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ABSTRACT

Offline reinforcement learning (RL) refers to the task of learning policies from
a static dataset of environment interactions. Offline RL enables extensive uti-
lization and re-use of historical datasets, while also alleviating safety concerns
associated with online exploration, thereby expanding the real-world applicabil-
ity of RL. Most prior work in offline RL has focused on tasks with compact
state representations. However, the ability to learn directly from rich observa-
tion spaces like images is critical for real-world applications like robotics. In
this work, we build on recent advances in model-based algorithms for offline RL,
and extend them to high-dimensional visual observation spaces. Model-based of-
fline RL algorithms have achieved state of the art results in state based tasks and
are minimax optimal. However, they rely crucially on the ability to quantify un-
certainty in the model predictions. This is particularly challenging with image
observations. To overcome this challenge, we propose to learn a latent-state dy-
namics model, and represent the uncertainty in the latent space. Our approach
is both tractable in practice and corresponds to maximizing a lower bound of the
ELBO in the unknown POMDP. Through experiments on a range of challenging
image-based locomotion and robotic manipulation tasks, we find that our algo-
rithm significantly outperforms previous offline model-free RL methods as well
as state-of-the-art online visual model-based RL methods. Moreover, we also find
that our approach excels on an image-based drawer closing task on a real robot
using a pre-existing dataset. All results including videos can be found online at
https://sites.google.com/view/lompo/.

1 INTRODUCTION

For robots and artificial agents to be competent in a wide variety of dynamic and uncertain environ-
ments, they require the ability to perceive the world and act based on rich sensory observations like
vision. In most real-world scenarios like homes or disaster management, it is difficult to hand-design
state representations or simulators, let alone instrument the world to estimate the states. This sug-
gests the need for an end-to-end integration of sensing and control. Despite recent advances (Yarats
et al., 2019; Laskin et al., 2020b; Kostrikov et al., 2020; Hafner et al., 2020), the interactive sample
complexity for learning control policies from vision is prohibitively high. Furthermore, interactive
reinforcement learning (RL) with physical systems such as robots is fraught with safety challenges
that limit widespread applicability. Our goal in this work is to develop algorithmic approaches for
overcoming these challenges by utilizing offline datasets.

Offline RL (Lange et al., 2012) involves the learning of control policies from static pre-collected
data. By utilizing already collected historical data, we alleviate the safety challenges associated
with online exploration. Large offline datasets are also available in domains like autonomous driv-
ing (Caesar et al., 2020), recommendation systems (Harper & Konstan, 2015), and robotic manipula-
tion (Finn & Levine, 2017; Sharma et al., 2018; Dasari et al., 2019; Mandlekar et al., 2019), typically
in image (or video) format. Prior work in offline RL (see Section 2) has typically focused on en-
vironments with compact state representations, which are not representative of challenges faced in
real-world applications. In this work, we focus on control from pixels using offline datasets. We
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believe the ability to train vision based policies using offline data can reduce interactive sample
complexity, enhance safety, and greatly expand the applicability of RL.

Our work builds on recent advances in model-based offline RL (Kidambi et al., 2020; Yu et al.,
2020). Model-based RL algorithms have demonstrated impressive sample efficiency results in in-
teractive RL (Janner et al., 2019; Rajeswaran et al., 2020; Hafner et al., 2020). For offline RL,
model-based algorithms (Kidambi et al., 2020; Yu et al., 2020) have been shown to be mimimax
optimal, obtain state of the art results in a variety of benchmark tasks, as well as generalize to new
out-of-distribution tasks. Uncertainty quantification and pessimism have emerged as key princi-
ples and requirements for successful offline RL, with both model-based and model-free approaches.
This represents a unique challenge for control from pixels, since modeling uncertainty in high-
dimensional image spaces such as using ensembles of video prediction models is challenging and
computationally expensive.

Our Contributions. The main contribution of our work is an algorithm, latent offline model-based
policy optimization (LOMPO), which enables learning of visuomotor policies using offline datasets.
LOMPO efficient learns a dynamics model using latent state spaces, and represents undertainty in
the low-dimensional latent state space. Our algorithm can be summarized as follows. (i) We learn
an ensemble of latent state dynamics models from pixels using the offline dataset. Specifically, we
learn a single encoder and decoder, but ensembles of dynamics models in the low-dimensional latent
state space. (ii) We construct an uncertainty penalized MDP in the latent space and the correspond-
ing uncertainty-penalized POMDP, where we quantify uncertainty based on disagreement between
models in the latent state space. (iii) We learn a control policy using the offline dataset by optimizing
an uncertainty-penalized objective. The learned uncertainty penalized MDP provides a pessimistic
regularizing effect for policy learning and guards against major challenges like distributional shift
and model exploitation (Yu et al., 2020). We evaluate our algorithm on extensive simulated visuo-
motor control tasks and one real-world robotic manipulation task. We find that LOMPO outperforms
or matches other model-based methods across the board on these challenging tasks, and also outper-
forms model-free methods on most tasks.

2 RELATED WORK

Our work is at the intersection of offline RL and control from high-dimensional inputs (i.e. images).
We review related work from these fields below.

Offline RL. Offline RL has recently emerged as a prominent paradigm for learning control poli-
cies (Lange et al., 2012; Levine et al., 2020). Most offline RL algorithms augment well known RL
algorithms with various forms of regularization. These include regularized variants of importance
sampling based algorithms (Liu et al., 2019; Swaminathan & Joachims, 2015; Nachum et al., 2019;
Zhang et al.), actor-critic algorithms (Wu et al., 2019; Jaques et al., 2019; Siegel et al., 2020; Peng
et al., 2019), approximate dynamic programming algorithms (Fujimoto et al., 2018; Kumar et al.,
2019; 2020; Liu et al., 2020; Agarwal et al., 2019), and model-based RL algorithms (Kidambi et al.,
2020; Yu et al., 2020; Argenson & Dulac-Arnold, 2020; Matsushima et al., 2020; Swazinna et al.,
2020). However, most of these prior works focus on problems with low-dimensional compact state
information except that a few of them consider Atari games (Fujimoto et al., 2018; Agarwal et al.,
2019; Kumar et al., 2020), whereas our focus in this work is on control from high-dimensional
realistic perception in both simulation and the real world.

Control from Pixels. Control from high-dimensional observation inputs has become an important
problem within control and robotics as it makes real world applications more practical. Prior works
tackle this problem by either learning policies from pixel inputs end-to-end with model-free RL
methods (Lee et al., 2020; Haarnoja et al., 2018; Lange & Riedmiller, 2010; Ghadirzadeh et al.,
2017; Wayne et al., 2018; Kostrikov et al., 2020; Gelada et al., 2019; Nair et al., 2018; Singh et al.,
2019; Srinivas et al., 2020; Laskin et al., 2020a; Han et al., 2020) or using model-based RL by
learning a dynamics model either in the pixel space (Finn & Levine, 2017; Ebert et al., 2018) or in
a latent space (Levine et al., 2016; Finn et al., 2016; Watter et al., 2015; Banijamali et al., 2018;
Zhang et al., 2019; Hafner et al., 2019; 2020; Ha & Schmidhuber, 2018; Kipf et al., 2019; Chen
et al., 2020). However, most of those prior works rely crucially on online data collection to be
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successful. Visual foresight algorithms (Finn & Levine, 2017; Ebert et al., 2018; Chen et al., 2020)
handle control from pixels in a fully offline setting, but do not explicitly tackle the distributional
shift issue that arises in the offline RL problem, while our method address such an issue. As a result,
we find in Section 5.2 that our approach significantly outperforms visual foresight.

3 PRELIMINARIES

POMDPs. We consider a class of partially observable Markov decision processes (POMDPs),
whose transition dynamics can be described using a compact MDP, and observations using an em-
mision model. Concretely, we consider POMDPs of the form M = (X ,S,A, T,D, r, µ0, γ) where
X denotes the the visual observation space, S the latent state space, A the action space, T (s′|s, a)
the latent transition distribution, D(x|s) the observation model, r(s, a) the reward function, µ0(s0)
the initial latent state distribution, and γ ∈ (0, 1) the discount factor. The goal of the POMDP is to
learn a policy π(at|st) that maximizes the discounted expected return ηM := E[

∑∞
t=0 γ

tr(st, at)].

Model-based RL with latent dynamics. Model-based RL leverages a learned dynamics model
to accelerate the RL training (Sutton, 1991; Watter et al., 2015). However, when the sensory in-
puts consist of high-dimensional observations such as images, it is both more memory-efficient and
more computationally-efficient to learn the dynamics model in a compact latent space. Since the
high-dimensional observations do not fully capture the full state of the environment, prior works
such as (Hafner et al., 2019), (Hafner et al., 2020) and Lee et al. (2020) consider the POMDP
setting, which they solve by learning a deep variational model. Given a learned latent dynamics
model, PlanNet (Hafner et al. (2019)) carries out model-predictive control in the latent space, while
Dreamer (Hafner et al., 2020) learns an actor-critic policy in the latent space by directly differenti-
ating through the model dynamics and rewards. On the other hand Lee et al. (2020) uses the model
as a deep filter and separately learns an SAC-based policy on top of the latent representation.

Control as inference. For MDPs with directly observable states st, actions at, rewards rt, initial
state distribution µ0(s1), and the stochastic transition dynamics T (st+1|st, at), the control problem
is equivalent to an inference problem in the graphical model with a binary random variable Ot,
which denotes if the agent is optimal at time step t. When p(Ot = 1|st, at) = exp(r(st, at)),
maximizing p(O1:T ) for some finite horizon T via approximate inference is equivalent to op-
timizing the maximum entropy RL objective E[

∑T
t=1(r(st, at) + αH(π(·|st)))](Levine, 2018).

Lee et al. (2020) extend the framework to POMDPs by factorizing the variational distribution
q(s1:T , at+1:T |x1:t+1, a1:t) into a product of inference terms q(st+1|xt+1, st, at), latent dynamics
terms T (st+1|st, at) and the policy terms π(at|x1:t, a1:t−1). Optimizing the evidence lower bound
(ELBO) of p(x1:t+1,Ot+1:T |a1:t), the likelihood of observed data and future optimality of the agent
is also equivalent to the objective of maximum entropy RL.

Offline RL is the setting where an agent has to learn the control policy using only a fixed dataset
of interactions. In our work, we focus on offline RL in high-dimensional POMDPs with a latent
MDP, where the agent has access to the fixed dataset Denv = (xt, at, rt, xt+1). The dataset can
be collected by a single or a mixture of behavior policies πB. No additional interactions with the
environment are possible. We call the distribution induced by Denv as the behavioral distribution.

Model-Based Offline RL. Model-based RL in conjunction with the key idea of pessimism or
conservatism, has emerged as a promising paradigm for offline RL (Kidambi et al., 2020; Yu et al.,
2020; Matsushima et al., 2020; Argenson & Dulac-Arnold, 2020). Conservative versions of model-
based RL have been shown to be minimax optimal and have also obtained state of the art results in
many benchmark tasks. In this work, we build on the MOPO (Yu et al., 2020) framework. Given a
dataset Denv from an MDP M , MOPO learns an uncertainty penalized MDP with learned transition
dynamics T̂ (·|s, a) and the penalized reward r̃(s, a) = r̂(s, a)−u(s, a) where r̂ is the learned reward
function and u is an admissible uncertainty estimator such as u(s, a) ≥ rmax

1−γ DTV (T (s, a), T̂ (s, a)).

MOPO theoretically shows that optimizing a policy under the uncertainty-penalized MDP M̃ =

(S,A, T̂ , r̃, µ0, γ) is equivalent to optimize a lower bound of the return under the learned policy
in the true MDP M . While MOPO achieve impressive results from low-dimensional observation
spaces, they haven’t shown successes in visual domains where the inputs are pixels. In the next
section, we will extend MOPO to the setting with high-dimensional observations.
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4 LATENT OFFLINE MODEL-BASED POLICY OPTIMIZATION

The goal of our method is to design an offline model-based RL method that handles high-
dimensional inputs. Since we need to learn a model from the fixed dataset without further interaction
with the environment, the model prediction will become less trustworthy as the model rollouts move
further from the behavioral distribution. Such inaccurate model predictions would generate states
that could negatively impact the policy optimization. Therefore, quantifying the uncertainty of the
states generated by the learned model is important for offline model-based RL to avoid large ex-
trapolation error on out-of-distribution states. However, estimating the model uncertainty in the
high-dimensional observation space is challenging as the common approach in uncertainty quantifi-
cation such as learning an ensemble of models is very memory-intensive and time-consuming when
applied to visual dynamics models.

In this section, we present our offline visual model-based RL algorithm that address the above chal-
lenges by learning a latent dynamics model and estimating the model uncertainty in the compact
latent space. Specifically, we first assume that the control problem in the latent space is an MDP and
then construct an uncertainty-penalized latent MDP with the reward penalized by the uncertainty
of the latent dynamics model (Section 4.1). Second, we construct the corresponding uncertainty-
penalized POMDP and optimize the policy and the latent dynamics model by maximizing the ELBO
in the uncertainty-penalized POMDP, which is a lower bound of the ELBO in the true POMDP (Sec-
tion 4.2). Finally, we discuss our overall practical algorithm LOMPO (Section 4.3).

4.1 QUANTIFYING MODEL UNCERTAINTY IN THE LATENT SPACE

In order to quantify the uncertainty in the latent state space, we first make the assumption that the
latent state space S forms an MDP, which we define as the latent MDP MS = (S,A, T, µ0, µ0, γ)

with the same notations in Section 3. Similarly, we define the estimated latent MDP M̂S =

(S,A, T̂ , r, µ0, γ) where T̂ (s′|s, a) denotes the learned latent dynamics model. The objective of
our algorithm is to learn an optimal policy π(a|s) in M̂S that also maximizes expected return in
MS . With the above definitions of MS and M̂S , we can construct the uncertainty-penalized latent
MDP M̃S = (S,A, T̂ , r̃, µ0, γ) where r̃(s, a) = r(s, a) − λu(s, a) where u(s, a) is an admissi-
ble uncertainty estimator as defined in Section 3. Under the uncertainty-penalized latent MDP, we
first define εu(π) = Ē

(s,a)∼ρπ
T̂ ,µ0

[u(s, a)] where ρπT,µ0
(s, a) :=

∑∞
t=0 γ

tPπT,µ,t(s)π(a | s) denotes the

discounted state-action distribution. Then we proceed to show that the total return of a policy π
under the uncertainty-penalized latent MDP is a lower bound of the the total return under the true
latent state MDP and the gap between the learned policy under the uncertainty-penalized latent MDP
and the optimal policy π∗ depends on the latent dynamics model error εu(π∗). Directly following
Theorem 4.4 in Yu et al. (2020), we can show the above claims as following:

ηMS (π) ≥ η
M̃S

(π), (1)

ηMS (π̂) ≥ sup
π
{ηMS (π)− 2λεu(π)} (2)

where π̂ is the policy learned via maximizing the return under M̃S . In practice, we do not have
access to the uncertainty quantification oracle u(s, a) that upper bounds the latent model error, and
we estimate the uncertainty of the latent model using heuristics as discussed in Section 4.3.

4.2 LATENT MODEL TRAINING AND POLICY OPTIMIZATION WITH
UNCERTAINTY-PENALIZED ELBO

With the uncertainty-penalized latent MDP, we can similarly construct the corresponding
uncertainty-penalized POMDP M̃ = (X ,S,A, T̂ ,D, r̃, µ0, γ). We define the learned variational
distribution q̂(s1:T , at+1:T |x1:t+1, a1:t) as a product of inference terms q(st+1|xt+1, st, at), the
learned latent dynamics terms T̂ (st+1|st, at) and the policy terms π(at|x1:t, a1:t−1) as follows

q̂(s1:T , at+1:T |x1:t+1, a1:t)=

t∏
τ=0

q(sτ+1|xτ+1, sτ , aτ )

T−1∏
τ=t+1̂

T (sτ+1|sτ , aτ )

T∏
τ=t+1

π(aτ |x1:τ , a1:τ−1).
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With q̂, we can bound the expected return term from below as follows:

Est+1:T ,at+1:T∼q

[
T∑

τ=t+1

r(sτ , aτ )

]
= Ē
st+1:T ,at+1:T∼ρπT,q(st+1|xt+1,st,at)

[r(sτ , aτ )] (3)

≥ Ē
st+1:T ,at+1:T∼ρπ

T̂ ,q(st+1|xt+1,st,at)

[r̃(sτ , aτ )] = Est+1:T ,at+1:T∼q̂

[
T∑

τ=t+1

r̃(sτ , aτ )

]
(4)

where r(sτ , aτ ) = log p(Oτ = 1|sτ , aτ ) and Eq. 3 follows from the definition of q̂ and the dis-
counted state-action distribution with the initial state distribution being q(st+1|xt+1, st, at) and the
inequality in Eq. 4 follows from Eq. 1 and the latent MDP assumption. Now we can derive the
ELBO in the uncertainty-penalized POMDP as follows:

LELBO = Es1:T ,at+1:T∼q

[
t∑

τ=0

(logD(xτ+1|sτ+1)−DKL (q(sτ+1|xτ+1, sτ , aτ )‖T (sτ+1|sτ , aτ )))

(5)

+

T∑
τ=t+1

(r(sτ , aτ ) + log p(aτ )− log π(aτ |x1:τ , a1:τ−1))

]
(6)

≥ Es1:t,at+1:T∼q

 t∑
τ=0

logD(xτ+1|sτ+1)︸ ︷︷ ︸
reconstruction

−DKL (q(sτ+1|xτ+1, sτ , aτ )‖T (sτ+1|sτ , aτ ))︸ ︷︷ ︸
consistency




(7)

+ Est+1:T ,at+1:T∼q̂

[
T∑

τ=t+1

(r̃(sτ , aτ )+log p(aτ )−log π(aτ |x1:τ , a1:τ−1))

]
:= L̃ELBO (8)

where p(aτ ) is the prior action distribution and L̃ELBO denotes the ELBO in the uncertainty-
penalized POMDP, which turns out to be a lower bound ofLELBO, the ELBO in the original POMDP.
With the uncertainty-penalized ELBO, we optimize the latent dynamics model and the inference
model using Eq. 7 (the reconstruction and consistency terms), which can be viewed as offline latent
model training, and optimize the policy with Eq. 8, which uses an uncertainty penalized reward sim-
ilar to MOPO. Next, we will discuss the practical implementation of our model training and policy
optimization in Section 4.3.

4.3 PRACTICAL IMPLEMENTATION OF THE MAIN ALGORITHM

We now present our practical LOMPO algorithm, outlined in Algorithm 1 in Appendix E, and visu-
alize the whole training pipeline in Figure 1.

Variational Model Training. Since we would like to be able to estimate the uncertainty term in
the uncertainty-penalized POMDP, we train an ensemble of latent transition models and use model-
disagreement as a proxy. In designing the optimization approach we have two main considerations:
(1) since we are training latent models in a learned representation space, we need all of the mem-
bers of the ensemble to be grounded within the same latent space, (2) minimize additional model
complexity and training overhead. Considering these, we optimize the following objective:

T−1∑
τ=0

[
Eq[lnD(xτ+1|sτ+1)]− EqDKL[q(sτ+1|xτ+1, sτ , aτ )‖Tτ (sτ+1|sτ , aτ )]

]
(9)

Here at each step we sample a random forward transition model Tτ from a fixed set of K models
{T1, . . . , TK}. The inference distribution q is modeled via the standard mean-field approximation
as a uni-modal Gaussian distribution and is shared across all time steps. This explicitly grounds all
forward models within the same latent space satte representation induced by the inference distribu-
tion addressing concern (1) above. Moreover since we use a single forward model at each time step
this procedure has the same computational overhead as the regular training of a single variational
model, which addresses concern (2).
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Figure 1: Images are passed through a convolutional encoder Eθ to form a compact representation
which are then used along with previous state to infer the current state st. The model is trained by
reconstructing the images from the latent states through the decoder network Dθ. Latent rollouts are
carried by choosing a random transition model Tθj (st+1|st, at) and rewards are penalized based on
ensemble disagreement.

Model-based Policy Optimization. We train a policy and a critic with components πφ(at|st) and
Qφ(st, at) on top of the latent space representation similar to Lee et al. (2020), however we deploy
model inference for the policy as well as the critic, as we cannot do model rollouts in pixel space
during training. We maintain two replay buffers Breal, Bsample. The real data replay buffer contains
transition tuples st, at, rt, st+1 from the latent MDP, where states are sampled from the inference
distribution s1:T ∼ q(s1:T |x1:T , a1:T−1) over trajectories from the real dataset x1:T , r1:T , a1:T−1 ∼
Denv . The latent data buffer contains transitions from rolling-out the policy in the model latent space
utilizing the ensemble of learned forward models. During rollouts transitions are carried out at each
step by picking a a random forward model from the ensemble. As discussed in Section 4.1, the final
rewards for the rollout use ensemble estimates and the uncertainty penalty term and are computed
as:

r̃t(st, at) =
1

K

K∑
i=1

rθ(s
(i)
t , at)− λu(st, at) (10)

where s
(i)
t ∼ Tθi(st−1, ai−1) are sampled from each forward model and st is sampled from

{s(i)t , i = 1, . . . ,K}. Here u(st, at) is an estimate of model uncertainty and λ is a penalty parameter.
In particular, we pick u(st, at) as disagreement of the latent model predictions in the ensemble, i.e.
the variance of log-likelihoods under the ensemble u(st, at) = Var({log Tθi(st|st−1, at−1), i =
1, . . . ,K}), since ensembles have been shown to capture the epistemic uncertainty (Bickel & Freed-
man, 1981) and also work well for model-based RL in practice (Yu et al., 2020; Kidambi et al.,
2020). We used this heuristic to estimate uncertainty as it estimates disagreement across the means
of the forward models, as well as the variances. Finally the actor and critic πφ(at|st), Qφ(st, at) are
trained using standard off-policy training algorithm using batches of equal data mixed from the real
and sampled replay buffers, as we find that maintaining a fixed sampling proportion is important in
preventing distributional shift in the actor-critic training.

5 EXPERIMENTS

The goal of our experimentation evaluation is to answer the following questions. (1) Can offline RL
reliable scale to realistic robot environments with complex dynamics and interactions? (2) How does
LOMPO compare to prior offline model-free RL algorithms and online model-based RL algorithms
when learning vision-based control tasks from offline data? (3) How does the quality and size of
the dataset affect performance? (4) Can LOMPO be applied to an offline RL task on real robot
with raw camera image observations? We answer questions (1), (2) and (3) in Section 5.1 and
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Figure 2: Test environments: Deep Mind Control Walker Walk task - the observations are raw 64×64 images.
Robel D’Claw Screw and Adroit Pen tasks observations are raw 128 × 128 images and robot proprioception.
Sawyer Door open environment - the observation space is raw 128× 128 images. The observations for the real
robot environment are raw 64× 64 images from the overhead camera.

Environment Dataset LOMPO (ours) LMBRL Offline SLAC CQL BC
Walker Walk medium-replay 74.9 44.7 -0.1 8.0 5.3
Walker Walk medium-expert 91.7 76.3 32.8 14.1 15.6
Walker Walk expert 75.8 24.5 11.3 10.9 11.8
D’Claw Screw medium-replay 71.8 72.4 65.9 16.9 11.7
D’Claw Screw medium-expert 100.4 96.2 76.3 20.2 27.6
D’Claw Screw expert 99.2 90.8 63.4 18.8 25.2
Adroit Pen medium-replay 82.8 5.2 5.4 10.0 46.7
Adroit Pen medium-expert 94.6 0.0 -1.7 59.3 41.8
Adroit Pen expert 96.1 0.2 -0.4 27.6 45.4
Door Open medium-expert 95.7 0.0 0.0 0.0 72.2
Door Open expert 0.0 0.0 0.0 0.0 97.4

Table 1: Results for the DeepMind Control Walker task, the Robel D’Claw Screw task, Adroit Pen task and
the Sawyer Door Open task. The scores are undiscounted average returns normalized to roughly lie between
0 and 100, where a score of 0 corresponds to a random policy, and 100 corresponds to an expert. LOMPO
consistently outperforms LMBRL, offline SLAC, CQL and behavioral cloning in almost all settings.

address question (4) in Section 5.2. All implementation details such as model architectures and
hyperparameter choices are included in Appendix D.

5.1 SIMULATED EXPERIMENTS

Previous offline RL benchmarks are not well-suited for answering questions (1), (2) and (3) above
as they largely lack image-based control problems. Thus, to answer those three questions, we design
a suite of four simulated image-based offline RL problems, focusing on robotics applications, de-
scribed in Appendix A and visualized in the four pictures on the left in Figure 2. We also include the
visualization of the samples generated from our learned variational model on the four environments
in Appendix C. All of the environments and datasets will be open-sourced to allow future work to
also study this problem and make direct comparisons.

Comparisons. We compare our proposed method to both model-free and model-based learning
algorithms. Our first benchmark is direct behaviour cloning (BC), which has proved to be a strong
benchmark in the state-based case (Fu et al. (2020)), from raw observations. We also benchmark
against the Conservative Q-Learning model (Kumar et al. (2020)), which is a state of the art offline
learning algorithms in the low-dimensional case (Fu et al. (2020)), however we again train it from
raw observations. We also train the Stochastic Latent Actor Critic (SLAC) model Lee et al. (2020),
a state of the art online learning algorithm from images, however we train fully online.

Results. Results are reported in Table 1. We see that LOMPO achieves high-scores across most
high-fidelity simulation environments, using raw observations. Moreover, our proposed model
outperforms other model-based learning algorithms across the board and is the only model-based
learning algorithm that achieves any success on several environments. Comparing to model-free
algorithms, LOMPO still outperforms CQL and behaviour cloning across most environments, with
the exception of learning on the expert dataset on the Door Open task. This is a well-known phe-
nomenon when learning dynamics models from narrow expert data. On the other hand, given the
thin data distribution and relatively simple dynamics of the task, direct behaviour cloning from im-
ages performs well on both the medium-expert and expert dataset. We hypothesize that LMOPO
performs well on the D’Claw and Adroit expert datasets, as these environments are relatively sta-
tionary, as compared to a robot arm manipulation task, and even actions from a stochastic expert
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cover a wide range of the environment dynamics. The question of dataset size (question (3)) has
not been extensively studied in offline RL, however we found that this almost as important as the
data distribution itself. We believe this is an important question as collection large robot dataset can
still be complex and expensive task. We carried additional ablation experiments (Appendix B) and
discover that performance for regular model-based and model-free methods can decline drastically
as data size decrease, while LMOPO performance remains relatively stable.

5.2 REAL ROBOT EXPERIMENTS

To answer question (4), we deploy our approach on a desk drawer-closing task with a real Franka
Emika Panda robot arm.

Task. The environment consists of a mounted Panda robot arm in front of an Ikea desk cluttered
with random distractor objects. The robot arm is initialized randomly above the desk and the drawer
is initialized randomly in a open position. The goal of the robot is to navigate to the handle, hook
it, and close the drawer. Observations are raw RGB images from a single overhead camera. The
complete setup is shown in the rightmost picture in Figure 2.

Dataset. Due to difficulty in training online reinforcement learning on the real robot, we utilize a
pre-existing dataset of 1000 trajectories that were collected using a semi-supervised batch explo-
ration algorithm, BEE (Chen et al., 2020). A small balanced dataset of 200 images (0.2% of the
full dataset) was manually labeled with whether the drawer is open or closed. Following the set up
by Chen et al. (2020), we used this dataset to train a classifier to predict whether the drawer is closed
or not. We use the classifier probability as a reward for RL, which leads to a noisy and unstable
reward signal, but is indicative of RL in the real world. The dataset was collected and labeled in the
context of a different paper (Chen et al., 2020), allowing us to evaluate the ability to reuse existing
offline datasets, which is also indicative of real-world problems.

Comparisons. We compare LOMPO, LMBRL, Offline SLAC, and visual foresight. As CQL did
not achieve competitive performance across previous environments we did not deploy it on the real
robot. Moreover the unsupervised exploration dataset has high variance and consist of mostly non-
task centric exploration, which is not suitable for imitation learning, hence we did not experiment
with behavioural cloning either.

Table 2: Success rates for the desk drawer-closing task
with a real Franka Emika Panda robot.

LOMPO (ours) LMBRL Offline SLAC
76.0% 0.0% 0.0%

Results. We carry out 25 rollout evalua-
tions on the real robot and summarize the
results in Table 2. Overall 24/25 of the
LOMPO agent rollouts successfully navi-
gate to the drawer handle, hook it and push the drawer in, however the agent fully closes the drawer
in 19 of the rollouts for a final success rate of 76%. We hypothesize that the agent does not always
close the door as the classifier, used to generate the reward provides wrong predictions when the
drawer is only slightly open. As a comparison both the LMBRL and Offline SLAC agents do not
manage to even successfully navigate to the correct handle location and achieve a success rate of
0%. Finally, visual foresight in the same environment was evaluated by Chen et al. (2020). The
evaluation set-up by Chen et al. (2020) was identical to that in this paper, except that the robot
arm was initialized at the same level as the drawer, which makes the task significantly easier as it
shortens the task horizon. In this easier setting, visual foresight achieves a success rate of 65%
(Figure. 8 of Chen et al. (2020)). These experiments suggest that LOMPO’s uncertainty estimation
and pessimism are critical for good offline RL performance.

6 CONCLUSION

We present an offline model-based RL algorithm that handles high-dimensional observations with
latent dynamics models and uncertainty quantification. We noted that learning a visual dynamics
model is challenging and quantifying uncertainty in the pixel space is extremely costly. We address
such challenges by learning a latent space and quantify the model uncertainty in the latent space.
Our algorithm, LOMPO, penalizes latent states with latent model uncertainty implemented as the
latent model ensemble disagreement. LOMPO empirically outperforms previous latent model-based
and model-free models in the offline setting on four simulated locomotion and manipulation tasks
and one real-world robotic manipulation task.
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