
Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

THE IMPORTANCE OF PESSIMISM IN FIXED-DATASET
POLICY OPTIMIZATION

Jacob Buckman∗
Mila; McGill University

Carles Gelada
OpenAI

Marc G. Bellemare
Google Research; Mila; McGill University

ABSTRACT

We study worst-case guarantees on the expected return of fixed-dataset policy
optimization algorithms. Our core contribution is a unified conceptual and mathe-
matical framework for the study of algorithms in this regime. This analysis reveals
that for naı̈ve approaches, the possibility of erroneous value overestimation leads
to a difficult-to-satisfy requirement: in order to guarantee that we select a policy
which is near-optimal, we may need the dataset to be informative of the value of
every policy. To avoid this, algorithms can follow the pessimism principle, which
states that we should choose the policy which acts optimally in the worst possi-
ble world. We show why pessimistic algorithms can achieve good performance
even when the dataset is not informative of every policy, and derive families of
algorithms which follow this principle. These theoretical findings are validated
by experiments on a tabular gridworld, and deep learning experiments on four
MinAtar environments.

1 INTRODUCTION

We consider fixed-dataset policy optimization (FDPO), in which a dataset of transitions from an envi-
ronment is used to find a policy with high return.1 We compare FDPO algorithms by their worst-case
performance, expressed as high-probability guarantees on the suboptimality of the learned policy.
It is perhaps obvious that in order to maximize worst-case performance, a good FDPO algorithm
should select a policy with high worst-case value. We call this the pessimism principle of exploita-
tion, as it is analogous to the widely-known optimism principle (Lattimore & Szepesvári, 2020) of
exploration.2

Our main contribution is a theoretical justification of the pessimism principle in FDPO, based on a
bound that characterizes the regret of a generic decision-maker which optimizes a proxy objective.
We further demonstrate how this bound may be used to derive principled algorithms. Note that the
core novelty of our work is not the idea of pessimism, which is an intuitive concept that appears in a
variety of contexts; rather, our contribution is a set of theoretical results rigorously explaining how
pessimism is important in the specific setting of FDPO. An example conveying the intuition behind
our results can be found in Appendix G.1.

We first analyze a family of non-pessimistic naı̈ve FDPO algorithms, which estimate the environ-
ment from the dataset via maximum likelihood and then apply standard dynamic programming tech-
niques. We prove a bound which shows that the worst-case suboptimality of these algorithms is
guaranteed to be small when the dataset contains enough data that we are certain about the value
of every possible policy. This is caused by the outsized impact of value overestimation errors on
suboptimality, sometimes called the optimizer’s curse (Smith & Winkler, 2006). It is a fundamental
consequence of ignoring the disconnect between the true environment and the picture painted by our
limited observations. Importantly, it is not reliant on errors introduced by function approximation.

1We use the term fixed-dataset policy optimization to emphasize the computational procedure; this setting
has also been referred to as batch RL (Ernst et al., 2005; Lange et al., 2012) and more recently, offline RL (Levine
et al., 2020). We emphasize that this is a well-studied setting, and we are simply choosing to refer to it by a
more descriptive name.

2The optimism principle states that we should select a policy with high best-case value.

1

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

We contrast these findings with an analysis of pessimistic FDPO algorithms, which select a policy
that maximizes some notion of worst-case expected return. We show that these algorithms do not
require datasets which inform us about the value of every policy to achieve small suboptimality, due
to the critical role that pessimism plays in preventing overestimation. Our analysis naturally leads
to two families of principled pessimistic FDPO algorithms. We prove their improved suboptimality
guarantees, and confirm our claims with experiments on a gridworld.

Finally, we extend one of our pessimistic algorithms to the deep learning setting. Recently, several
deep-learning-based algorithms for fixed-dataset policy optimization have been proposed (Agarwal
et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019; Laroche et al., 2019; Jaques et al., 2019;
Kidambi et al., 2020; Yu et al., 2020; Wu et al., 2019; Wang et al., 2020; Kumar et al., 2020; Liu
et al., 2020). Our work is complementary to these results, as our contributions are conceptual,
rather than algorithmic. Our primary goal is to theoretically unify existing approaches and motivate
the design of pessimistic algorithms more broadly. Using experiments in the MinAtar game suite
(Young & Tian, 2019), we provide empirical validation for the predictions of our analysis.

The problem of fixed-dataset policy optimization is closely related to the problem of reinforcement
learning, and as such, there is a large body of work which contains ideas related to those discussed
in this paper. We discuss these works in detail in Appendix E.

2 HOW PROXY OBJECTIVES IMPACT REGRET

Our central theoretical contribution is a novel bound for generalized decision-making. Theorem 1
shows how the regret incurred by a decision-maker who optimizes a proxy objective is governed by
the quality of the proxy. We consider an abstract decision-making task, whose goal is to choose an
element from some space X to maximize some objective f : X → R.

Theorem 1. For any space X , objective f : X → R, and proxy objective f̂ : X → R,

f(x∗)− f(x̂∗) ≤ inf
x∈X

(
[f(x∗)− f(x)] + [f(x)− f̂(x)]

)
+ sup
x∈X

(
f̂(x)− f(x)

)
where x∗ := arg maxx∈X f(x) and x̂∗ := arg maxx∈X f̂(x). Furthermore, this bound is tight.

Proof. See Appendix C.1 and C.2.

This result reveals a formal connection between prediction tasks and decision-making tasks. When
the proxy objective is an estimator of the true objective, a reduction in estimation error (prediction)
leads to reduced regret (decision-making). Crucially, this relationship is not straightforward: there
is an asymmetry between the impact of overestimation errors, i.e., x for which f̂(x) > f(x), and
underestimation errors, where f̂(x) < f(x). To see this, we consider each of its terms in isolation:

f(x∗)− f(x̂∗) ≤ inf
x∈X

((A1)︷ ︸︸ ︷
[f(x∗)− f(x)] +

(A2)︷ ︸︸ ︷
[f(x)− f̂(x)]

)
︸ ︷︷ ︸

(A)

+ sup
x∈X

((B1)︷ ︸︸ ︷
f̂(x)− f(x)

)
︸ ︷︷ ︸

(B)

The term labeled (A) reflects the degree to which the proxy is accurate on a near-optimal x. For
any choice x, (A1) captures its suboptimality, and (A2) captures its underestimation error. Since
(A) takes an infimum over X , this term will be small whenever there is at least one reasonable
choice whose score is not very underestimated by the proxy. On the other hand, the term labeled
(B) corresponds to the largest overestimation error on any x. Because it consists of a supremum
over X , it will be small only when no choices at all are overestimated much. Even a single large
overestimation can lead to significant regret.

Current algorithms for prediction tasks have not been designed with this asymmetry in mind. As a
result, when the function learned by such an algorithm is used as a proxy objective for a decision-
making task, we observe a characteristic behavior: the choice we select turns out to have been
overestimated, and we experience high regret. The remainder of this paper explores this effect in
detail on one specific formalization of a decision-making problem: FDPO.

2

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

3 FDPO BACKGROUND

We anticipate most readers will be familiar with the concepts and notation, which is fairly standard
in the reinforcement learning literature. In the interest of space, we relegate a full presentation to
Appendix A. Here, we briefly give an informal overview of the background necessary to understand
the main results.

We represent the environment as a Markov Decision Process (MDP), denoted M :=
〈S,A,R, P, γ, ρ〉. We assume without loss of generality that R(〈s, a〉) ∈ [0, 1], and denote its
expectation as r(〈s, a〉). ρ represents the start-state distribution. Policies π ∈ Π can act in the
environment, represented by action matrix Aπ , which maps each state to the probability of each
state-action when following π. Value functions v assign some real value to each state. We use vπM
to denote the value function which assigns the sum of discounted rewards in the environment when
following policy π. A datasetD contains transitions sampled from the environment. From a dataset,
we compute the empirical reward and transition functions, rD and PD, and the empirical policy, π̂D.

An important concept for our analysis is the value uncertainty function, denoted µπD,δ , which returns
a high-probability upper-bound to the error of a value function derived from datasetD. Certain value
uncertainty functions are decomposable by states or state-actions, meaning they can be written as
the weighted sum of more local uncertainties. See Appendix B for more detail.

Our goal is to analyze the suboptimality of a specific class of FDPO algorithms, called value-based
FDPO algorithms, which have a straightforward structure: they use a fixed-dataset policy evaluation
(FDPE) algorithm to assign a value to each policy, and then select the policy with the maximum
value. Furthermore, we consider FDPE algorithms whose solutions satisfy a fixed-point equation.
Thus, a fixed-point equation defines a FDPE objective, which in turn defines a value-based FDPO
objective; we call the set of all algorithms that implement these objectives the family of algorithms
defined by the fixed-point equation.

FDPO represents a specific instantiation of the more general decision-making framework in Theo-
rem 1, where X := Π, f(π) := Eρ[vπM], and f̂(π) := Eρ[E(D,π)]. Thus, from Theorem 1:
Corollary 1 (Value-based FDPO suboptimality bound). Consider any value-based fixed-dataset
policy optimization algorithmOVB, with fixed-dataset policy evaluation subroutine E . For any policy
π and dataset D, denote vπD := E(D,π). The suboptimality of OVB is bounded by

SUBOPT(OVB(D)) ≤ inf
π

(
Eρ[v

π∗M
M − vπM] + Eρ[vπM − vπD]

)
+ sup

π

(
Eρ[vπD − vπM]

)
.

4 NAÏVE ALGORITHMS

The goal of this section is to paint a high-level picture of the worst-case suboptimality guarantees of
a specific family of non-pessimistic approaches, which we call naı̈ve FDPO algorithms. Informally,
the naı̈ve approach is to take the limited dataset of observations at face value, treating it as though
it paints a fully accurate picture of the environment. The value function of a naı̈ve algorithm is an
example of an asymmetry-agnostic proxy objective, as discussed in Section 2.
Definition 1. A naı̈ve algorithm is any algorithm in the family defined by the fixed-point function

fnaı̈ve(v
π) := Aπ(rD + γPDv

π).

Various FDPE and FDPO algorithms from this family could be described; in this work, we do not
study these implementations in detail, although we do give pseudocode for some implementations
in Appendix D.1.

One example of a naı̈ve FDPO algorithm which can be found in the literature is certainty equivalence
(Jiang, 2019a). The core ideas behind naı̈ve algorithms can also be found in the function approxima-
tion literature, for example in FQI (Ernst et al., 2005; Jiang, 2019b). Additionally, when available
data is held fixed, nearly all existing deep reinforcement learning algorithms are transformed into
naı̈ve value-based FDPO algorithms. For example, DQN (Mnih et al., 2015) with a fixed replay
buffer is a naı̈ve value-based FDPO algorithm.
Theorem 2 (Naı̈ve FDPO suboptimality bound). Consider any naı̈ve value-based fixed-dataset pol-
icy optimization algorithm OVB

naı̈ve. Let µ be any value uncertainty function. With probability at least

3

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

1− δ, the suboptimality of OVB
naı̈ve is bounded with probability at least 1− δ by

SUBOPT(OVB
naı̈ve(D)) ≤ inf

π

(
Eρ[v

π∗M
M − vπM] + Eρ[µπD,δ]

)
+ sup

π
Eρ[µπD,δ]

Proof. This result follows directly from Corollary 1 and Lemma 2.

The infimum term is small whenever there is some reasonably good policy with low value uncer-
tainty. In practice, this condition can typically be satisfied, for example by including expert demon-
strations in the dataset. On the other hand, the supremum term will only be small if we have low
value uncertainty for all policies – a much more challenging requirement. This explains the behav-
ior of pathological examples, e.g. in Appendix G.1, where performance is poor despite access to
virtually unlimited amounts of data from a near-optimal policy. Such a dataset ensures that the first
term will be small by reducing value uncertainty of the near-optimal data collection policy, but does
little to reduce the value uncertainty of any other policy, leading the second term to be large.

However, although pathological examples exist, it is clear that this bound will not be tight on all
environments. It is reasonable to ask: is it likely that this bound will be tight on real-world examples?
We argue that it likely will be. We identify two properties that most real-world tasks share: (1) The
set of policies is pyramidal: there are an enormous number of bad policies, many mediocre policies,
a few good policies, etc. (2) Due to the size of the state space and cost of data collection, most
policies have high value uncertainty.

Given that these assumptions hold, naı̈ve algorithms will perform as poorly on most real-world
environments as they do on pathological examples. Consider: there are many more policies than
there is data, so there will be many policies with high value uncertainty; naı̈ve algorithms will
likely overestimate several of these policies, and erroneously select one; since good policies are
rare, the selected policy will likely be bad. It follows that running naı̈ve algorithms on real-world
problems will typically yield suboptimality close to our worst-case bound. And, indeed, on deep RL
benchmarks, which are selected due to their similarity to real-world settings, overestimation has been
widely observed, typically correlated with poor performance (Bellemare et al., 2016; Van Hasselt
et al., 2016; Fujimoto et al., 2019).

5 THE PESSIMISM PRINCIPLE

“Behave as though the world was plausibly worse than you observed it to be.” The pessimism
principle tells us how to exploit our current knowledge to find the stationary policy with the best
worst-case guarantee on expected return. Being pessimistic means reducing overestimation errors,
but incurring additional underestimation errors; thus, pessimistic approaches optimize a proxy ob-
jective which exploits the asymmetry described in Section 2.

We consider two specific families of pessimistic algorithms, the uncertainty-aware pessimistic algo-
rithms and proximal pessimistic algorithms, and bound the worst-case suboptimality of each. These
algorithms each include a hyperparameter, α, controlling the amount of pessimism, interpolating
from fully-naı̈ve to fully-pessimistic. (For a discussion of the implications of the latter extreme, see
Appendix G.2.) Then, we compare the two families, and see how the proximal family is simply a
trivial special case of the more general uncertainty-aware family of methods.

5.1 UNCERTAINTY-AWARE PESSIMISTIC ALGORITHMS

Our first family of pessimistic algorithms is the uncertainty-aware (UA) pessimistic algorithms.
As the name suggests, this family of algorithms estimates the state-wise Bellman uncertainty and
penalizes policies accordingly, leading to a pessimistic value estimate and a preference for policies
with low value uncertainty.

Definition 2. An uncertainty-aware pessimistic algorithm, with a Bellman uncertainty function uπD,δ
and pessimism hyperparameter α ∈ [0, 1], is any algorithm in the family defined by the fixed-point
function

fua(vπ) = Aπ(rD + γPDv
π)− αuπD,δ

4

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

This fixed-point function is simply the naı̈ve fixed-point function penalized by the Bellman uncer-
tainty. This can be interpreted as being pessimistic about the outcome of every action. Note that it
remains to specify a technique to compute the Bellman uncertainty function, e.g. Appendix B.1, in
order to get a concrete algorithm. It is straightforward to construct algorithms from this family by
modifying naı̈ve algorithms to subtract the penalty term. Similar algorithms have been explored in
the safe RL literature (Ghavamzadeh et al., 2016; Laroche et al., 2019) and the robust MDP literature
(Givan et al., 1997), where algorithms with high-probability performance guarantees are useful in
the context of ensuring safety.
Theorem 3 (Uncertainty-aware pessimistic FDPO suboptimality bound). Consider an uncertainty-
aware pessimistic value-based fixed-dataset policy optimization algorithm OVB

ua . Let uπD,δ be any
Bellman uncertainty function, µπD,δ be a corresponding value uncertainty function, and α ∈ [0, 1]

be any pessimism hyperparameter. The suboptimality of OVB
ua is bounded with probability at least

1− δ by

SUBOPT(OVB
ua (D)) ≤ inf

π

(
Eρ[v

π∗M
M − vπM] + (1 + α) · Eρ[µπD,δ]

)
+ (1− α) ·

(
sup
π

Eρ[µπD,δ]
)

Proof. See Appendix C.7.

This bound should be contrasted with our result from Theorem 2. With α = 0, the family of
pessimistic algorithms reduces to the family of naı̈ve algorithms, so the bound is correspondingly
identical. We can add pessimism by increasing α, and this corresponds to a decrease in the magni-
tude of the supremum term. When α = 1, there is no supremum term at all. In general, the optimal
value of α lies between the two extremes.

To further understand the power of this approach, it is illustrative to compare it to imitation learning.
Consider the case where the dataset contains a small number of expert trajectories but also a large
number of interactions from a random policy, i.e. when learning from suboptimal demonstrations
(Brown et al., 2019). If the dataset contained only a small amount of expert data, then both an UA
pessimistic FDPO algorithm and an imitation learning algorithm would return a high-value policy.
However, the injection of sufficiently many random interactions would degrade the performance of
imitation learning algorithms, whereas UA pessimistic algorithms would continue to behave simi-
larly to the expert data.

5.2 PROXIMAL PESSIMISTIC ALGORITHMS

The next family of algorithms we study are the proximal pessimistic algorithms, which implement
pessimism by penalizing policies that deviate from the empirical policy. The name proximal was
chosen to reflect the idea that these algorithms prefer policies which stay “nearby” to the empirical
policy. Many FDPO algorithms in the literature, and in particular several recently-proposed deep
learning algorithms (Fujimoto et al., 2019; Kumar et al., 2019; Laroche et al., 2019; Jaques et al.,
2019; Wu et al., 2019; Liu et al., 2020), resemble members of the family of proximal pessimistic
algorithms; see Appendix E. Also, another variant of the proximal pessimistic family, which uses
state density instead of state-conditional action density, can be found in Appendix C.9.
Definition 3. A proximal pessimistic algorithm with pessimism hyperparameter α ∈ [0, 1] is any
algorithm in the family defined by the fixed-point function

fproximal(v
π) = Aπ(rD + γPDv

π)− α
(

TVS(π, π̂D)

(1− γ)2

)
Theorem 4 (Proximal pessimistic FDPO suboptimality bound). Consider any proximal pessimistic
value-based fixed-dataset policy optimization algorithm OVB

proximal. Let µ be any state-action-wise
decomposable value uncertainty function, and α ∈ [0, 1] be a pessimism hyperparameter. For any
dataset D, the suboptimality of OVB

proximal is bounded with probability at least 1− δ by

SUBOPT(Oproximal(D)) ≤ inf
π

(
Eρ[v

π∗M
M − vπM] + Eρ

[
µπD,δ + α(I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)])
+ sup

π

(
Eρ
[
µπD,δ − α(I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)])
5

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Proof. See Appendix C.8.

Once again, we see that as α grows, the large supremum term shrinks; similarly, by Lemma 4, when
we have α = 1, the supremum term is guaranteed to be non-positive.3 The primary limitation of
the proximal approach is the looseness of the value lower-bound. Intuitively, this algorithm can
be understood as performing imitation learning, but permitting minor deviations. Constraining the
policy to be near in distribution to the empirical policy can fail to take advantage of highly-visited
states which are reached via many trajectories. In fact, in contrast to both the naı̈ve approach and the
UA pessimistic approach, in the limit of infinite data this approach is not guaranteed to converge to
the optimal policy. Also, note that when α ≥ 1− γ, this algorithm is identical to imitation learning.

5.3 THE RELATIONSHIP BETWEEN UNCERTAINTY-AWARE AND PROXIMAL ALGORITHMS

Though these two families may appear on the surface to be quite different, they are in fact closely
related. A key insight of our theoretical work is that it reveals the important connection between
these two approaches. Concretely: proximal algorithms are uncertainty-aware algorithms which use
a trivial value uncertainty function.

To see this, we show how to convert an uncertainty-aware penalty into a proximal penalty. let µ be
any state-action-wise decomposable value uncertainty function. For any dataset D, we have

µπD,δ = µπ̂DD,δ + (I − γAπPD)−1
(

(Aπ −Aπ̂D)(uD,δ + γPDµ
π̂D
D,δ)

)
(Lemma 3)

≤ µπ̂DD,δ + (I − γAπPD)−1

(
TVS(π, π′)

(
1

(1− γ)2

))
. (Lemma 4)

We began with the uncertainty penalty. In the first step, we rewrote the uncertainty for π into the sum
of two terms: the uncertainty for π̂D, and the difference in uncertainty between π and π̂D on various
actions. In the second step, we chose our state-action-wise Bellman uncertainty to be 1

1−γ , which
is a trivial upper bound; we also upper-bound the signed policy difference with the total variation.
This results in the proximal penalty.4

Thus, we see that proximal penalties are equivalent to uncertainty-aware penalties which use a spe-
cific, trivial uncertainty function. This result suggests that uncertainty-aware algorithms are strictly
better than their proximal counterparts. There is no looseness in this result: for any proximal penalty,
we will always be able to find a tighter uncertainty-aware penalty by replacing the trivial uncertainty
function with something tighter.

However, currently, proximal algorithms are quite useful in the context of deep learning. This is
because the only uncertainty function that can currently be implemented for neural networks is the
trivial uncertainty function. Until we discover how to compute uncertainties for neural networks,
proximal pessimistic algorithms will remain the only theoretically-motivated family of algorithms.

6 EXPERIMENTS

We implement algorithms from each family to empirically investigate whether their performance of
follows the predictions of our bounds. Below, we summarize the key predictions of our theory.

• Imitation. This algorithm simply learns to copy the empirical policy. It performs well if
and only if the data collection policy performs well.

• Naı̈ve. This algorithm performs well only when almost no policies have high value un-
certainty. This means that when the data is collected from any mostly-deterministic policy,
performance of this algorithm will be poor, since many states will be missing data. Stochas-
tic data collection improves performance. As the size of the dataset grows, this algorithm
approaches optimality.

3Initially, it will contain µπ
′

D,δ , but this can be removed since it is not dependent on π.
4When constructing the penalty, we can ignore the first term, which does not contain π, and so is irrelevant

to optimization.

6

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Random Policy Optimal Policy Imitation Naïve FDPO UA Pessimistic FDPO Proximal Pessimistic FDPO

0.00.20.40.60.81.0
 of -greedy data collection policy

25

30

35

40

45

50

55

60

Sc
or

e

Tabular Gridworld

Random Policy
Optimal Policy
Imitation
Naïve FDPO
UA Pessimistic FDPO
Proximal Pessimistic FDPO

(a) Performance of FDPO algorithms on a dataset
of 2000 transitions, as the data collection policy is
interpolated from random to optimal.

101 102 103 104 105

of frames in dataset

25

30

35

40

45

50

55

60

Sc
or

e

Tabular Gridworld

(b) Performance of FDPO algorithms as dataset
size increases. Data is collected with an optimal
ε-greedy policy, with ε = 50%.

Figure 1: Tabular gridworld experiments.

• Uncertainty-aware. This algorithm performs well when there is data on states visited by
near-optimal policies. This is the case when a small amount of data has been collected
from a near-optimal policy, or a large amount of data has been collected from a worse
policy. As the size of the dataset grows, this algorithm to approaches optimality. This
approach outperforms all other approaches.
• Proximal. This algorithm roughly mirrors the performance of the imitation approach, but

improves upon it. As the size of the dataset grows, this algorithm does not approach opti-
mality, as the penalty persists even when the environment’s dynamics are perfectly captured
by the dataset.

Our experimental results qualitatively align with our predictions in both the tabular and deep learn-
ing settings, giving evidence that the picture painted by our theoretical analysis truly describes the
FDPO setting. See Appendix D for pseudocode of all algorithms; see Appendix F for details on the
experimental setup; see Appendix G.3 for additional experimental considerations for deep learning
experiments that will be of interest to practicioners. For an open-source implementation, including
full details suitable for replication, please refer to the code in the accompanying GitHub repository:
github.com/jbuckman/tiopifdpo.

Tabular. The first tabular experiment, whose results are shown in Figure 1(a), compares the per-
formance of the algorithms as the policy used to collect the dataset is interpolated from the uniform
random policy to an optimal policy using ε-greedy. The second experiment, whose results are shown
in Figure 1(b), compares the performance of the algorithms as we increase the size of the dataset
from 1 sample to 200000 samples. In both experiments, we notice a qualitative difference between
the trends of the various algorithms, which aligns with the predictions of our theory.

Neural network. The results of these experiments can be seen in Figure 2. Similarly to the tabular
experiments, we see that the naı̈ve approach performs well when data is fully exploratory, and poorly
when data is collected via an optimal policy; the pure imitation approach performs better when
the data collection policy is closer to optimal. The pessimistic approach achieves the best of both
worlds: it correctly imitates a near-optimal policy, but also learns to improve upon it somewhat
when the data is more exploratory. One notable failure case is in FREEWAY, where the performance
of the pessimistic approach barely improves upon the imitation policy, despite the naı̈ve approach
performing near-optimally for intermediate values of ε.

7 DISCUSSION AND CONCLUSION

In this work, we provided a conceptual and mathematical framework for thinking about fixed-dataset
policy optimization. Starting from intuitive building blocks of uncertainty and the over-under de-

7

github.com/jbuckman/tiopifdpo

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

0.00.20.40.60.81.0
 of -greedy data collection policy

0

2

4

6

8

10

12

Sc
or

e

Asterix

0.00.20.40.60.81.0
 of -greedy data collection policy

0

5

10

15

20
Breakout

0.00.20.40.60.81.0
 of -greedy data collection policy

0

10

20

30

40

50

60
Freeway

0.00.20.40.60.81.0
 of -greedy data collection policy

0

20

40

60

80
Space Invaders

Naive
Imitation
Proximal Pessimistic

Figure 2: Performance of deep FDPO algorithms on a dataset of 500000 transitions, as the data
collection policy is interpolated from near-optimal to random.

composition, we showed the core issue with naı̈ve approaches, and introduced the pessimism princi-
ple as the defining characteristic of solutions. We described two families of pessimistic algorithms,
uncertainty-aware and proximal. We see theoretically that both of these approaches have advan-
tages over the naı̈ve approach, and observed these advantages empirically. Comparing these two
families of pessimistic algorithms, we see both theoretically and empirically that uncertainty-aware
algorithms are strictly better than proximal algorithms, and that proximal algorithms may not yield
the optimal policy, even with infinite data.

Future directions. Our results indicate that research in FDPO should not focus on proximal
algorithms. The development of neural uncertainty estimation techniques will enable principled
uncertainty-aware deep learning algorithms. As is evidenced by our tabular results, we expect these
approaches to yield dramatic performance improvements, rendering the proximal family (Kumar
et al., 2019; Fujimoto et al., 2019; Laroche et al., 2019; Kumar et al., 2020) obsolete.

On ad-hoc solutions. It is undoubtably disappointing to see that proximal algorithms, which are
far easier to implement, are fundamentally limited. It is tempting to propose various ad-hoc solutions
to mitigate the flaws of proximal pessimistic algorithms in practice. For example, one might consider
tuning α; however, doing the tuning requires evaluating each policy in the environment, which
involves gaining information by interacting with the environment, which is not permitted by the
problem setting. Or, one might consider e.g. an adaptive pessimism hyperparameter which decays
with the size of the dataset; however, for such a penalty to be principled, it must be based on an
uncertainty function, at which point we may as well just use an uncertainty-aware algorithm.

Stochastic policies. One surprising property of pessimistic algorithms is that the optimal policy
is often stochastic. For the penalty of proximal pessimistic algorithms, it is easy to see that this
may be the case for any non-deterministic empirical policy; for UA pessimsitic algorithms, it is
dependent on the choice of Bellman uncertainty function, but in general may hold (see Appendix
B.2 for the derivation of a Bellman uncertainty function with this property). This observation lends
mathematical rigor to the intuition that agents should ‘hedge their bets’ in the face of epistemic
uncertainty. This property also means that the simple approach of selecting the argmax action is
no longer adequate for policy improvement. In Appendix D.2.2 we discuss a policy improvement
procedure that takes into account the proximal penalty to find the stochastic optimal policy.

Implications for RL. Finally, due to the close connection between the FDPO and RL settings,
this work has implications for deep reinforcement learning. Many popular deep RL algorithms
utilize a replay buffer to break the correlation between samples in each minibatch (Mnih et al.,
2015). However, since these algorithms typically alternate between collecting data and training the
network, the replay buffer can also be viewed as a ‘temporarily fixed’ dataset during the training
phase. These algorithms are often very sensitive to hyperparemters; in particular, they perform
poorly when the number of learning steps per interaction is large (Fedus et al., 2020). This effect
can be explained by our analysis: additional steps of learning cause the policy to approach its naı̈ve
FDPO fixed-point, which has poor worst-case suboptimality. A pessimistic algorithm with a better
fixed-point could therefore allow us to train more per interaction, improving sample efficiency. A
potential direction of future work is therefore to incorporate pessimism into deep RL.

8

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Acknowledgements. The authors thank Alex Slivkins, Romain Laroche, Emmanuel Bengio, Si-
mon Ramstedt, George Tucker, Aviral Kumar, Dave Meger, Ahmed Touati, and Bo Dai for provid-
ing valuable feedback, as well as Doina Precup, Jason Eisner, Philip Thomas, Saurabh Kumar, and
Marek Petrik for helpful discussions. The authors are grateful for financial support from the CIFAR
Canada AI Chair program.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in off-policy
deep reinforcement learning. arXiv preprint arXiv:1907.04543, 2019.

András Antos, Csaba Szepesvári, and Rémi Munos. Value-iteration based fitted policy iteration:
learning with a single trajectory. In 2007 IEEE international symposium on approximate dynamic
programming and reinforcement learning, pp. 330–337. IEEE, 2007.

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and Rémi Munos. Increasing
the action gap: New operators for reinforcement learning. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In Proceedings of
the International Conference on Machine Learning, 2019.

Michael K Cohen and Marcus Hutter. Pessimism about unknown unknowns inspires conservatism.
In Conference on Learning Theory, pp. 1344–1373. PMLR, 2020.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. arXiv preprint
arXiv:2007.06700, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement by minimiz-
ing robust baseline regret. In Advances in Neural Information Processing Systems, pp. 2298–2306,
2016.

Robert Givan, Sonia Leach, and Thomas Dean. Bounded parameter markov decision processes. In
European Conference on Planning, pp. 234–246. Springer, 1997.

Vineet Goyal and Julien Grand-Clement. Robust markov decision process: Beyond rectangularity.
arXiv preprint arXiv:1811.00215, 2018.

Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in opti-
mizing deep linear networks. arXiv preprint arXiv:2001.05992, 2020.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Nan Jiang. Note on certainty equivalence, 2019a.

Nan Jiang. Note on fqi, 2019b.

9

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Nan Jiang and Jiawei Huang. Minimax confidence interval for off-policy evaluation and policy
optimization. arXiv preprint arXiv:2002.02081, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pp. 267–274, 2002.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Reinforcement
learning, pp. 45–73, 2012.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pp. 3652–3661, 2019.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penal-
ization. arXiv preprint arXiv:0907.3740, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Rémi Munos. Performance bounds in l p-norm for approximate value iteration. SIAM journal on
control and optimization, 46(2):541–561, 2007.

Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement with
soft baseline bootstrapping. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 53–68. Springer, 2019.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pp. 317–328. Springer,
2005.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Thiago D Simão, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement with an
estimated baseline policy. arXiv preprint arXiv:1909.05236, 2019.

James E Smith and Robert L Winkler. The optimizer’s curse: Skepticism and postdecision surprise
in decision analysis. Management Science, 52(3):311–322, 2006.

10

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731–1755,
2015.

Majid Alkaee Taleghan, Thomas G Dietterich, Mark Crowley, Kim Hall, and H Jo Albers. Pac
optimal mdp planning with application to invasive species management. The Journal of Machine
Learning Research, 16(1):3877–3903, 2015.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380–2388, 2015a.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-
policy evaluation. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015b.

Philip S Thomas, Bruno Castro da Silva, Andrew G Barto, Stephen Giguere, Yuriy Brun, and Emma
Brunskill. Preventing undesirable behavior of intelligent machines. Science, 366(6468):999–
1004, 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Thomas J Walsh, Daniel K Hewlett, and Clayton T Morrison. Blending autonomous exploration and
apprenticeship learning. In Advances in Neural Information Processing Systems, pp. 2258–2266,
2011.

Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. In-
equalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

A BACKGROUND

We write vectors using bold lower-case letters, a, and matrices using upper-case letters, A. To refer
to individual cells of a vector or rows of a matrix, we use function notation, a(x). We write the
identity matrix as I . We use the notation Ep[·] to denote the average value of a function under a
distribution p, i.e. for any space X , distribution p ∈ Dist(X), and function a : X → R, we have
Ep[a] := Ex∼p[a(x)].

When applied to vectors or matrices, we use <,>,≤,≥ to denote element-wise comparison. Simi-
larly, we use | · | to denote the element-wise absolute value of a vector: |a|(x) = |a(x)|. We use |a|+
to denote the element-wise maximum of a and the zero vector. To denote the total variation distance
between two probability distributions, we use TV(p,q) = 1

2 |p−q|1. When P andQ are conditional
probability distributions, we adopt the convention TVX (p,q) = 〈 12 |p(·|x)−q(·|x)|1 : x ∈ X〉, i.e.,
the vector of total variation distances conditioned on each x ∈ X .

11

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Markov Decision Processes. We represent the environment with which we are interacting as a
Markov Decision Process (MDP), defined in standard fashion: M := 〈S,A,R, P, γ, ρ〉. S and A
denote the state and action space, which we assume are discrete. We useZ := S×A as the shorthand
for the joint state-action space. The reward functionR : Z → Dist([0, 1]) maps state-action pairs to
distributions over the unit interval, while the transition function P : Z → Dist(S) maps state-action
pairs to distributions over next states. Finally, ρ ∈ Dist(S) is the distribution over initial states.
We use r to denote the expected reward function, r(〈s, a〉) := Er∼R(·|〈s,a〉)[r], which can also be
interpreted as a vector r ∈ R|Z|. Similarly, note that P can be described as P : (Z×S)→ R, which
can be represented as a stochastic matrix P ∈ R|Z|×|S|. In order to emphasize that these reward and
transition functions correspond to the true environment, we sometimes equivalently denote them as
rM, PM. To denote the vectors of a constant whose sizes are the state and state-action space, we
use a single dot to mean state and two dots to mean state-action, e.g., 1̇ ∈ R|S| and 1̈ ∈ R|Z|. A
policy π : S → Dist(A) defines a distribution over actions, conditioned on a state. We denote the
space of all possible policies as Π. We define an “activity matrix” for each policy, Aπ ∈ RS×Z ,
which encodes the state-conditional state-action distribution of π, by letting Aπ(s, 〈ṡ, a〉) := π(a|s)
if s = ṡ, otherwise Aπ(s, 〈ṡ, a〉) := 0. Acting in the MDP according to π can thus be represented
by AπP ∈ R|S|×|S| or PAπ ∈ R|Z|×|Z|. We define a value function as any v : Π → S → R
or q : Π → Z → R whose output is bounded by [0, 1

1−γ]. Note that this is a slight generalization
of the standard definition (Sutton & Barto, 2018) since it accepts a policy as an input. We use the
shorthand vπ := v(π) and qπ := q(π) to denote the result of applying a value function to a specific
policy, which can also be represented as a vector, vπ ∈ R|S| and qπ ∈ R|Z|. To denote the output of
an arbitrary value function on an arbitrary policy, we use unadorned v and q. The expected return of
an MDPM, denoted vM or qM, is the discounted sum of rewards acquired when interacting with
the environment:

vM(π) :=

∞∑
t=0

(γAπP)
t
Aπr qM(π) :=

∞∑
t=0

(γPAπ)
t
r

Note that vπM = AπqπM. An optimal policy of an MDP, which we denote π∗M, is a policy for which
the expected return vM is maximized under the initial state distribution: π∗M := arg maxπ Eρ[vπM].
The statewise expected returns of an optimal policy can be written as v

π∗M
M . Of particular interest

are value functions whose outputs obey fixed-point relationships, vπ = f(vπ) for some f : (S →
R) → (S → R). The Bellman consistency equation for a policy π, BπM(x) := Aπ(r + γPx),
which uniquely identifies the vector of expected returns for π, since vπM is the only vector for which
vπM = BπM(vπM) holds. Finally, for any state s, the probability of being in the state s′ after t time
steps when following policy π is [(AπP)t](s, s′). Furthermore,

∑∞
t=0 (γAπP)

t
= (I − γAπP)

−1.
We refer to (I − γAπP)

−1 as the discounted visitation of π.

Datasets. We next introduce basic concepts that are helpful for framing the problem of fixed-
dataset policy optimization. We define a dataset of d transitions D := {〈s, a, r, s′〉}d, and denote
the space of all datasets as D. In this work, we specifically consider datasets sampled from a data
distribution Φ : Dist(Z); for example, the distribution of state-actions reached by following some
stationary policy. We use D ∼ Φd to denote constructing a dataset of d tuples 〈s, a, r, s′〉, by
first sampling each 〈s, a〉 ∼ Φ, and then sampling r and s′ i.i.d. from the environment reward
function and transition function respectively, i.e. each r ∼ R(·|〈s, a〉) and s′ ∼ P (·|〈s, a〉).5 We
sometimes index D using function notation, using D(s, a) to denote the multiset of all 〈r, s′〉 such
that 〈s, a, r, s′〉 ∈ D. We use n̈D ∈ R|Z| to denote the vectors of counts, that is, n̈D(〈s, a〉) :=
|D(s, a)|. We sometimes use state-wise versions of these vectors, which we denote with ṅD. It
is further useful to consider the maximum-likelihood reward and transition functions, computed
by averaging all rewards and transitions observed in the dataset for each state-action. To this end,
we define empirical reward vector rD(〈s, a〉) :=

∑
r,s′∈D(〈s,a〉)

r
|D(〈s,a〉)| and empirical transition

matrix PD(s′|〈s, a〉) :=
∑
r,ṡ′∈D(〈s,a〉)

I(ṡ′=s′)
|D(〈s,a〉)| at all state-actions for which n̈D(〈s, a〉) > 0.

Where with n̈D(〈s, a〉) = 0, there is no clear way to define the maximum-likelihood estimates of

5Note that this is in some sense a simplifying assumption. In practice, datasets will typically be collected
using a trajectory from a non-stationary policy, rather than i.i.d. sampling from the stationary distribution of a
stationary policy. This greatly complicates the analysis, so we do not consider that setting in this work.

12

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

reward and transition, so we do not specify them. All our results hold no matter how these values
are chosen, so long as rD ∈ [0, 1

1−γ] and PD is stochastic. The empirical policy of a dataset D is

defined as π̂D(a|s) := |D(〈s,a〉)|
|D(〈s,·〉)| except where n̈D(〈s, a〉) = 0, where it can similarly be any valid

action distribution. The empirical visitation distribution of a dataset D is computed in the same way
as the visitation distribution, but with PD replacing P , i.e. (I − γAπPD)

−1.

Problem setting. The primary focus of this work is on the properties of fixed-dataset policy op-
timization (FDPO) algorithms. These algorithms take the form of a function O : D → Π, which
maps from a dataset to a policy.6 Note that in this work, we consider D ∼ Φd, so the dataset is a
random variable, and therefore O(D) is also a random variable. The goal of any FDPO algorithm
is to output a policy with minimum suboptimality, i.e. maximum return. Suboptimality is a ran-
dom variable dependent on D, computed by taking the difference between the expected return of an
optimal policy and the learned policy under the initial state distribution,

SUBOPT(O(D)) = Eρ[v
π∗M
M]− Eρ[vO(D)

M].

A related concept is the fixed-dataset policy evaluation algorithm, which is any function E : D →
Π→ S → R, which uses a dataset to compute a value function. In this work, we focus our analysis
on value-based FDPO algorithms, the subset of FDPO algorithms that utilize FDPE algorithms.7
A value-based FDPO algorithm with FDPE subroutine Esub is any algorithm with the following
structure:

OVB
sub (D) := arg max

π
Eρ[Esub(D,π)].

We define a fixed-point family of algorithms, sometimes referred to as just a family, in the following
way. Any family called family is based on a specific fixed-point identity ffamily. We use the notation
Efamily to denote any FDPE algorithm whose output vπD := Efamily(D,π) obeys vπD = ffamily(vπD).
Finally, OVB

family refers to any value-based FDPO algorithm whose subroutine is Efamily. We call the
set of all algorithms that could implement Efamily the family of FDPE algorithms, and the set of all
algorithms that could implement OVB

family as the family of FDPO algorithms.

B UNCERTAINTY

Epistemic uncertainty measures an agent’s knowledge about the world, and is therefore a core con-
cept in reinforcement learning, both for exploration and exploitation; it plays an important role in
this work. Most past analyses in the literature implicitly compute some form of epistemic uncer-
tainty to derive their bounds. An important analytical choice in this work is to cleanly separate the
estimation of epistemic uncertainty from the problem of decision making. Our approach is to first
define a notion of uncertainty as a function with certain properties, then assume that such a func-
tion exists, and provide the remainder of our technical results under such an assumption. We also
describe several approaches to computing uncertainty.

Definition 4 (Uncertainty). A function uD,δ : Z → R is a state-action-wise Bellman uncertainty
function if for a dataset D ∼ Φd, it obeys with probability at least 1 − δ for all policies π and all
values v:

uD,δ ≥ |(rM + γPMv)− (rD + γPDv)|

6This formulation hides a dependency on ρ, the start-state distribution of the MDP. In general, ρ can be
estimated from the dataset D, but this estimation introduces some error that affects the analysis. In this work,
we assume for analytical simplicity that ρ is known a priori. Technically, this means that it must be provided as
an input to O. We hide this dependency for notational clarity.

7Intuitively, these algorithms use a policy evaluation subroutine to convert a dataset into a value function,
and return an optimal policy according to that value function. Importantly, this definition constrains only
the objective of the approach, not its actual algorithmic implementation, i.e., it includes algorithms which
never actually invoke the FDPE subroutine. For many online model-free reinforcement learning algorithms,
including policy iteration, value iteration, and Q-learning, we can construct closely analogous value-based
FDPO algorithms; see Appendix D.1. Furthermore, model-based techniques can be interpreted as using a
model to implicitly define a value function, and then optimizing that value function; our results also apply to
model-based approaches.

13

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

A function uπD,δ : S → R is a state-wise Bellman uncertainty function if for a dataset D ∼ Φd
and policy π, it obeys with probability at least 1− δ for all policies π and all values v:

uπD,δ ≥ |Aπ (rM + γPMv)−Aπ (rD + γPDv)|
A function µπD,δ : S → R is a value uncertainty function if for a dataset D ∼ Φd and policy π, it
obeys with probability at least 1− δ for all policies π and all values v:

µπD,δ ≥
∞∑
t=0

(γAπPD)
t |Aπ (rM + γPMv)−Aπ (rD + γPDv)|

We refer to the quantity returned by an uncertainty function as uncertainty, e.g., value uncertainty
refers to the quantity returned by a value uncertainty function.

Given a state-action-wise Bellman uncertainty function uD,δ , it is easy to verify that AπuD,δ is a
state-wise Bellman uncertainty function. Similarly, given a state-wise Bellman uncertainty function
uπD,δ , it is easy to verify that (I − γAπPD)

−1
uπD,δ is a value uncertainty function. Uncertainty

functions which can be constructed in this way are called decomposable.
Definition 5 (Decomposablility). A state-wise Bellman uncertainty function uπD,δ is state-action-
wise decomposable if there exists a state-action-wise Bellman uncertainty function uD,δ such that
uπD,δ = AπuD,δ . A value uncertainty function µ is state-wise decomposable if there exists a state-
wise Bellman uncertainty function uπD,δ such that µ = (I − γAπPD)

−1
uπD,δ , and further, it is

state-action-wise decomposable if that uπD,δ is itself state-action-wise decomposable.

Our definition of Bellman uncertainty captures the intuitive notion that the uncertainty at each state
captures how well an approximate Bellman update matches the true environment. Value uncertainty
represents the accumulation of these errors over all future timesteps.

How do these definitions correspond to our intuitions about uncertainty? An application of
the environment’s true Bellman update can be viewed as updating the value of each state to reflect
information about its future. However, no algorithm in the FDPO setting can apply such an update,
because the true environment dynamics are unknown. We may use the dataset to estimate what such
an update would look like, but since the limited information in the dataset may not fully specify
the properties of the environment, this update will be slightly wrong. It is intuitive to say that
the uncertainty at each state corresponds to how well the approximate update matches the truth.
Our definition of Bellman uncertainty captures precisely this notion. Further, value uncertainty
represents the accumulation of these errors over all future timesteps.

How can we algorithmically implement uncertainty functions? In other words, how can we
compute a function with the properties required for Definition 4, using only the information in the
dataset? All forms of uncertainty are upper-bounds to a quantity, and a tighter upper-bound means
that other results down the line which leverage this quantity will be improved. Therefore, it is worth
considering this question carefully.

A trivial approach to computing any uncertainty function is simply to return 1
1−γ for all s and 〈s, a〉.

But although this is technically a valid uncertainty function, it is not very useful, because it does not
concentrate with data and does not distinguish between certain and uncertain states. It is very loose
and so leads to poor guarantees.

In tabular environments, one way to implement a Bellman uncertainty function is to use a concen-
tration inequality. Depending on which concentration inequality is used, many Bellman uncertainty
functions are possible. These approaches lead to Bellman uncertainty which is lower at states with
more data, typically in proportion to the square root of the count. To illustrate how to do this, we
show in Appendix B.1 how a basic application of Hoeffding’s inequality can be used to derive a
state-action-wise Bellman uncertainty. In Appendix B.2, we show an alternative application of Ho-
effding’s which results in a state-wise Bellman uncertainty, which is a tighter bound on error. In
Appendix B.3, we discuss other techniques which may be useful in tightening further.

When the value function is represented by a neural network, it is not currently known how to im-
plement a Bellman uncertainty function. When an empirical Bellman update is applied to a neural

14

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

network, the change in value of any given state is impacted by generalization from other states.
Therefore, the counts are not meaningful, and concentration inequalities are not applicable. In the
neural network literature, many “uncertainty estimation techniques” have been proposed, which cap-
ture something analogous to an intuitive notion of uncertainty; however, none are principled enough
to be useful in computing Bellman uncertainty.

B.1 STATE-ACTION-WISE BOUND

We seek to construct an uπD,δ such that |Aπ (rM + γPMv)−Aπ (rD + γPDv)| ≤ uπD,δ with
probability at least 1− δ.

Firstly, let’s consider the simplest possible bound. v is bounded in [0, 1
1−γ], so both

Aπ (rM + γPMv) and Aπ (rD + γPDv) must be as well. Thus, their difference is also bounded:

|Aπ (rM + γPMv)−Aπ (rD + γPDv)| ≤ 1

1− γ

Next, consider that for any 〈s, a〉, the expression rD(〈s, a〉) + γPD(〈s, a〉)vπ can be equivalently
expressed as an expectation of random variables,

rD(〈s, a〉) + γPD(〈s, a〉)v =
1

n̈D(〈s, a〉)
∑

r,s′∈D(〈s,a〉)

r + γv(s′),

each with expected value

Er,s′∈D(〈s,a〉)[r + γv(s′)] = Er∼R(·|〈s,a〉)
s′∼P (·|〈s,a〉)

[r + γv(s′)] = [rM + γPMv](〈s, a〉).

Note also that each of these random variables is bounded [0, 1
1−γ]. Thus, Hoeffding’s inequality

tells us that this mean of bounded random variables must be close to their expectation with high
probability. By invoking Hoeffding’s at each of the |S ×A| state-actions, and taking a union bound,
we see that with probability at least 1− δ,

|(rM + γPMv)− (rD + γPDv)| ≤ 1

1− γ

√
1

2
ln

2|S × A|
δ

n̈−1
D

We can left-multiply Aπ and rearrange to get:

|Aπ(rM + γPMv)−Aπ (rD + γPDv
π
M)| ≤

(
1

1− γ

√
1

2
ln

2|S × A|
δ

)
Aπn̈

− 1
2

D

Finally, we simply intersect this bound with the 1
1−γ bound from earlier. Thus, we see that with

probability at least 1− δ,

|Aπ(rM + γPMv)−Aπ (rD + γPDv
π
M)| ≤ 1

1− γ
·min

((√
1

2
ln

2|S × A|
δ

)
Aπn̈

− 1
2

D , 1

)

B.2 STATE-WISE BOUND

This bound is similar to the previous, but uses Hoeffding’s to bound the value at each state all at
once, rather than bounding the value at each state-action.

Choose a collection of possible state-local policies Πlocal ⊆ Dist(A). Each state-local policy is a
member of the action simplex.

For any s ∈ S and π ∈ Πlocal, the expression [Aπ(rD + γPDv)](s) can be equivalently expressed
as a mean of random variables,

[Aπ(rD + γPDv)](s) =
1

ṅD(s)

∑
a,r,s′∈D(s)

π(a|s)
π̂D(a|s)

(r + γv(s′)),

15

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

each with expected value

Ea,r,s′∈D(s)

[
π(a|s)
π̂D(a|s)

(r + γv(s′))

]
= E a∼π(·|s)

r∼R(·|〈s,a〉)
s′∼P (·|〈s,a〉)

[r + γv(s′)] = [Aπ(rM + γPMv)](s).

Note also that each of these random variables is bounded [0, 1
1−γ

π(a|s)
π̂D(a|s)]. Thus, Hoeffding’s in-

equality tells us that this sum of bounded random variables must be close to its expectation with
high probability. By invoking Hoeffding’s at each of the |S| states and |Πlocal| local policies, and
taking a union bound, we see that with probability at least 1− δ,

|Aπ(rM + γPMv)−Aπ (rD + γPDv
π
M)| ≤ 1

1− γ

√
1

2
ln

2|S ×Πlocal|
δ

(Aπ)◦2n̈−1
D

where the term (Aπ)◦2 refers to the elementwise square. Finally, we once again intersect with 1
1−γ ,

yielding that with probability at least 1− δ,

|Aπ(rM + γPMv)−Aπ (rD + γPDv
π
M)| ≤ 1

1− γ
·min

(√
1

2
ln

2|S ×Πlocal|
δ

(Aπ)◦2n̈−1
D , 1

)

Comparing this to the Bellman uncertainty function in Appendix B.1, we see two differences. Firstly,
we have replaced a factor of |A| with |Πlocal|, typically loosening the bound somewhat (depending
on choice of considered local policies). Secondly, Aπ has now moved inside of the square root;
since the square root is concave, Jensen’s inequality says that√

(Aπ)◦2n̈−1
D ≤

√
(Aπ)◦2

√
n̈−1
D = Aπn̈

− 1
2

D

and so this represents a tightening of the bound.

When Πlocal is the set of deterministic policies, this bound is equivalent to that of Appendix B.1.
This can easily be seen by noting that for a deterministic policy, all elements of (Aπ)◦2 are either 1
or 0, and so √

(Aπ)◦2n̈−1
D = Aπn̈

− 1
2

D

and also that the size of the set of deterministic policies is exactly |A|.
An important property of this bound is that it shows that stochastic policies can be often be evaluated
with lower error than deterministic policies. We prove this by example. Consider an MDP with a
single state s and two actions a0, a1, and a dataset with n̈D(〈s, a0〉) = n̈D(〈s, a1〉) = 2. We can
parameterize the policy by a single number ξ ∈ [0, 1] by setting π(a0|s) = ξ, π(a1|s) = 1− ξ. The

size of this bound will be proportional to
√

ξ2

2 + (1−ξ)2

2 , and setting the derivative equal to zero, we
see that the minimum is ξ = 1

2 . (Of course, we would need to increase the size of our local policy
set to include this, in order to be able to actually select it, and doing so will increase the overall
bound; this example only shows that for a given policy set, the selected policy may in general be
stochastic.)

Finding the optimum for larger local policy sets is non-trivial, so we leave a full treatment of algo-
rithms which leverage this bound for future work.

B.3 OTHER BOUNDS

There are a few other paths by which this bound can be made tighter still. The above bounds take
an extra factor of 1

1−γ because we bound the overall return, rather than simply bounding the reward
and transition functions. This was done because a bound on the transition function would add a
cost of O(

√
S). However, this can be mitigated by intersecting the above confidence interval with

a Good-Turing interval, as proposed in Taleghan et al. (2015). Doing so will cause the bound to
concentrate much more quickly in MDPs where the transition function is relatively deterministic.
We expect this to be the case for most practical MDPs.

16

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Similarly, empirical Bernstein confidence intervals can be used in place of Hoeffding’s, to increase
the rate of concentration for low-variance rewards and transitions (Maurer & Pontil, 2009), leading
to improved performance in MDPs where these are common.

Finally, we may be able to apply a concentration inequality in a more advanced fashion to com-
pute a value uncertainty function which is not statewise decomposable: we bound some useful
notion of value error directly, rather than computing the Bellman uncertainty function and taking the
visitation-weighted sum. This would result in an overall tighter bound on value uncertainty by hedg-
ing over data across multiple timesteps. However, in doing so, we would sacrifice the monotonic
improvement property needed for convergence of algorithms like policy iteration. This idea has a
parallel in the robust MDP literature. The bounds in Appendix B.1 can be seen as constructing an sa-
rectangular robust MDP, whereas Appendix B.2 is similar to constructing an s-rectangular robust
MDP Wiesemann et al. (2013). More recently, approaches have been proposed which go beyond
s-rectangular (Goyal & Grand-Clement, 2018), and such approaches likely have natural parallels in
implementing value uncertainty functions.

C PROOFS

C.1 PROOF OF THEOREM 1

f(x∗)− f(x̂∗) = f(x∗) + [−f̂(x) + f̂(x)] + [−f̂(x̂∗) + f̂(x̂∗)]− f(x̂∗) (valid for any x ∈ X)

≤ [f(x∗)− f̂(x)] + [f̂(x)− f̂(x̂∗)] + [f̂(x̂∗)− f(x̂∗)]

≤ [f(x∗)− f̂(x)] + [f̂(x∗)− f(x̂∗)] (using f̂(x)− f̂(x̂∗) ≤ 0)

Since the above holds for all x ∈ X ,

≤ inf
x∈X

(
f(x∗)− f̂(x)

)
+ [f̂(x∗)− f(x̂∗)]

≤ inf
x∈X

(
f(x∗)− f̂(x)

)
+ sup
x∈X

(
f̂(x)− f(x̂∗)

)
(using x∗ ∈ X)

= inf
x∈X

(
f(x∗) + [−f(x) + f(x)]− f̂(x)

)
+ sup
x∈X

(
f̂(x)− f(x)

)
= inf
x∈X

(
[f(x∗)− f(x)] + [f(x)− f̂(x)]

)
+ sup
x∈X

(
f̂(x)− f(x)

)
C.2 TIGHTNESS OF THEOREM 1

We show that the bound given in Theorem 1 is tight via a simple example.

Proof. Let X = {0, 1}, f(0) := 0, f(1) := 1, f̂(0) := 1, f̂(1) := 1. Breaking the argmax tie with
x̂∗ = 1, we see that the two sides are equal.

C.3 RESIDUAL VISITATION LEMMA

We prove a basic lemma showing that the error of any value function is equal to its one-step Bellman
residual, summed over its visitation distribution. Though this result is well-known, it is not clearly
stated elsewhere in the literature, so we prove it here for clarity.

Lemma 1. For any MDP ξ and policy π, consider the Bellman fixed-point equation given by, let vπξ
be defined as the unique value vector such that vπξ = Aπ(rξ +γPξv

π
ξ), and let v be any other value

vector. We have

vπξ − v = (I − γAπPξ)−1(Aπ(rξ + γPξv)− v) (1)

v − vπξ = (I − γAπPξ)−1(v −Aπ(rξ + γPξv)) (2)

|vπξ − v| = (I − γAπPξ)−1|Aπ(rξ + γPξv)− v| (3)

17

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Proof.

Aπ(rξ + γPξv)− v = Aπ(rξ + γPξv)− vπξ + vπξ − v

= Aπ(rξ + γPξv)−Aπ(rξ + γPξv
π
ξ) + vπξ − v

= γAπPξ(v − vπξ) + (vπξ − v)

= (vπξ − v)− γAπPξ(vπξ − v)

= (I − γAπPξ)(vπξ − v)

Thus, we see (I−γAπPξ)−1(Aπ(rξ +γPξv)−v) = vπξ −v. An identical proof can be completed
starting with v −Aπ(rξ + γPξv), leading to the desired result.

C.4 NAÏVE FDPE ERROR BOUND

We show how the error of naı̈ve FDPE algorithms is bounded by the value uncertainty of state-
actions visited by the policy under evaluation. Next, in Section 4, we use this bound to derive a
suboptimality guarantee for naı̈ve FDPO.
Lemma 2 (Naı̈ve FDPE error bound). Consider any naı̈ve fixed-dataset policy evaluation algo-
rithm Enaı̈ve. For any policy π and dataset D, denote vπD := Enaı̈ve(D,π). Let µπD,δ be any value
uncertainty function. The following component-wise bound holds with probability at least 1− δ:

|vπM − vπD| ≤ µπD,δ

Proof. Notice that the naı̈ve fixed-point function is equivalent to the Bellman fixed-point equation
for a specific MDP: the empirical MDP defined by 〈S,A, rD, PD, γ, ρ〉. Thus, invoking Lemma 1,
for any values v we have

|vπD − v| = (I − γAπPD)−1|Aπ(rD + γPDv)− v|.

Since vπM is a value vector, this immediately implies that

|vπD − vπM| = (I − γAπPD)−1|Aπ(rD + γPDv
π
M)− vπM|.

Since vπM is the solution to the Bellman consistency fixed-point,

|vπD − vπM| = (I − γAπPD)−1|Aπ(rD + γPDv
π
M)−Aπ(rM + γPMvπM)|.

Using the definition of a value uncertainty function µπD,δ , we arrive at

|vπD − vπM| ≤ µπD,δ

completing the proof.

Thus, reducing value uncertainty improves our guarantees on evaluation error. For any fixed policy,
value uncertainty can be reduced by reducing the Bellman uncertainty on states visited by that policy.
In the tabular setting this means observing more interactions from the state-actions that that policy
visits frequently. Conversely, for any fixed dataset, we will have a certain Bellman uncertainty in
each state, and policies mostly visit low-Bellman-uncertainty states can be evaluated with lower
error.8

Our bound differs from prior work (Jiang, 2019a; Ghavamzadeh et al., 2016) in that it is significantly
more fine-grained. We provide a component-wise bound on error, whereas previous results bound
the l∞ norm. Furthermore, our bounds are sensitive to the Bellman uncertainty in each individual
reward and transition, rather than only relying on the most-uncertain. As a result, our bound does
not require all states to have the same number of samples, and is non-vacuous even in the case where
some state-actions have no data.

8In the function approximation setting, we do not necessarily need to observe an interaction with a particular
state-action to reduce our Bellman uncertainty on it. This is because observing other state-actions may allow
us to reduce Bellman uncertainty through generalization. Similarly, the most-certain policy for a fixed dataset
may not be the policy for which we have the most data, but rather, the policy which our dataset informs us about
the most.

18

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Our bound can also be viewed as an extension of work on approximate dynamic programming. In
that setting, the literature contains fine-grained results on the accumulation of local errors (Munos,
2007). However, those results are typically understood as applying to errors induced by approxima-
tion via some limited function class. Our bound can be seen as an application of those ideas to the
case where errors are induced by limited observations.

C.5 RELATIVE VALUE UNCERTAINTY

The key to the construction of proximal pessimistic algorithms is the relationship between the value
uncertainties of any two policies π, π′, for any state-action-wise decomposable value function.
Lemma 3 (Relative value uncertainty). For any two policies π, π′, and any state-action-wise de-
composable value uncertainty µ, we have

µπD,δ − µπ
′

D,δ = (I − γAπPD)−1
(

(Aπ −Aπ
′
)(uD,δ + γPDµ

π′

D,δ)
)

Proof. Firstly, note that since the value uncertainty function is state-action-wise decomposable, we
can express it in a Bellman-like form for some state-wise Bellman uncertainty uπD,δ as µπD,δ =

(I − γAπPD)
−1

uπD,δ . Further, uπD,δ is itself state-action-wise decomposable, so it can be written
as uπD,δ = AπuD,δ .

We can use this to derive the following relationship.

µπD,δ = (I − γAπPD)
−1

uπD,δ

µπD,δ − γPDAπµπD,δ = uπD,δ

µπD,δ = uπD,δ + γAπPDµ
π
D,δ

Next, we bound the difference between the value uncertainty of π and π′.

µπD,δ − µπ
′

D,δ = (uπD,δ + γAπPDµ
π
D,δ)− (uπ

′

D,δ + γAπ
′
PDµ

π′

D,δ)

= (uπD,δ − uπ
′

D,δ) + γAπPDµ
π
D,δ − γAπ

′
PDµ

π′

D,δ

= (Aπ −Aπ
′
)uD,δ + γAπPDµ

π
D,δ − γ(Aπ

′
−Aπ +Aπ)PDµ

π′

D,δ

= γAπPD

(
µπD,δ − µπ

′

D,δ

)
+ (Aπ −Aπ

′
)uD,δ + γ(Aπ −Aπ

′
)PDµ

π′

D,δ

= γAπPD

(
µπD,δ − µπ

′

D,δ

)
+ (Aπ −Aπ

′
)(uD,δ + γPDµ

π′

D,δ)

This is a geometric series, so (I − γAπPD)
(
µπD,δ − µπ

′

D,δ

)
= (Aπ − Aπ′)(uD,δ + γPDµ

π′

D,δ).

Left-multiplying by (I − γAπPD)−1 we arrive at the desired result.

C.6 NAÏVE FDPE RELATIVE ERROR BOUND

Lemma 4 (Naı̈ve FDPE relative error bound). Consider any naı̈ve fixed-dataset policy evaluation
algorithm Enaı̈ve. For any policy π and dataset D, denote vπD := Enaı̈ve(D,π). Then, for any other
policy π′, the following bound holds with probability at least 1− δ:

|vπD − vπM| ≤ µπD,δ ≤ µπ
′

D,δ + (I − γAπPD)−1

(
1

(1− γ)2

)
TVS(π, π′)

Proof. The goal of this section is to construct an error bound for which we can optimize π without
needing to compute any uncertainties. To do this, we must replace this quantity with a looser upper
bound.

First, consider a state-action-wise decomposable value uncertainty function µπD,δ . We have µπD,δ =

(I − γPDAπ)−1uπD,δ for some uπD,δ , where uπD,δ = AπuD,δ for some uD,δ .

19

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Note that state-action-wise Bellman uncertainty can be trivially bounded as uD,δ ≤ 1
1−γ 1̈. Also,

since (I−γPDAπ)−1 ≤ 1
1−γ , any state-action-wise decomposable value uncertainty can be trivially

bounded as µπD,δ ≤ 1
(1−γ)2 1̇.

We now invoke Lemma 3. We then substitute the above bounds into the second term, after ensuring
that all coefficients are positive.

µπD,δ − µπ
′

D,δ = (I − γAπPD)−1
(

(Aπ −Aπ
′
)(uD,δ + γPDµ

π′

D,δ)
)

≤ (I − γAπPD)−1
(
|Aπ −Aπ

′
|+(uD,δ + γPDµ

π′

D,δ)
)

≤ (I − γAπPD)−1

(
|Aπ −Aπ

′
|+
(

1

1− γ
1̈ + γPD

1

(1− γ)2
1̇

))
= (I − γAπPD)−1

(
|Aπ −Aπ

′
|+
(

1

1− γ
1̈ +

γ

(1− γ)2
1̈

))
= (I − γAπPD)−1

(
1

(1− γ)2

)
|Aπ −Aπ

′
|+1̈

= (I − γAπPD)−1

(
1

(1− γ)2

)
TVS(π, π′)

The third-to-last step follows from the fact that PD is stochastic. The final step follows from the
fact that the positive and negative components of the state-wise difference between policies must
be symmetric, so |Aπ − Aπ

′ |+1̈ is precisely equivalent to the state-wise total variation distance,
TVS(π, π′). Thus, we have

µπD,δ ≤ µπ
′

D,δ + (I − γAπPD)−1

(
1

(1− γ)2

)
TVS(π, π′).

Finally, invoking Lemma 2, we arrive at the desired result.

C.7 SUBOPTIMALITY OF UNCERTAINTY-AWARE PESSIMISTIC FDPO ALGORITHMS

Let vπD := Eua(D,π). From the definition of the UA family, we have the fixed-point property
vπD = Aπ(rD + γPDv

π
D) − αuπD,δ , and the standard geometric series rearrangement yields vπD =

(I − γAπPD)
−1

(AπrD − αuπD,δ). From here, we see:

vπD = (I − γAπPD)
−1

(AπrD − αuπD,δ)

= (I − γAπPD)
−1
AπrD − (I − γAπPD)

−1
αuπD,δ

= Enaı̈ve(D,π)− αµπD,δ
We now use this to bound overestimation and underestimation error of Eua(D,π) by invoking
Lemma 2, which holds with probability at least 1− δ. First, for underestimation, we see:

vπM − vπD = vπM −
(
Enaı̈ve(D,π)− αµπD,δ

)
= (vπM − Enaı̈ve(D,π)) + αµπD,δ

≤ µπD,δ + αµπD,δ

= (1 + α)µπD,δ

and thus, vπM − vπD ≤ (1 + α)µπD,δ . Next, for overestimation, we see:

vπD − vπM =
(
Enaı̈ve(D,π)− αµπD,δ

)
− vπM

= (Enaı̈ve(D,π)− vπM)− αµπD,δ
≤ µπD,δ − αµπD,δ
= (1− α)µπD,δ

and thus, vπD − vπM ≤ (1 − α)µπD,δ . Substituting these bounds into Corollary 1 gives the desired
result.

20

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

C.8 SUBOPTIMALITY OF PROXIMAL PESSIMSITIC FDPO ALGORITHMS

Let vπD := Eproximal(D,π). From the definition of the proximal family, we have the fixed-point
property

vπD = Aπ(rD + γPDv
π
D)− α

(
TVS(π, π̂D)

(1− γ)2

)
and the standard geometric series rearrangement yields

vπD = (I − γAπPD)
−1

(
AπrD − α

(
TVS(π, π̂D)

(1− γ)2

))
From here, we see:

vπD = (I − γAπPD)
−1

(
AπrD − α

(
TVS(π, π̂D)

(1− γ)2

))
= (I − γAπPD)

−1
AπrD − (I − γAπPD)

−1
α

(
TVS(π, π̂D)

(1− γ)2

)
= Enaı̈ve(D,π)− (I − γAπPD)

−1
α

(
TVS(π, π̂D)

(1− γ)2

)
Next, we define a new family of FDPE algorithms,

Eproximal-full(D,π) := Enaı̈ve(D,π)− α
(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))
.

We use Lemma 2, which holds with probability at least 1 − δ, to bound the overestimation and
underestimation. First, the underestimation:

vπM − Eproximal-full(D,π) = vπM −
(
Enaı̈ve(D,π)− α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)))
= (vπM − Enaı̈ve(D,π)) + α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))
≤ µπD,δ + α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))
Next, we analagously bound the overestimation:

Eproximal-full(D,π)− vπM =

(
Enaı̈ve(D,π)− α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)))
− vπM

= (vπM − Enaı̈ve(D,π))− α
(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))
≤ µπD,δ − α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))
We can now invoke Corollary 1 to bound the suboptimality of any value-based FDPO algorithm
which uses Eproximal-full, which we denote with OVB

proximal-full. Crucially, note that since αµπ
′

D,δ is not
dependent on π, it can be removed from the infimum and supremum terms, and cancels. Substituting
and rearranging, we see that with probability at least 1− δ,

SUBOPT(OVB
proximal-full(D)) ≤ inf

π

(
Eρ[v

π∗M
M − vπM] + Eρ

[
µπD,δ + α(I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)])
+ sup

π

(
Eρ
[
µπD,δ − α(I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

)])
Finally, we see that FDPO algorithms which use Eproximal-full as their subroutine will return the same
policy as FDPO algorithms which use Eproximal. First, we once again use the property that µπ

′

D,δ is

21

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

not dependent on π. Second, we note that since the total visitation of every policy sums to 1
1−γ , we

know Eρ
[
(I − γAπPD)−1

(
1
γ

)]
= 1

(1−γ)2 for all π, and thus it is also not dependent on π.

arg max
π

Eρ[Eproximal-full(D,π)] = arg max
π

Eρ
[
Enaı̈ve(D,π)− α

(
µπ
′

D,δ + (I − γAπPD)−1

(
TVS(π, π̂D)

(1− γ)2

))]
= arg max

π
Eρ
[
Enaı̈ve(D,π)− (I − γAπPD)−1α

(
TVS(π, π̂D)

(1− γ)2

)]
= arg max

π
Eρ[Eproximal(D,π)]

Thus, the suboptimality of arg maxπ Eρ[Eproximal(D,π)] must be equivalent to that of
arg maxπ Eρ[Eproximal-full(D,π)], leading to the desired result.

C.9 STATE-WISE PROXIMAL PESSIMISTIC ALGORITHMS

In the main body of the work, we focus on proximal pessimistic algorithms which are based on a
state-conditional density model, since this approach is much more common in the literature. How-
ever, it is also possible to derive proximal pessimistic algorithms which use state-action densities,
which have essentially the same properties. In this section we briefly provide the main results.

In this section, we use dπ := (1− γ)(I − γAπPD)−1 to indicate the state visitation distribution of
any policy π.

Definition 6. A state-action-density proximal pessimistic algorithm with pessimism hyperparameter
α ∈ [0, 1] is any algorithm in the family defined by the fixed-point function

fsad-proximal(v
π) = Aπ(rD + γPDv

π)− α
(
|dπ − dπ̂D |
(1− γ)2

)
Theorem 5 (State-action-density proximal pessimistic FDPO suboptimality bound). Consider any
state-action-density proximal pessimistic value-based fixed-dataset policy optimization algorithm
OVB

sad-proximal. Let µ be any state-action-wise decomposable value uncertainty function, and α ∈ [0, 1]

be a pessimism hyperparameter. For any datasetD, the suboptimality ofOVB
sad-proximal is bounded with

probability at least 1− δ by

SUBOPT(Osad-proximal(D)) ≤ 2Eρ[µπ̂DD,δ] + inf
π

(
Eρ[v

π∗M
M − vπM] + (1 + α) · Eρ

[
(I − γAπPD)−1

(
|dπ − dπ̂D |+

(1− γ)2

)])
+ sup

π

(
(1− α) · Eρ

[
(I − γAπPD)−1

(
|dπ − dπ̂D |+

(1− γ)2

)])

Proof. First, note that for any policies π, π′, and any state-action-wise decomposable value uncer-
tainty µ with state-action-wise Bellman uncertainty uD,δ ≤ 1

1−γ 1̈, we have

µπD,δ − µπ
′

D,δ = (I − γAπPD)−1AπuD,δ − (I − γAπ
′
PD)−1Aπ

′
uD,δ

=
1

1− γ
(dπ − dπ′)AπuD,δ

≤ 1

1− γ
|dπ − dπ′ |+AπuD,δ

≤ |dπ − dπ
′ |+

(1− γ)2

Invoking Lemma 2 we see that |vπD − vπM| ≤ µπD,δ ≤ µπ̂DD,δ +
|dπ−dπ̂D |+

(1−γ)2 . The remainder of the
proof follows analogously to Appendix C.8.

22

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

D ALGORITHMS

In the main body of the text, we primarily focus on families of algorithms, rather than specific
members. In this section, we provide pseudocode from example algorithms in each family. The
majority of these algorithms are simple empirical extensions of well-studied algorithms, so we do
not study their properties (e.g. convergence) in detail. The sets of algorithms described here are not
intended to be comprehensive, but rather, a few straightforward examples to illustrate key concepts
and inspire further research. To simplify presentation, we avoid hyperparameters, e.g. learning rate,
wherever possible.

D.1 NAÏVE

The naı̈ve algorithms presented here are simply standard dynamic programming approaches applied
to the empirical MDP construced from the dataset, using rD, PD in place of r, P . See Puterman
(2014) for analysis of convergence, complexity, optimality, etc. of the general dynamic program-
ming approaches, and note that the empirical MDP is simply a particular example of an MDP, so all
results apply directly.

Algorithm 1: Tabular Fixed-Dataset Policy Evaluation
Input: Dataset D, policy π, discount γ.
Construct rD, PD as described in Section 3;
v← (I − γAπPD)

−1
AπrD;

return v;

Algorithm 2: Tabular Fixed-Dataset Policy Iteration
Input: Dataset D, discount γ.
Initialize π, v Construct rD, PD as described in Section 3;
while π not converged do

π ← arg maxπ̇∈ΠA
π̇(rD + γPDv); // argmax policy is state-wise max action

v← (I − γAπPD)
−1
AπrD;

end
return π;

Algorithm 3: Tabular Fixed-Dataset Value Iteration
Input: Dataset D, discount γ.
Initialize π,v Construct rD, PD as described in Section 3;
while v not converged do

π ← arg maxπ̇∈ΠA
π̇v; // argmax policy is state-wise max action

v← rD + γPDA
πv;

end
return π;

Algorithm 4: Neural Fixed-Dataset Value Iteration
Input: Dataset D, discount γ.
Initialize θ, θ′ while θ not converged do

for each s in D do
π(s)← arg maxa∈A qθ(s, a) ;

end
while θ′ not converged do

Sample 〈s, a, r, s′〉 from D;
L← (r + γqθ(s

′, π(s′))− qθ′(s, a))2;
θ′ ← θ′ −∇θ′L;

end
θ ← θ′

end
return π;

23

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

D.2 PESSIMISTIC

In this section, we provide pseudocode for concrete implementations of algorithms in the pessimistic
families we have discussed. Since the algorithms are not the focus of this work, we do not provide
an in-depth analysis of these algorithms. We briefly note that, at a high level, the standard proof
technique used to show convergence of policy iteration (Sutton & Barto, 2018) can be applied to
all of these approaches. These algorithms utilize a penalized Bellman update, and the penalty is
state-wise and independent between states. Thus, performing a local greedy policy improvement
in any one state will strictly increase the value of all states. Thus, policy iteration guarantees strict
monotonic improvement of the values of all states, and thus eventual convergence to an optimal
policy (as measured by the penalized values).

D.2.1 UNCERTAINTY-AWARE

In this section, we provide pseudocode for a member of the the UA pessimsitic family of algorithms.

Algorithm 5: Tabular Uncertainty-Aware Pessimistic Fixed-Dataset Policy Iteration
Input: Dataset D, discount γ, error rate δ, pessimism parameter α.
Initialize v, π Construct rD, PD, n̈D as described in Section 3;
Compute uπD,δ as described in Appendix B;
while π not converged do

π ← arg maxπ̇∈ΠA
π̇(v − αuπ̇D,δ);

v← (I − γAπPD)
−1

(AπrD − αuπD,δ);
end
return π;

Algorithm 6: Neural Uncertainty-Aware Pessimistic Fixed-Dataset Value Iteration
Input: Dataset D, discount γ, pessimism hyperparameter α.
Initialize θ, θ′,Ψ;
while θ not converged do

// update policy
while Ψ not converged do

Sample 〈s, ·, ·, ·〉 from D;
R← Ea∼πΨ(·|s)[qθ(s, a)]− αuπΨ

D,δ(s);
Ψ′ ← Ψ′ +∇θ′R;

end
// update value function
while θ′ not converged do

Sample 〈s, a, r, s′〉 from D;
L← (r + γ

(
Ea′∼πΨ(·|s′)[qθ(s

′, a′)]− αuπΨ

D,δ(s
′)
)
− qθ′(s, a))2;

θ′ ← θ′ −∇θ′L;
end
θ ← θ′

end
return πΨ;

As discussed in the main text, count-based Bellman uncertainty functions, such as those derived
from concentration inequalities in Appendix B.1, do not apply to non-tabular environments. The
correct way to compute epistemic uncertainty with neural networks is still an open question. There-
fore, our pseudocode for a neural implementation of the UA pessimistic approach is in some sense
incomplete: a full implementation would need to specify a technique for computing uπD,δ . We hope
that future work will identify such a technique.

24

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

D.2.2 PROXIMAL

In this section, we provide pseudocode for a member of the proximal pessimsitic family of algo-
rithms.

Algorithm 7: Tabular Proximal Pessimistic Fixed-Dataset Policy Iteration
Input: Dataset D, discount γ, pessimism parameter α.
Initialize v, π Construct rD, PD, n̈D as described in Section 3;
while π not converged do

π ← arg maxπ̇∈ΠA
π̇(v − α

2(1−γ)2 |π̇ − π̂D|);

v← (I − γAπPD)
−1

(AπrD − α
2(1−γ)2 |π̇ − π̂D|);

end
return π;

Algorithm 8: Neural Proximal Pessimistic Fixed-Dataset Value Iteration, Discrete Action Space
Input: Dataset D, discount γ, pessimism hyperparameter α.
Initialize θ, θ′,Ψ;
while θ not converged do

// update policy
while Ψ not converged do

Sample 〈s, ·, ·, ·〉 from D;
R← Ea∼πΨ(·|s)[qθ(s, a)− α

2(1−γ)2 |πΨ(s, a)− π̂D(s, a)|];
Ψ′ ← Ψ′ +∇θ′R;

end
// update value function
while θ′ not converged do

Sample 〈s, a, r, s′〉 from D;
L← (r + γEa′∼πΨ(·|s′)

[
qθ(s

′, a′)− α
2(1−γ)2 |πΨ(s′, a′)− π̂D(s′, a′)|

]
− qθ′(s, a))2;

θ′ ← θ′ −∇θ′L;
end
θ ← θ′

end
return π;

One important nuance of proximal algorithms is that the optimal policy may not be deterministic,
since the penalty term is minimized when the policy matches the empirical policy, which may itself
be stochastic. It is not enough to select πt+1(s) = arg maxa∈A v(s, a); we must instead select
πt+1(·|s) = supπ∈Π vπ(s) = supπ∈Π

∑
a∈A π(a|s)v(s, a)− α

2(1−γ)2 |π(a|s)− π̂D(a|s)|, which is
a more difficult optimization problem. Fortunately, it has a closed-form solution.
Proposition 1. Consider any state-action values q and empirical policy π̂D. Let

z := max
a∈A

q(〈s, a〉)− α

(1− γ)2

. The policy πlocalopt given by

πlocalopt(a | s) =
{ π̂D(a | s) + (1−

∑
a′ s.t. q(〈s,a′〉)>z π̂D(a′ | s)) if a = arg maxa′∈A q(〈s, a〉),

π̂D(a | s) if q(〈s, a〉) > z,
0 otherwise.

has the property∑
a∈A

πlocalopt(a|s)q(〈s, a〉)− α

2(1− γ)2
|πlocalopt(a|s)−π̂D(a|s)| ≥

∑
a∈A

π(a|s)q(〈s, a〉)− α

2(1− γ)2
|π(a|s)−π̂D(a|s)|

for all s ∈ S, π ∈ Π.

Proof. We provide a brief outline of the proof. Consider any policy π 6= πlocalopt in some state s.
First, assume that exactly two cells of π(s) − πlocalopt(s) are non-zero, meaning that one term is x

25

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

and the other is −x (since both distributions sum to 1). If |x| > 0, the change in penalized return
is non-positive, so π is worse that πlocalopt. To see this, we simply consider all possible mappings
between x,−x and actions. Actions fall into three categories, corresponding to the three cases of the
construction: argmax-actions, empirical-actions, and zero-actions, respectively. It’s easy to check
each case, moving probability mass from any category of action to any other, and see that penalized
return is always non-positive. Finally, if more than two cells of π(s)− πlocalopt(s) are non-zero, we
can always rewrite it as a sum of positive/negative pairs, and thus the overall change in penalized
return is a sum of non-positive terms, and is itself non-positive.

This closed-form can be used anytime the action space is discrete, in both the tabular and neural
proximal algorithms. (In the neural algorithm, it replaces the need to optimize Ψ for a parameterized
policy πΨ.)

E RELATED WORK

Bandits. Bandits are equivalent to single-state MDPs, and the fixed-dataset setting has been stud-
ied in the bandit literature as the logged bandit feedback setting. Swaminathan & Joachims (Swami-
nathan & Joachims, 2015) describe the Counterfactual Risk Minimization principle, and propose
algorithms for maximizing the exploitation-only return. The UA pessimistic approach discussed in
this work can be viewed as an extension of these ideas to the many-state MDP setting.

Approximate dynamic programming. Some work in the approximate dynamic programming
(ADP) literature (Munos, 2007) bears resemblance to ours. The setting is very similar; both FDPO
and ADP are a modified version of dynamic programming in which errors are introduced, and re-
search on algorithms in these settings studies the emergence and propagation of those errors. The
key difference between the two settings lies in the origin of the errors. In ADP, the source of these
errors is unspecified. In contrast, in this work, we focus specifically on statistical errors: where they
emerge and what their implications are.

Off-policy evaluation and optimization. The problem of off-policy reinforcement learning is
typically posed as the setting where the data is being collected by a fixed stationary policy, but an
infinite stream of data is being collected, so statistical issues introduced by finiteness of data can
be safely ignored. This is clearly closely related to FDPO, but the focus of our work lies precisely
on the statistical issues. However, there are close connections; for example, Jiang and Huang Jiang
& Huang (2020) show that in the off-policy function approximation setting, algorithms may obey a
version of the pessimism principle in order to select a good approximation.

Exploration. Since acting pessimistically is the symmetric opposite of acting optimistically, many
papers which study exploration leverage math which is nearly identical (though of course used in
an entirely different way). For example, the confidence intervals, modified Bellman equation, and
dynamic programming approach of Strehl & Littman (2008) closely mirror those used in the UA
pessimistic algorithms.

Imitation learning. Imitation learning (IL) (Hussein et al., 2017) algorithms learn a policy which
mimics expert demonstrations. The setting in which these algorithms can be applied is closely
related to the FDPO setting, in that IL algorithms map from a dataset of trajectories to a single
stationary policy, which is evaluated by its suboptimality. (However, note that IL algorithms can be
applied to a somewhat more general class of problems; for example, when no rewards are available.)
In the FDPO setting, IL algorithms are limited by the fact that they can never improve on the quality
of the empirical policy. In contrast, pessimistic FDPO algorithms will imitate the dataset when other
actions are uncertain, but are also sometimes able to deviate and improve.

Safe reinforcement learning. The sub-field of safe reinforcement learning studies reinforcement
learning algorithms with constraints or guarantees that prevent bad behavior from occurring, or
reduce it below a certain level (Thomas et al., 2019). To this end, many algorithms utilize vari-
ants of pessimism. Our contribution distinguishes itself from this line of work via its focus on the

26

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

application of pessimism for worst-case guarantees on the more standard objective of expected sub-
optimality, rather than for guarantees on safety. However, there is a close relationship between our
work and the algorithms and theory used for Safe RL. One popular framework is that of robust
MDPs Givan et al. (1997); Nilim & El Ghaoui (2005); Weissman et al. (2003); Iyengar (2005), an
object which generalizes MDPs to account for specification uncertainty in the transition functions.
This framework is closely related to the pessimistic approaches described in this work. In fact,
the UA pessimistic approach is precisely equivalent to constructing a robust MDP from data using
concentration inequalities, and then solving it for the policy with the optimal performance under an
adversarial choice of parameters; this algorithm has been used as a baseline in the literature but not
studied in detail Ghavamzadeh et al. (2016); Laroche et al. (2019). Additionally, the sub-problem
of Safe RL known as conservative policy improvement focuses on making small changes to a base-
line policy which guarantee that the new policy will have higher value Thomas et al. (2015b;a);
Ghavamzadeh et al. (2016); Laroche et al. (2019); Simão et al. (2019); Nadjahi et al. (2019), which
bears strong resemblance to the proximal pessimistic algorithms discussed in this work.

Apprenticeship learning. In the apprenticeship-learning setting (Walsh et al., 2011; Cohen &
Hutter, 2020), an agent has the choice to take an action of its own selection, or to imitate a (poten-
tially non-optimal) mentor. The process of determining whether or not to imitate a mentor is similar
to determining whether or not to imitate the behavior policy used to collect the data. As a result, the
underlying principle of pessimism is relevant in both situations. However, the setting of apprentice-
ship learning is also different from that of FDPO in several ways (availability of a mentor, ability to
collect data), and so prior works do not provide a clear analysis of the importance of pessimism in
FDPO.

Proximal algorithms. Several approaches to online deep reinforcement learning, including TRPO
and PPO, have been described as “proximal” (Schulman et al., 2015; 2017). These algorithms are
derived from CPI (Kakade & Langford, 2002), which also introduces a notion of conservatism. In
that body of work, this refers to the notion that, after each policy update, the resulting policy is
close to the previous iterate. In contrast, the proximal algorithm described in this work is proximal
with respect to a fixed policy (typically, the empirical policy defined by the dataset). The contrast
between the importance of pessimism in these two cases can be seen by comparing the settings. CPI-
type algorithms use pessimism to ensure that the policy remains good throughout the RL procedure,
guaranteeing a monotonically-increasing performance as data is collected and the optimal policy is
approached. Whereas, FDPO proximal approaches have no guarantees on the intermediate iterates,
but rather, use pessimism to ensure that the final policy selected is as close to optimal as possible.

Deep learning FDPO approaches. Recently, deep learning FDPO has received significant atten-
tion (Agarwal et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019; Laroche et al., 2019; Jaques
et al., 2019; Wu et al., 2019; Kidambi et al., 2020; Yu et al., 2020; Wang et al., 2020; Kumar et al.,
2020; Liu et al., 2020). At a high level, these works are each primarily focused around proposing
and analyzing some specific method. In contrast, the objective of this work is theoretical: we focus
on providing a clean mathematical framework through which to understand this setting. We now
provide specific details for how our contribution relates to each of these works.

The algorithms introduced in Fujimoto et al. (2019); Laroche et al. (2019); Kumar et al. (2019);
Jaques et al. (2019); Liu et al. (2020); Kumar et al. (2020) can all be viewed as variants of the
proximal pessimistic approach described in this paper. The implementations vary in a number of
ways, but at its core, the primary difference between these algorithms lies in the choice of regu-
larizer: KL, MMD, scalar penalty, or hard constraint. This connection has also been noted in Wu
et al. (2019), which provides a unifying algorihtmic framework for these approaches, BRAC, and
also performs various empirical ablations. Interestingly, all of these regularizers can be expressed as
upper-bounds to TVS(π, π̂D), and as such, our proof of the suboptimality of proximal pessimistic
algorithms can be used to justify all of these approaches. One aspect of our contribution is therefore
providing the theoretical framework justifying BRAC. Furthermore, conceptually, these works differ
from our contribution due to their focus on error propagation; in contrast, our results show that poor
suboptimality of naı̈ve algorithms is an issue even when there is no function approximation error at
all.

27

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Wang et al. (2020) provides an alternative algorithm for pessimistic FDPO, utilizing a policy-
gradient based algorithm instead of the value-iteration-style algorithms in other related work. Simi-
larly to Kumar et al. (2019), this approach utilizes a policy constraint to prevent boostrapping from
actions which are poorly represented in the training data. However, this difference is purely algorith-
mic: since the fixed-point found by the optimization is the same, this algorithm can also be justified
by our proximal pessimistic suboptimality bounds.

Model-based methods (Yu et al., 2020; Kidambi et al., 2020) have recently been proposed which
implement pessimism via planning in a pessimistic model. This procedure can be viewed as learning
a model which defines an implicit value function (derived from applying the planner to the model),
and from there defines an implicit policy (which is greedy with respect to the implicit value function).
The implicit value functions learned by the algorithms in Yu et al. (2020); Kidambi et al. (2020)
obey the same fixed-point identity as the solutions to the UA pessimistic approach discussed in
our work. Thus, both of these works are implementations of UA pessimistic approaches, and our
UA pessimistic suboptimality bound can be viewed as justification for this family of algorithms.
However, both of these works rely on ensembles to compute the uncertainty penalty, which is not a
theoretically well-motivated technique.

The work of Agarwal et al. (2019) provides empirical evidence supporting the claims in this paper.
The authors demonstrate that on realistic tasks like Atari, naı̈ve algorithms are able to get good
performance given an extremely large and diverse dataset, but they collapse on smaller or less ex-
ploratory datasets. It also highlights the difficulties that emerge when function approximation is
introduced. Certain naı̈ve algorithms can be seen to still sometimes collapse when datasets are large
and diverse, because of other instabilities associated with function approximation.

F EXPERIMENTAL DETAILS

F.1 TABULAR

The first set of experiments utilize a simple tabular gridworld. The state space is 8x8, and the action
space is {UP, DOWN, LEFT, RIGHT}. Rewards are Bernoulli-distributed, with the mean reward for
each state-action sampled from Beta(3,1); transitions are stochastic, moving in a random direction
with probability 0.2; the discount is .99. This environment was selected to be simple and generic.
We compare the performance of four approaches: imitation, naı̈ve, uncertainty-aware pessimistic,
and proximal pessimistic. The imitation algorithm simply returns the policy which takes actions in
proportion to their observed frequencies in the dataset. For the UA pessimistic algorithm, we use
the technique described in Appendix B.1 to implement Bellman uncertainty functions. For both
pessimistic algorithms, we absorb all constants into the hyperparameter α, which we selected to be
α = 1 for both algorithms by a simple manual search. For state-actions with no observations, we
select rD uniformly at random in [0, 1], PD transitions uniformly at random, and π̂D acts uniformly
at random. We report the average of 1000 trials. The shaded region represents a 95% confidence
interval.

F.2 DEEP LEARNING

The second setting we evaluate on consists of four environments from the MinAtar suite (Young
& Tian, 2019). In order to derive a near-optimal policy on each environment, we run DQN to
convergence and save the resulting policy. We report the average of 3 trials. The shaded area
represents the range between the maximum and minimum values.

We implement deep learning versions of the above algorithms in the style of Neural Fitted Q-
Iteration (Riedmiller, 2005). In this setting, we implement only proximal pessimistic algorithms.
To compute the penalty term, we must approximate π̂D; this can be done by training a policy net-
work on the dataset to predict actions via maximum likelihood. Just as in the tabular setting, we
absorb all constant coefficients into our pessimism hyperparameter, here setting α = .25.

All experiments used identical hyperparameters. Hyperparameter tuning was done on just two exper-
imental setups: BREAKOUT using ε = 0, and BREAKOUT using ε = 1. Tuning was very minimal,
and done via a small manual search.

28

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

Figure 3: Bandit-like MDP, with accompanying dataset. µ gives the true mean of each action. nD
gives the counts of the pulls used to construct dataset D, and µD gives our empirical estimate of
the mean reward. On this problem, any algorithm that selects the action with the highest empirical
mean reward will almost always pick a suboptimal action. In contrast, a pessimistic algorithm,
which selects the action with the highest lower bound, will almost always pick the correct action.

G ADDITIONAL CONTENT

G.1 AN ILLUSTRATIVE EXAMPLE

Consider the following problem setting. We are given an MDP with a single state and some number
of actions, each of which return rewards sampled from a Bernoulli distribution on {0, 1}. (An MDP
with a single state is isomorphic to a multi-armed bandit.) Furthermore, for each action, we are
given a dataset containing the outcomes of some number of pulls. We are now given the opportunity
to take an action, with the goal of maximizing our expected reward. What strategy should we use?

One obvious strategy is to estimate the expected reward for each action by computing its mean re-
ward in the dataset, and then select the arm with the highest empirical reward. However, in certain
problem instances, this “naı̈ve strategy” fails. We can illustrate this with a simple example (visual-
ized in Figure 3). Consider an MDP with a single state and 1000 actions. Let the reward distribution
of the first action have mean of 0.99, while the reward distributions of all other actions have means
of 0.01. Construct a dataset for this bandit by pulling the first arm 10000 times, and the other arms
1 time each.

Although this problem seems easy, the naı̈ve algorithm achieves close to the worst possible perfor-
mance. It’s clear that in this problem, the best policy selects the first action. The empirical estimate
of the mean of the first action will be less than 1 with probability 1− 2× 10−44, and there will be at
least one other action which has empirical mean of 1 with probability 1− 4× 10−5. Thus, the first
action is almost never selected.

This issue can be resolved by identifying a fundamental failing of the naı̈ve approach: it ignores
epistemic uncertainty around the expected return of each action. In order to guarantee good per-
formance on all problem instances, we need to avoid playing actions that we are uncertain about.
One way to do this is to construct a high-probability lower bound on the value of each action (for
example using concentration inequalities), and select the action with the highest lower bound. If
we consider the upper and lower bounds as defining the set of possible “worlds” that we could be
in, acting according to the lower bound of every arm means acting as though we are in the worst
possible world. In other words: being pessimistic.

The above example may seem somewhat contrived, due to the enormous size of the action space and
skewed data collection procedure. However, we argue that it serves as a good analogy for the more
common setting of an MDP with many states and a small number of actions at each state. Roughly
speaking, selecting an action in a one-state MDP is analogous to selecting a deterministic policy in
a multi-state MDP, and the number of policies is exponentially large in the size of the state space.
Additionally, it’s very plausible in practical situations that data is collected according to only a small
set of similar policies, e.g. expert demonstrations, leading to skewed data coverage.

29

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

G.2 EXTREME PESSIMSIM: VALUE LOWER BOUND ALGORITHMS

We begin with a further corollary to Corollary 1. Consider any value-based FDPO algorithm whose
value function is guaranteed to always return values which underestimate the expected return with
high probability.

Corollary 2 (Value-lower-bound-based FDPO suboptimality bound). Consider any value-based
fixed-dataset policy optimization algorithm OVB, with internal fixed-dataset policy evaluation sub-
routine E , which has the lower-bound guarantee that E(D,π) ≤ vπM with probability at least 1− δ.
For any policy π, dataset D, denote vπD := E(D,π). With probability at least 1 − δ , the subopti-
mality of OVB is bounded by

SUBOPT(OVB(D)) ≤ inf
π

(
Eρ[v

π∗M
M − vπM] + Eρ[vπM − vπD]

)
Proof. This result follows directly from Corollary 1, using the fact that vπD − vπM ≤ 0.

This bound is identical to the term labeled (A) from Corollary 1. The term labeled (B), which
contained a supremum over policies, has vanished, leaving only the term containing an infimum.
Where the bound of Corollary 1 demands that some condition hold for all policies, we now only
require that there exists any single suitable policy. It is clear that this condition is much easier to
satisfy, and thus, this suboptimality bound will typically be much smaller.

A value lower-bound algorithm is in some sense the most extreme example of a pessimistic ap-
proach. Any algorithm which penalizes its predictions to decrease overestimation can be described
as pessimistic. In such cases, (B) will be decreased, rather than removed entirely. Still, any amount
of pessimism reduces dependence on a global condition, decreasing overall suboptimality.

Furthermore, blind pessimism is not helpful. For example, one could trivially construct a value
lower-bound algorithm from a naı̈ve algorithm by simply subtracting a large constant from the naı̈ve
value estimate of every policy. But this would achieve nothing, as the infimum term would immedi-
ately increase by this same amount. To yield a productive change in policy, pessimism must instead
vary across states in an intelligent way.

G.3 PRACTICAL CONSIDERATIONS

Through the process of running experiments in the deep learning setting, the authors noted that
several aspects of the experimental setup, which have not been addressed in previous work, had
surprisingly large impacts on the results. In this section, we informally report some of our findings,
which future researchers may find useful. Additionally, we hope these effects will be studied more
rigorously in future work.

The first consideration is that performance is highly nonmonotonic with respect to training time. In
almost all experiments, it was observed that with every target-network update, the performance of
the policy would oscillate wildly. Even after performing many Bellman updates, few experiments
showed anything resembling convergence. It is therefore important that the total number of steps
be selected beforehand, to avoid unintentional cherry-picking of results. Additionally, one common
trend was for algorithms to have high performance early on, and then eventually crash. For this
reason, it is important that algorithms be run for a long duration, in order to be certain that the
conclusions drawn are valid.

The second consideration is the degree to which the inner-loop optimization process succeeds. If
throughout training, whenever we update the target network, its error is low, convergence near to
the fixed point is guaranteed (Antos et al., 2007). However, computational restrictions force us
to make tradeoffs about the degree to which this condition is satisfied. Experimentally, we found
this property to be very important: when the error was not properly minimized, performance was
negatively impacted, sometimes even leading to divergence. There are three notable algorithmic
decisions which we found were required to ensure that the error was adequately minimized.

The size of the network. It is important to ensure that the network is large enough to reasonably fit
the values at all points throughout training. Most prior works (Kumar et al., 2019; Fujimoto et al.,
2019; Kumar et al., 2020) utilize the same network architecture as the original DQN (Mnih et al.,

30

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020

2015), which is fairly small by modern standards. We found that this size of network was adequate
to fit MinAtar environments, but that decreasing the size of the network further led to significant
performance degradation. Preliminary experiments indicated that since the full Atari environment is
much more complex than MinAtar, a larger network may be required.

The amount of training steps in the inner loop of Neural Fitted Q-Iteration. If the number of steps
is too small, error will not be adequately minimized. In our experiments, approximately 250,000
gradient steps per target update were required to consistently minimize error enough to avoid di-
vergence. We note that many prior works (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al.,
2020) do not adjust this hyperparameter; typical results in the literature use fewer than 10,000 gra-
dient steps per update.

The per-update initialization of the network. When changing the target network, we are in essence
beginning a new supervised learning problem. Thus, to ensure that we could reliably find a good
solution, we found that we needed to fully reinitialize the neural network whenever we updated the
target network. The dynamics of training neural networks via gradient descent are still not fully
understood, but it is well known that the initialization is of great importance (Hu et al., 2020). It has
been observed that certain initializations can seriously impact training: for example, if the final pa-
rameters of a classifier trained on randomly-relabeled CIFAR classifier are used as the initialization
for the regular CIFAR classification task, the trained network will have worse test-set performance.9

9Chelsea Finn, Suraj Nair, Henrik Marklund; personal communication.

31

	Introduction
	How Proxy Objectives Impact Regret
	FDPO Background
	Naïve Algorithms
	The Pessimism Principle
	Uncertainty-Aware Pessimistic Algorithms
	Proximal Pessimistic Algorithms
	The Relationship Between Uncertainty-Aware and Proximal Algorithms

	Experiments
	Discussion and Conclusion
	Background
	Uncertainty
	State-action-wise Bound
	State-wise Bound
	Other Bounds

	Proofs
	Proof of Theorem 1
	Tightness of Theorem 1
	Residual Visitation Lemma
	Naïve FDPE Error Bound
	Relative Value Uncertainty
	Naïve FDPE Relative Error Bound
	Suboptimality of Uncertainty-Aware Pessimistic FDPO Algorithms
	Suboptimality of Proximal Pessimsitic FDPO Algorithms
	State-wise Proximal Pessimistic Algorithms

	Algorithms
	Naïve
	Pessimistic
	Uncertainty-Aware
	Proximal

	Related Work
	Experimental Details
	Tabular
	Deep Learning

	Additional Content
	An Illustrative Example
	Extreme Pessimsim: Value Lower Bound Algorithms
	Practical Considerations

