functions. The refitting in step (ii) will ensure the validity of the SSL estimators under
potential mis-specifications of the imputation models. Since Š2 involves R2, both ω2(Š2, A2; Θ) and
Qo2(Š2;θ2) = R2β21 +Qo2−(S2;θ2) are not available in the unlabeled set, where Qo2−(S2;θ2) =
ST

20β22 + [ST
21γ2]+. Writing

VSUPDR
(L; Θ̂) = Qo1(S1; θ̂1)+ω1(Š1, A1, Θ̂)

{
(1 + β̂21)R2 −Qo1(S1, θ̂1) +Qo2−(S2; θ̂2)

}
+ω2(Š2, A2, Θ̂)

{
R3 − β̂21R2 −Qo2−(S2; θ̂2)

}
,

we note that to impute VSUPDR
(L; Θ̂) for subjects in U , we need to impute R2, ω2(Š2, A2; Θ̂), and

Rtω2(Š2, A2; Θ̂) for t = 2, 3. Define conditional mean functions

µ2(~U) ≡ E[R2|~U], µω2
(~U) ≡ E[ω2(Š2, A2; Θ̄)|~U], µtω2

(~U) ≡ E[Rtω2(Š2, A2; Θ̄)|~U],

for t = 2, 3, where Θ̄ = (θ̄
T
, ξ̄

T
)T We approximate these expectations by a flexible imputation model

followed by a refitting step for bias correction under possible miss-specification of the imputation
models.

Step I: Imputation We fit flexible weakly parametric or non-parametric models to the la-
beled data to approximate the functions {µ2(~U), µω2(~U), µtω2(~U), t = 2, 3} with unknown
estimated parameter θ and the propensity score modeling as discussed above. Denote the re-
spective imputation models as {m2(~U),mω2(~U),mtω2(~U), t = 2, 3} and their fitted values as
{m̂2(~U), m̂ω2

(~U), m̂tω2
(~U), t = 2, 3}.

Step II: Refitting. To correct for potential biases arising from finite sample estimation
and model mis-specifications, we perform refitting to obtain final imputed models for
{R2, ω2(Š2, A2; Θ̄), Rtω2(Š2, A2; Θ̄), t = 2, 3} as {µ̄v2(~U) = m2(~U) +ηv2 , µ̄

v
ω2

(~U) = mω2
(~U) +

ηvω2
, µ̄vtω2

(~U) = mtω2(~U) + ηvtω2
, t = 2, 3}. These refitted models are not required to be correctly

specified but need to satisfy the following constraints are satisfied:

E
[
ω1(Š1, A1; Θ̄)

{
R2 − µ̄v2(~U)

}]
= 0,

E
[
Qo2−(~U;θ2)

{
ω2(Š2, A2; Θ̄)− µ̄ω2(~U)

}]
= 0,

E
[
ω2(Š2, A2; Θ̄)Rt − µ̄tω2(~U)

]
= 0, t = 2, 3.

(4)
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To this end, let {Ik, k = 1, ...,K} denote K random equal sized partitions of the labeled
index set {1, ..., n}, and let {m̂(-k)

t (~U), m̂(-k)
ω2

(~U), m̂(-k)

tω2
(~U), t = 2, 3} be the counterpart of

{m̂t(~U), m̂ω2(~U), m̂2t(~U), t = 2, 3} with labeled observations in {1, .., n} \ Ik. To estimate
ηv2 η

v
ω2

, and ηvtω2
under these constraints, we again employ cross-fitting and obtain η̂v2 η̂

v
ω2

, and η̂vtω2

as the solution to the following estimating equations

K∑
k=1

∑
i∈Ik

ω1(Š1i, A1i; Θ̂)
{
R2 − m̂(−k)

2 (~Ui)− η̂v2
}

= 0,

K∑
k=1

∑
i∈Ik

Qo2−(~Ui; θ̂2)
{
ω2(Š2i, A2i; Θ̂)− m̂(−k)

ω2
(~Ui)− η̂vπ2

}
= 0,

K∑
k=1

∑
i∈Ik

{
ω2(Š2i, A2i; Θ̂)Rti − m̂(−k)

tω2
(~Ui)− η̂vtω2

}
= 0, t = 2, 3.

(5)

The resulting imputation functions for R2, ω2(Š2, A2; Θ̄) and Rtω2(Š2, A2; Θ̄) are respectively
constructed as µ̂v2(~U) = K−1

∑K
k=1 m̂

(−k)
2 (~U) + η̂v2 , µ̂

v
ω2

(~U) = K−1
∑K
k=1 m̂ω2

(~U) + η̂vω2
, and

µ̂tω2
(~U) = K−1

∑K
k=1 m̂

(−k)
tω2

(~U) + η̂vtω2
, for t = 2, 3.

Step III: Semi-supervised augmented value function estimator. Finally, we proceed to estimate
the value of the policy V̄ , using the following semi-supervised augmented estimator:

V̂SSLDR
= PN

{
V̂SSLDR

(~U)
}
, (6)

where V̂SSLDR
(~U) is the semi-supervised augmented estimator for observation ~U defined as:

V̂SSLDR
(~U) =Qo1(Š1; θ̂1) + ω1(Š1, A1, Θ̂)

[
(1 + β̂21)µ̂v2(~U)−Qo1(Š1; θ̂1) +Qo2−{S2; θ̂2}

]
+µ̂3ω2

(~U)− β̂21µ̂2ω2
(~U)−Qo2−(S2; θ̂2)µ̂ω2

(~U).

The above SSL estimator uses both labeled and unlabeled data along with outcome surrogates to
estimate the value function, which yields a gain in efficiency. V̂SSLDR

is doubly robust in the sense
that if either the Q functions or the propensity scores are correctly specified, the value function will
converge in probability to the true value V̄ . Additionally, we can use the same data to estimate both
the optimal STR and it’s value function. We next give a proposition which states our semi-supervised
estimator is doubly robust, for further theoretical results see [20].

Let g(·) be a real valued function, we define the norm ‖g(x)‖L2(P) ≡
√∫

g(x)2dP(x). Additionally,
let {Un}, and {Vn} be two sequences of random variables, we use Un = oP(Vn) to denote that
Un/Vn

P→ 0. Assumptions for the following Proposition which include class functions for the Q
functions and propensity scores are listed in the Appendix B.

Proposition 4.1 If either ‖π̂t − πt‖L2(P) = oP(1) or
∥∥∥Q̂t −Qt∥∥∥

L2(P)
= oP(1), t = 1, 2 then under

Assumptions B.1-B.4
V̂SSLDR

p−→ V̄ ,

where V̄ = E[E[R2 + E[R3|S2, A2 = d̄2, R2]|S1, A1 = d̄1]].

5 Simulation results

We performed extensive simulations to evaluate the finite sample performance of our method. We
compare our semi-supervised estimator to a fully supervised approach using labeled data sets of size
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n. In particular, we evaluate the value function comparing supervised vs. semi-supervised estimators
while varying degree of miss-specification for the Q models in (1) and the propensity score functions
w in (2). We detail the simulation settings in Appendix A. In essence, to evaluate robustness to
misspecification in the Q function, we generate continuous R3 as

R3|Š2 ∼ N
(

ŠT

20β
0
2 + β0

27O
2
2R2 sin

(
1

O2
2R2

)
+A2(ŠT

21γ
0
2), 2

)
and use the following model for the second stageQ function: Q2(Š2, A2;θ2) = ŠT

20β
0
2 +A2(ST

21γ
0
2).

The binary reward version uses a sigmoid transformation of the above mean function forR3. Similarly,
to evaluate robustness to miss-specification of the propensity score, we use

A2|O1, O2, A1, R2 ∼ Bern
(
σ
(
ST

2ξ
0
2 + ξ0

26O
2
2

))
and fit model π2(Š2; ξ2) = σ

(
ST

2ξ
0
2

)
. Both base scenarios use β0

27 = ξ0
26 = 0, for correct model

specification. For imputation we use random forests with 500 trees (RF). All results are based on 500
replications.

Figure 1: Monte Carlo estimates for 500 datasets for simulations of continuous rewards R2, R3. We
show empirical MSE ratio and difference of the absolute value of bias for value function estimation.
Comparison is done across degree of miss-specificaction of the Q function by ranging β27 in different
colored lines and on the propensity score for A2 by varying ξ26 in the x-axis. MSE ratios > 1 &
absolute bias difference > 0 favor semi supervised value function estimation.

Figure 2: Monte Carlo estimates for 500 datasets for simulations of binary rewards R2, R3. We
show empirical MSE ratio and difference of the absolute value of bias for value function estimation.
Comparison is done across degree of miss-specificaction of the Q function by ranging β27 in different
colored lines and on the propensity score for A2 by varying ξ26 in the x-axis. MSE ratios > 1 &
absolute bias difference > 0 favor semi supervised value function estimation.

Through simulations, we analyze performance of the doubly robust value function estimators for
both binary and continuous outcomes. We vary degree of miss-specification of the Q functions and
propensity scores through β27 and ξ26 respectively. Figure 1 & 2 show empirical MSE ratio and
bias difference across varying levels of miss-specification of the Q functions as different lines, and
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propensity scores across the x-axis. Bias across simulation settings are relatively similar between
V̂SSLDR

and V̂SUPDR
. The low magnitude of bias suggests both estimators are robust to model miss-

specification. Negative levels of β0
27 favors V̂SSLDR

for both binary and continuous outcomes. The
semi-supervised value function estimator, however, is generally more efficient across levels of β0

27
and ξ0

26. Specially for negative ξ0
26 values. On the other hand, large ξ0

26 values result in efficiency
loss for V̂SSLDR

: there is a price to pay due to the over-fitting bias in the refitting step. For binary
rewards, there is a better efficiency gain as seen in the empirical MSE ratio of Figure 2, however the
continuous setting shows a similar trend in terms of efficiency gain, but a more modest one.

6 Discussion

We have proposed an efficient strategy for the semi-supervised setting for estimation of dynamic
treatment rules and their value function. In particular we develop a two step estimation procedure
which is amenable to non-parametric imputation of the missing outcomes. This helped us leverage
the unlabeled data U to gain efficiency of our value function estimation as shown empirically through
simulations. We additionally show our value function estimator is doubly robust.

There are several ways to extend this work. The most natural one is to extend this framework to more
than two treatment time points. We focus on the 2-time point setting for simplicity but there is nothing
in our theoretical result which cannot be extended to a higher time horizon. In implementation one
would need to be careful with the variability of the IPW-value function which increases substantially
with time. Additionally, this strategy can be used to estimate DTRs using A-learning which can yield
efficiency gain under certain scenarios [8].
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