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Abstract

The goal of offline reinforcement learning (RL) is to find an optimal policy given
prerecorded trajectories. This setup is appealing since it separates the learning
process from the possibly expensive or unsafe data-gathering process. Concerning
this problem, much research has been proposed that customizes existing off-policy
RL algorithms, especially actor-critic algorithms in which policy evaluation and
improvement are iterated. However, the convergence of such approaches is not
guaranteed due to the use of complex non-linear function approximation and an
intertwined optimization process. In this paper, we propose a simple baseline
algorithm for offline RL that only performs the policy evaluation step once so that
the algorithm does not require complex stabilization schemes. The algorithm is
not likely to converge to an optimal policy, but we empirically find that when we
use proper regularization, a greedy policy implied by the learned value function
exhibits competitive performance in a subset of the D4RL offline RL benchmark,
and it even achieves state-of-the-art results in the hopper-medium-replay, walker2d-
medium-replay, and hopper-medium datasets.

1 Introduction

Reinforcement learning involves an active component during learning; an agent continuously gathers
experience as it learns a policy. This is a very general learning framework that resembles the way
animals learn, but the interactive component often hurts the applicability of RL since the agent
interaction can be expensive or unsafe. To address this challenge, the offline reinforcement learning
paradigm has been proposed and investigated, which tries to learn a policy purely from pre-generated
data [15]. Considering that many recent breakthroughs in machine learning can be attributed to
large-scale data, this new paradigm is very promising. However, the offline setup causes significant
theoretic and algorithmic difficulties that need to be resolved to fulfill this promise.

Specifically, value-based off-policy RL algorithms suffer from the overestimation problem caused
by function approximation error and bootstrapping [7, 6] in the offline RL setup, even though the
algorithms are equipped with algorithmic techniques [16, 7, 9] that can stabilize learning and mitigate
the so-called Deadly Triad [23]. This is because over-estimated values cannot be readjusted in offline
RL, unlike the ordinary RL setup where incorrectly optimistic actions get executed and corrected.

Since the overestimation problem is prominent when the value function is queried for out-of-
distribution inputs, many algorithms have been proposed that ensure the bootstrapping queries
are within the data manifold of the given offline dataset [8, 10, 29, 21, 19, 27]. However, we argue
that these algorithms are unsafe in the sense that the learning could diverge if the function approxi-
mator over-estimates for out-of-distribution queries. Empirically, these algorithms show reasonable
stability in some domains, but, with the limited understanding of the generalization characteristics
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of the function approximator in use, these methods are still vulnerable because out-of-distribution
queries would be made eventually in optimizing the value function and the (underlying) policy.

The Deadly Triad cannot be avoided in these actor-critic algorithms since all of the three components
– off-policy learning, function approximation, and bootstrapping – are in use. However, the first critic
update step is the exception since the critic is trained with a fixed behavior policy. While the first
policy implied by the first value function is likely to be suboptimal, it is valuable to compute this
policy as a baseline to use as a sanity-check. By comparing performance of this suboptimal policy
with iterative algorithms, we can measure if there is a sufficient advantage that results from risky
iterative optimization.

To this end, we propose an offline RL algorithm that evaluates the value of a behavior policy once and
extracts a greedy policy under the learned value approximation. This provides an simple baseline that
actor-critic methods should easily outperform, but surprisingly, we find that when our action-value
function is trained with pessimistic regularization [11, 3], the learned policy achieves competitive
results in several D4RL benchmarks. Our results indicate not only the effectiveness of the proposed
algorithm adopting pessimistic regularization, but also implies potential vulnerabilities of the iterative
optimization process of actor-critic algorithms in the offline setting.

2 Related Work

Evaluating and improving a policy with the data generated from a different policy (off-policy RL)
has been widely investigated, and several papers have shown theoretical convergence properties
of prediction and control algorithms in the off-policy setting [18, 4, 12]. However, the theoretical
frameworks are limited to a linear function approximation while a non-linear function approximation
is essential to handle large-scale MDPs. Yet, there have been efforts to build a practical algorithms
with non-linear function approximators, and they have shown considerable success in various domains
[24, 22, 17, 14] tackling real-world RL problems.

In theory, off-policy algorithms can be used in the offline setup without any modifications, but
the algorithms often catastrophically fail when applied in the batch setting [8]. This is due to the
accumulation of extrapolation error from bootstrapping and the policy improvement step (i.e. max
operation) [8, 10]. In the non-batch setting, new experiences gathered via interaction can prevent this
degenerate case, but it is impossible in the batch setting where interaction is prohibited. Pertaining to
this problem, much research has been proposed, especially in the context of actor-critic algorithms in
which policy evaluation and improvement are iterated. One class of solutions constrains the policy
improvement step so that the optimized policy matches the behavior policy, in distribution [29] or in
support [10]. In more recent work, a behavior policy for distribution matching is replaced with a prior
policy, which is trained along with policy evaluation via weighted behavior cloning [21]. In [27], the
policy improvement step is omitted while using the prior policy as a target policy for the evaluation.

The most closely related prior works are behavior cloning-based methods [20, 26, 19] which mimic a
subset of good state-action pairs from the pre-generated trajectories. Since these methods approximate
a value function for a behavior policy without an iterative policy improvement step, the algorithm
does not diverge similar to ours. The main difference is that we train an action-value function and
use the trained function at policy execution time in a non-parametric way while the prior works
only evaluate a state-value function and filter state-action pairs based on advantage calculated with
Monte-Carlo return [26] or TD(k) return [19].

For principled regularization of the action-value function, we adapt pessimism under uncertainty
which allows a legitimate action-value function even when the dataset is not informative of the
value of every policy [3]. The pessimism can be applied by directly penalizing Q values for some
policies other than a behavior policy [11], or with the model-approximation [30] that leverages
uncertainty prediction techniques developed for supervised learning, such as [13, 25]. While the
previous methods penalize an action-value function, we propose a novel regularization method that
penalizes an action value distribution.
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3 Preliminaries

The common mathematical framework for reinforcement learning is a Markov Decision Process
(MDP), which is defined by a tuple M = (S,A, T, d0, r, γ) defined by a set of states s ∈ S, a
set of actions a ∈ A, a conditional transition dynamics T (s′|s, a), an initial state distribution d0,
a reward function r : S × A → R, and a discount factor γ ∈ (0, 1]. In this framework, the goal
of reinforcement learning is to find an optimal policy π(a|s) that maximizes an expected sum of
discounted reward (return). Formally, the objective is defined as:

J(π) = Eτ∼pπ
[ H∑
t=0

γtr(st, at)
]
, (1)

where τ is a sequence of states and actions (s0, a0, . . . , sH , aH) of length H , and pπ is a trajectory
distribution of a policy, which can be represented as:

pπ(τ) = d0(s0)

H∏
t=0

π(at|st)T (st+1|st, at). (2)

One way to find an optimal policy is to estimate an action-value function Qβ , which represents
the expected return over possible trajectories following a policy β starting from a given state and
action: Qβ(st, at) = Eτ∼pβ

[∑H
t′=t γ

t′−tr(st′ , at′)
]
. Qβ function implies a policy β̂(a|s) = δ

(
a =

argmaxaQ(s, a)
)
, which is better than or equal to its original evaluation target policy β. Therefore,

when we perform policy evaluation (Q estimation) and policy updates iteratively, we can find the
optimal policy π∗ and the optimalQ functionQπ

∗
. Policy evaluation can be done with a Monte-Carlo

method, but bootstrapping is commonly used, which utilizes a recursive equation that must be satisfied
at convergence:

Qπ(s, a) = r(s, a) + γEs′∼T (s′|s,a),a′∼π(a′|s′)Q
π(s′, a′). (3)

When an MDP is discrete and Q can be represented by a tabular representation (i.e. when |S| × |A|
is small), it is known that policy evaluation converges to a correct solution in the limit of the number
of transition tuples [23]. However, when an MDP has a large state or action space, Q has to be
represented with a function approximator, such as a deep neural network. In addition, when the
action space is continuous, directly extracting a better policy from Q becomes infeasible due to the
max operator. These restrictions are addressed in actor-critic algorithms [16, 7, 9] which explicitly
alternate policy evaluation and policy improvement with a batch of (online) transition samples D and
a parameterized value function Q̂θ and a policy πφ:

θk+1 ← argmin
θ

Es,a,s′∼D
[
d
(
Q̂θ(s, a), r(s, a) + γEa′∼πφk (a′|s′)Q̂θ(s

′, a′)
)]

(policy evaluation),

(4)

φk+1 ← argmax
φ

Es∼D,a∼πφ(a|s)[Q̂θk+1
(s, a)] (policy improvement), (5)

where k is an update step, and d is a distance measure such as squared l2 distance.

4 You Only Evaluate Once

Behind actor-critic based offline RL algorithms, there is a common presumption that the iterative
process is essential in achieving better performance than that of behavior policy, even though it
could sacrifice the reliability of the algorithm due to the destructive over-estimation problem. This is
because we want to build a policy that behaves differently to the data-generating policy by making
counterfactual queries (policy improvement) and answering (policy evaluation) them iteratively [15].
However, it has not been established that a simpler and safer baseline cannot work well—a policy
that selects the best action with regard to the action-value function of the behavior policy. Without
rigorously examining this hypothesis, the true worth of iterative algorithm and counterfactual queries
cannot be fully comprehended. We try to answer this question by proposing a stable offline algorithm
that only behaves optimally with regard to the action-value function Qβ .
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The accuracy of the trained Q̂β is essential to fully maximize the potential of the baseline. To achieve
this, we propose a method that combines two recently proposed value-learning methods: distributional
reinforcement learning [1, 8, 28] and pessimism in the face of uncertainty [3, 11]. Specifically, we
propose an algorithm that trains the action-value distribution of the behavior policy in a supervised
way; first, a state-value distribution Ŷ βψ and action-value distribution Ẑβψ is trained without regular-
ization, and then we train a regularized Ẑβθ by generating a fixed target value distribution with Ŷ βψ
and Ẑβψ . Then, we convert Ẑβθ back to Q̂β by taking an expectation of Ẑβθ . We also use the distortion
measure in taking expectation to embrace the notion of risk-sensitivity [28].

We hypothesize that distributional representation is beneficial in selecting the best action because
the representation can encode the inherently diverse policies of the given data-distribution by not
aggregating the diverse statistics into a single statistics; while Qβ treats the underlying policies of a
dataset as a single mixture policy, Zβ considers the stochasticity of the behavior policy by modeling
a distribution instead of a single scalar. We use implicit quantile network (IQN) [28] to parameterize
a value distribution. In IQN, a distribution is represented in the form of the inverse cumulative
distribution function:

Ŷψ(s; τ) = ψfy
(
ψEy (s)� ψTy (τ)

)
, (6)

Ẑψ(s, a; τ) = ψfz
(
ψEz (s, a)� ψTz (τ)

)
, (7)

Ẑθ(s, a; τ) = θf
(
θE(s, a)� θT (τ)

)
, (8)

where � is element-wise vector product, τ is a probability value τ ∈ [0, 1], and each of ψf,E,T and
θf,E,T represents a parameterized function that maps corresponding input to 1, 64, 64-dimensional
output. For θf,E , we use fully-connected layers, and for θT , we use cosine-based embedding
following [28]:

θT (τ)j = ReLU
( 63∑
i=0

cos(πiτ)wij + bj
)
, (9)

where wij and bj are parameters for θT . Now, the state-value distribution Ŷψ and unregularized
action-value distribution Ẑψ can be trained by minimizing the 1-Wasserstein metric between the
bootstrapped target distribution and Ŷψ or Ẑψ for all transition tuples in D iteratively:

ψk+1 ← argmin
ψ

Es,a,r,s′,a′∼D
[ ∫ 1

0

|r + γŶψk(s
′;ω)− Ŷψ(s;ω)|dω

+

∫ 1

0

|r + γẐψk(s
′, a′;ω)− Ẑψ(s, a;ω)|dω

]
. (10)

Instead of directly optimizing the objective, we minimize the IQN loss [28] iteratively with a stochastic
gradient descent algorithm:

δτ,τ
′
=
(
r + γŶψ(s

′; τ ′)− Ŷψ(s; τ)
)
+
(
r + γẐψ(s

′, a′; τ ′)− Ẑψ(s, a; τ)
)

(11)

L =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi
(
δτi,τ

′
j
)

(12)

where N and N ′ denote the number of iid samples τi, τ ′j ∼ U([0, 1]) used to estimate the loss, and

ρκτ (δ) is the Huber quantile regression loss, ρκτ (δ) = |τ − I{δ < 0}|Lκ(δ)κ with the Huber loss Lκ
having threshold κ [8, 28].

With the approximated state-value distribution Ŷψ and action-value distribution Ẑψ of the behavior
policy, we train an action-value distribution Ẑθ with a proper regularization termR in a supervised
way:

θ = argmin
θ

Es,a,r,s′,a′∼D
[ ∫ 1

0

|r + γẐψ(s
′, a′;ω)− Ẑθ(s, a;ω)|

]
+R(ψ, θ). (13)
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We use the same loss formulation shown in Eq. 12 to approximate the expectation. For the regulariza-
tion termR, we implement the principle of pessimism in the face of uncertainty [3, 11] leveraging
the pretrained, unregularized value distributions.

First, we propose a model-free regularization method that utilizes Ẑψ to bound the pessimism without
a sensitive hyperparameter. Since Ẑψ represents the possible values we get when the behavior policy is
executed, we can pessimistically expect that the unseen action ã would consist of the lower part of the
distribution. This idea can be formally implemented by distorting the distribution with a risk-averse
distortion measure ξ : [0, 1]→ [0, 1] which maps τ to a smaller value: Ẑ ′ψ(s, a; τ) = Ẑψ(s, a; ξ(τ))
[28]. We call this type of pessimism data-driven pessimism since the level of pessimism is determined
by the inherent stochasticity measured by trained Ẑψ. Also, the strength of pessimism is applied
differently for each given state and action, and we hypothesize this allows a more sensible target
action-value distribution that is not overly regularizing. In contrast, CQL implements the pessimism
via unbounded objective, so the level of pessimism has to be controlled delicately by an extra
hyperparameter. For the implementation, we use a conditional value-at-risk (CVaR) distortion
measure CVaR(η, τ) = ητ , to generate a bounded pessimistic target distribution for Ẑθ(s, ã):

R = Es∼D,ã∼D
[ ∫ 1

0

|Ẑψ(s, ã; ηω)− Ẑθ(s, ã;ω)|dω
]
. (14)

On top of that, we introduce an additional regularization method that handles the degenerate case
of bounded data-driven pessimism. While data-driven pessimism can provide a sensible pessimistic
target distribution Ẑψ(s, ã), when a dataset has a lack of action diversity for a certain state s, the
target pessimistic distribution can be not pessimistic enough since the trained Ẑψ(s, ·) behaves more
like a state value function V (s) ignoring action input. It could make the proposed regularization
ineffective. Fortunately, the lack of diversity can be easily captured by observing the entropy or
the variance of the distribution Ŷ (s), so this problem can be addressed straightforwardly. In our
implementation, instead of estimating a variance, we use the gap between the maximum and the
minimum value of the distribution, which is more efficient to compute. With the hyperparameter
α that states the minimum gap requirements between the pessimistic distribution and the ordinary
distribution, we define k as following and use it to ensure the minimum level of pessimism:

k = max
(
α− Ŷψ(s; 1− ε) + Ŷψ(s; ε), 0

)
(15)

where ε is a small positive number as 1e-2. We call this feature gap requirement. The final
regularization term is formally defined as follow:

R = Es∼D,ã∼D
[ ∫ 1

0

|Ẑψ(s, ã; ηω)− k − Ẑθ(s, ã;ω)|dω
]
. (16)

With the regularized action-value distribution Ẑθ and inferred Q̂ from it, we build a greedy non-
parametric policy which selects the best action among actions exist in a dataset D:

π(b|s) = δ
(
b = argmax

a∼D
Q̂(s, a)

)
.. (17)

The motivation behind using non-parametric policy instead of a parameterized policy is that we
can (1) avoid the unwanted generalization error derived from policy parameterization, (2) reduce
extra hyperparameters related to parameterization and training and (3) expect more accurate value
estimation since Ẑθ is directly regularized with the same action distribution which is used for a policy.

5 Experiments

In our experiments, we aim to study the following question: how much performance gain will the
policy iteration provide? To answer this question, we compare the performance of YOEO, which
evaluates the policy only once, against several baselines and prior works based on policy iterations;
behavior cloning (BC), soft actor-critic (SAC) [9] without interaction, two policy constrained methods,
namely bootstrapping error accumulation reduction (BEAR) [10] and behavior regularized actor-critic
(BRAC) [29], and conservative Q-learning (CQL) [11]. We use 2 fully-connected layers for each
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Table 1: Performance of YOEO and prior methods on a subset of D4RL benchmarks. Each number
represents the performance relative to a random policy as 0 and an expert policy as 100. All the
numbers except ours are borrowed from [5], [11]. The numbers are averaged over 3 different random
seeds.

Type Env. BC SAC-
offline BEAR BRAC AWR BCQ CQL

(H)
YOEO
(Ens. 5)

YOEO
(Ens. 9)

Medium-
Replay

Hopper 11.8 3.5 33.7 0.6 28.4 33.1 48.6 83.4 94.8
Walker2D 11.3 1.9 19.2 0.9 15.5 15 26.7 39.3 41.5

Medium Hopper 29 0.8 52.1 31.1 35.9 54.5 58 63.4 76.4
Walker2D 6.6 0.9 59.1 81.1 17.4 53.1 79.2 70.4 68.6

Medium-
Expert

Hopper 111.9 1.6 96.3 0.8 27.1 110.9 111 94 106.4
Walker2D 6.4 -0.1 40.1 81.6 53.8 57.5 98.7 88.9 92.7

trainable component except the cosine embedding function, and we ensemble five Ẑθs to construct
the nonparametric policy. We calculate Q̂ by taking a mean over 20 random samples generated by a
distorted Ẑ ′θ, which is distorted with CVaR(η = 0.2). In addition, we reduce the search space for
the nonparametric policy by first finding the 100 nearest states in raw-state space and querying the
actions of those states. We use an approximated nearest neighbor algorithm called annoy [2] for the
implementation. The detailed hyperparameters used for the experiments are shown in Appendix, and
code is also available1.

The comparison is made on a subset of datasets in the D4RL offline RL benchmark [5]. We use Mujoco
locomotion and Adroit hand-manipulation tasks. For Mujoco locomotion tasks, we use three envi-
ronments (hopper, walker2d, and halfcheetah) with three different settings (medium-replay,
medium, and medium-expert); medium-replay consists of replay buffer gathered while running
SAC until a policy reaches the environment-specific performance threshold; medium consists of 1
million transition tuples generated by executing a medium policy; medium-expert consists of 2
million transition tuples each half of which generated with medium and expert policy. For Adroit
hand-manipulation tasks, we use four environments (pen, door, relocate, and hammer) in two
settings (human and cloned). We train YOEO for 1 million stochastic gradient steps, then report the
average normalized performance score over 100 trajectories. The results are displayed in Table 1 and
Table A.2.

YOEO achieves state-of-the-art performance in hopper-medium-replay, walker2d-medium-replay,
and hopper-medium datasets, and the proposed method consistently shows competitive performance
across all configurations, surpassing most of the previous offline RL algorithms without iterative
policy evaluation. The results indicate that the previous offline RL algorithms fail to fully exploit the
potential benefit of iterative evaluation and update.

5.1 Ablation Experiments & Analysis

We conduct ablation studies to disentangle the contribution of each component in YOEO. There are
three major components: (1) action-restricted optimization, (2) ensemble, and (3) distributional value
estimation and adaptive pessimism.

5.1.1 Action-restricted Optimization

We build a non-parametric greedy policy based on the pessimistically regularized action-value
distribution Ẑβθ ; the best action is selected among the actions exist in the dataset. There are two
other common ways generating a policy given an action-value function (or distribution): (1) filtering-
based behavior cloning [21, 27] which selects a good state-action pairs based on an advantage, and
(2) actor-critic methods [10, 11] which optimizes policy parameters with regard to action-value
function. We test these two baseline algorithms with the same regularized action-value distributions
Ẑβθ to show possible drawbacks of the common approaches. For a fair comparison, we perform
hyperparameter search, and report the best for each domain; for filtering-based behavior cloning

1https://github.com/hiwonjoon/YOEO_public.git
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Table 2: Normalized performance of different policy implementations with the same action-value
distribution. Average score over 100 trajectories is reported. On the right, we plot the normalized
performance of the Z with SGD method over training iterations. The performance is measured for
every 50,000 gradient descent steps, and results of different hyperparameters are shown with different
colors.

BC BC w/
Filter.

Z w/
SGD YOEO

Medium-
Replay

Hopper 11.8 36.9 42.9 83.4
Walker2D 11.3 21.5 30.8 39.3

Medium Hopper 29.0 56.2 5.6 63.4
Walker2D 6.6 28.9 70.2 70.4

Medium-
Expert

Hopper 111.9 111.6 98.2 94.0
Walker2D 6.4 6.0 34.4 88.9
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Figure 1: Normalized performance with the different number of Z models used for a policy. A shaded
uncertainty band represents standard deviation of 3 different runs.

method, we test different filtering threshold, and for gradient optimization method, we test different
entropy regularization coefficient. The details about implementation and other hyperparameters are
provided in Appendix.

The results are shown in Table 2. Overall, YOEO outperforms the other two baselines for most of the
environments. Also, it is noteworthy that even when the baselines show competitive performance,
there was no common hyperparameter that consistently worked for all domains as well as YOEO;
for instance, while policy gradient method with no entropy regularization showed the best result in
hopper-medium-replay domain, but the same hyperparameter was the worst for walker2d-medium-
replay domain. Furthermore, the performance fluctuated by the number of gradient descent steps
while the loss decreased consistently over time. These results implies that tuning such an algorithm
can be difficult and laborious.

5.1.2 Ensemble

We test the effect of the ensemble in YOEO by changing the number of trained Ẑβ used in the
greedy policy. Each Ẑβ is trained independently with the same data with different initial parameter
initialization. To build a nonparametric policy with multiple Ẑβs, we simply take the average over
Q̂s derived from each Ẑθ. The results are included in Figure 1 and Figure A.1. We observe a clear
positive correlation between the performance and the number of trained Ẑβ across all datasets.

5.1.3 Distributional Value Estimation and Adaptive Pessimism

We investigate the advantage and its effect of learning value distribution (Y and Z) instead of
aggregated point estimate (Q). We use value distributions in three different ways: (1) data-driven
pessimism, which controls a pessimism adaptively for each state and unseen action by generating a
pessimistic target distribution with risk-averse distortion measure, (2) gap-requirement regularization,
which adjusts the strength of pessimism based on the diversity of policies for each state using Y , and
(3) risk-sensitive nonparametric policy, which becomes viable due to action-value distribution.
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Table 3: Results on various ablations experiments related to distributional value estimation. The
normalized performance are displayed.

YOEO YOEO
(Z@0.5)

YOEO w/
k=0

YOEO w/
η=1, k=c

Q−c Ẑψ

Distributional 3 3 3 3 7 3
Data-Driven Pessimism 3 3 3 7 7 7
Gap Requirement 3 3 7 7 7 7
Risk-sensitive Policy 3 7 3 3 7 7

Medium-
Replay

Hopper 83.4 74.5 93.2 82.8 25.5 22.7
Walker2D 39.3 36.0 31.1 27.8 11.2 13.9

Medium Hopper 63.4 78.3 65.8 58.0 31.9 5.7
Walker2D 70.4 62.0 65.6 60.2 10.3 38.1

Medium-
Expert

Hopper 94 95.2 105.1 38.7 56.4 27.3
Walker2D 88.9 65.1 86.9 29.8 4.7 17.5

We test 5 different ablations: (1) YOEO without risk-sensitive policy distortion (denoted as Z@0.5),
(2) YOEO without gap requirement (YOEO w/ k = 0), (3) YOEO without data-driven pessimism
(YOEO w/ η = 1, k = c) in which Ẑθ is regularized with a some constant pessimistic penalty, (4)
Q with constant pessimism (Q− c) in which Q is trained with constant pessimistic penalty, and (5)
YOEO without any pessimism (Ẑψ). For (3) and (4) that involve extra hyperparameter c, we perform
hyperparameter search and report the best performance for each domain.

The result is shown in Table 3. We were able to confirm the effectiveness of the proposed pessimitic
regularization; very large performance drop is observed when we do not regularize the action-value
distribution. In addition, while the significance of each component varies for each dataset, we
were able to confirm the importance of each component; while different versions of YOEO with
data-driven pessimism show a competitive performance, the ablated algorithms without the feature
show large degradation in performance; the risk-sensitive policy provides the large performance gain
in -medium-replay datasets, which consist of diverse suboptimal trajectories.

6 Discussion

We investigate a simple baseline algorithm for offline RL that only evaluates the value function of
the behavior policy. Since the proposed algorithm does not involve a policy optimization step and
value re-evaluation based on the updated policy, the algorithm can be stable, but the resulting policy
is more likely to be suboptimal. This makes the algorithm an appropriate baseline for actor-critic
algorithms that ought to outperform this baseline if there is indeed value in iterative optimization in
the offline setting. In the experiments, however, the proposed baseline shows competitive results on
the several D4RL benchmarks, surpassing the state-of-the-art results in some tasks. This implies the
usefulness of conservativeness under uncertainty, which can prevent incorrect generalization behavior
of a complex function approximator occurring due to lack of data, and second, the potential flaws of
iterative optimization in actor-critic algorithms in the offline setting. Therefore, it is essential to build
a theoretical framework that sheds light on iterative optimization and generalization of offline actor-
critic methods that use deep neural networks. Additionally, it would be interesting future work to
develop a new practical regularization method leveraging the empirical generalization characteristics
of deep neural networks rather than penalizing all the unseen state-action pairs indiscriminately.
This will allow for better and safer policy optimization that fully utilizes the power of deep neural
networks.
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A Experimental Details

For filtered behavior cloning, we calculate the advantage by comparing Q̂ derived from Ẑθ without distortion
to Ŷψ or V̂ derived by the state-value distribution. We use two criteria for filtering: constant filtering and
relative filtering; in constant filtering, we calculate the advantage A(s, a) = Q̂(s, a)− V̂ then take the state and
action pairs which is larger than a threshold value Thc. In relative filtering, we calculate the relative advantage
A(s, a) = PY (s)(V ≤ Q̂(s, a)) ∈ [0, 1] and select pairs whose relative advantage is larger than some threshold
Thr . For Thc, we tested [0, 10, 30, 100], and for Thr , we tested [0.5, 0.65, 0.8]. For the policy baseline that
optimizes a parameterized policy via gradient descent, we implement a stochastic policy which models an
independent normal distribution for each action dimension. We also add an entropy regularization term besides
its maximization target Q̂. With action-value distribution and ensemble into account, the loss function is formally
defined as follow:

Lπ = −Es∼D,a∼π(a|s)
[

min
i=1,...,5

Zi(s, a; 0.1)
]
+ αH(π). (18)

Following the implementation of CQL, we initialize the policy by optimizing a policy with a behavior cloning
loss (Lbc = −Es,a∼D[log π(a|s)]) for 200,000 gradient descent steps. Then, we train 1 million time steps with
the loss function shown above. We tested α = [0.0, 0.2, 0.5].

We provide the default hyperparameter used for the experiments in A.1. We use the provided hyperparameters
unless mentioned otherwise for the ablation purpose.
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B Additional Experimental Results

Table A.2: Performance of YOEO and prior methods on a subset of D4RL benchmarks. Each number
represents the performance relative to a random policy as 0 and an expert policy as 100. All the
numbers except ours are borrowed from [5], [11]. The numbers are averaged over 3 different random
seeds.

Type Env. BC SAC-
offline BEAR BRAC AWR BCQ CQL

(H)
YOEO
(Ens. 5)

YOEO
(Ens. 9)

Random
HalfCheetah 2.1 30.5 25.1 31.2 2.5 2.2 35.4 7 7.2
Hopper 9.8 11.3 11.4 12.2 10.2 10.6 10.8 9.8 9.8
Walker2D 1.6 4.1 7.3 1.9 1.5 4.9 7 8.3 8.1

Medium-
Replay

HalfCheetah 38.4 -2.4 38.6 47.7 40.3 38.2 46.2 33.1 34.4
Hopper 11.8 3.5 33.7 0.6 28.4 33.1 48.6 83.4 94.8
Walker2D 11.3 1.9 19.2 0.9 15.5 15 26.7 39.3 41.5

Medium
HalfCheetah 36.1 -4.3 41.7 46.3 37.4 40.7 44.4 35.3 35.6
Hopper 29 0.8 52.1 31.1 35.9 54.5 58 63.4 76.4
Walker2D 6.6 0.9 59.1 81.1 17.4 53.1 79.2 70.4 68.6

Medium-
Expert

HalfCheetah 35.8 1.8 53.4 44.2 52.7 64.7 62.4 15 16.6
Hopper 111.9 1.6 96.3 0.8 27.1 110.9 111 94 106.4
Walker2D 6.4 -0.1 40.1 81.6 53.8 57.5 98.7 88.9 92.7

human

pen 34.4 6.3 -1 8.1 12.3 68.9 37.5 29.8 34.7
door 0.5 3.9 -0.3 -0.3 0.4 0 9.9 0.7 0.4
relocate 0 0 -0.3 -0.3 0 -0.1 0.2 0 0
hammer 1.5 0.5 0.3 0.3 1.2 0.5 4.4 1 0.2

cloned

pen 56.9 23.5 26.5 1.6 28 44 39.2 61.3 61.2
door -0.1 0 -0.1 -0.1 0 0 0.4 1.1 1.1
relocate -0.1 -0.2 -0.3 -0.3 -0.2 -0.3 -0.1 -0.2 -0.2
hammer 0.8 0.2 0.3 0.3 0.4 0.4 2.1 0.4 0.4
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(f) Walker2d-medium-expert

Figure A.1: Normalized performance with the different number of Z models used for a policy. A
shaded uncertainty band represents standard deviation of 3 different runs.
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