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ABSTRACT

In offline reinforcement learning (RL), we attempt to learn a control policy from a
fixed dataset of environment interactions. This setting has the potential benefit of
allowing us to learn effective policies without needing to collect additional inter-
active data, which can be expensive or dangerous in real-world systems. However,
traditional off-policy RL methods tend to perform poorly in this setting due to the
distributional shift between the fixed dataset and the learned policy. In particu-
lar, they tend to extrapolate optimistically and overestimate the action-values out-
side of the dataset distribution. Recently, two major avenues have been explored
to address this issue. First, behavior-regularized methods that penalize actions
that deviate from the demonstrated action distribution. Second, uncertainty-aware
model-based (MB) methods that discourage state-actions where the dynamics are
uncertain. In this work, we propose to unify these two approaches into a sin-
gle two-stage algorithmic framework. In the first stage, we train a policy using
behavior-regularized model-free RL on the offline dataset. Then, a second stage
where we fine-tune the policy using our Model-Based Behavior-Regularized Pol-
icy Optimization (MB2PO) algorithm. We demonstrate that for certain tasks and
dataset distributions our conservative model-based fine-tuning can greatly increase
performance and allow the agent to generalize and outperform the demonstrated
behavior. We evaluate our method on a variety of the Gym-MuJoCo tasks in the
D4RL benchmark and demonstrate that our method is competitive and in some
cases superior to the state-of-the-art for most of the evaluated tasks.

1 INTRODUCTION

Deep reinforcement learning has recently been able to achieve impressive results in a variety of video
games (Badia et al., 2020) and board games (Schrittwieser et al., 2020). However, it has had limited
success in complicated real-world tasks. In contrast, deep supervised learning algorithms have been
achieving extraordinary success in scaling to difficult real-world datasets and tasks, especially in
computer vision (Deng et al., 2009) and NLP (Rajpurkar et al., 2016). The success of supervised
learning algorithms can be attributed to the combination of deep neural networks and methods that
can effectively scale with large corpora of varied data. The previous successes of deep RL (Levine,
2016; Schrittwieser et al., 2020) seem to indicate that reinforcement learning can potentially scale
with large active data exploration to solve specific tasks. However, the ability to collect such large
datasets online seems infeasible in many real-world applications such as automated driving or robot-
assisted surgery, due to the difficulty and inherent risks in collecting online exploratory data with an
imperfect agent.

Existing off-policy RL algorithms can potentially leverage large, previously collected datasets, but
they often struggle to learn effective policies without collecting their own online exploratory data
(Agarwal et al., 2020). These failures are often attributed to the Q-function poorly extrapolating
to out-of-distribution actions, which leads to overly optimistic agents that largely over-estimate the
values of unseen actions. Because we train Q-functions using bootstrapping, these errors will often
compound and lead to divergent Q-functions and unstable policy learning (Kumar et al., 2019).
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Recently, there have been a variety of offline RL approaches that have attempted to address these
issues. Broadly, we group these approaches into two main categories based on how they address the
extrapolation issue.

The first set of approaches (Wu et al., 2019; Kumar et al., 2019) rely on behavior-regularization
to limit the learned policy’s divergence from the perceived behavioral policy that collected the data.
These approaches discourage the agent from considering out-of-distribution actions in order to avoid
erroneous extrapolation. While these methods can often be effective when given some amount of
expert demonstrations, they often seem too conservative and rarely outperform the best demonstrated
behavior.

The second set of approaches (Yu et al., 2020; Kidambi et al., 2020) leverage uncertainty-aware
MB RL to learn a policy that is discouraged from taking state-action transitions where the learned
model has low confidence. Thus, these methods allow a certain degree of extrapolation where the
models are confident. Because these methods tend to be less restrictive, they can generalize better
than behavior-regularization methods and sometimes outperform the behavioral dataset. However,
this flexibility also seems to make it harder for these methods to recover the expert policy when it is
present in the dataset, and reduce their effectiveness when trained with a narrow distribution.

In this work, we develop an algorithmic framework that combines ideas from behavior-regularization
and uncertainty-aware model-based learning. Specifically, we first train a policy using behavior-
regularized model-free RL. Then, we fine-tune our results with our algorithm Model-Based
Behavior-Regularized Policy Optimization (MB2PO). We find that our approach is able to com-
bine the upside of these approaches and achieve competitive or superior results on most of the
Gym-MuJoCo (Todorov et al., 2012) tasks in the D4RL (Fu et al., 2020) benchmark.

2 RELATED WORK

While there exist many off-policy RL methods that can learn to solve a large variety of complex
control tasks and can scale with large amounts of online data collection, these methods often perform
quite poorly when run completely offline without any online data collection. Recently, there have
been several methods that made progress in improving the capabilities of offline RL. For a general
overview of the field of offline RL, we refer the reader to Levine et al. (2020). Here we will discuss
some recent works that are particularly relevant to our approach.

2.1 IMPROVING OFF-POLICY Q-LEARNING

Many of the recent advances in both discrete and continuous action off-policy deep RL can be
attributed to improvements in stabilizing off-policy Q-learning and reducing overestimation due
to erroneous extrapolation. Some notable methods include target networks (Mnih et al., 2013),
double Q-learning (DDQN) (van Hasselt et al., 2015), distributional RL (Bellemare et al., 2017;
Dabney et al., 2017), and variance reduction through invertible transforms (Pohlen et al., 2018). In
learning for continuous control, Fujimoto et al. (2018) introduced a conservative method that uses
the minimum estimate of an ensemble of Q-networks as the target, which is often referred to as
clipped double-Q-learning. Agarwal et al. (2020) demonstrated that Quantile Regression DDQN
(Dabney et al., 2017) and other ensemble methods can be effective in certain discrete action offline
RL problems. However, Agarwal et al. (2020) showed that when used naively, these methods do
not perform well on complex continuous control tasks. In our work, we incorporate the mentioned
advances in off-policy Q-learning into our approach to stabilize performance and prevent potential
divergence.

Additionally, the offline RL algorithm Conservative Q-learning (CQL) (Kumar et al., 2020) has
attempted to address Q-learning’s overestimation issue on offline data directly by including a con-
straint term that discourages the agent from valuing an out-of-distribution action more than the
demonstrated actions. In our method, instead of using a constraint on the Q-values, we use a combi-
nation of behavior-regularized model-free RL and uncertainty-aware model-based RL to discourage
erroneous extrapolation.
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2.2 BEHAVIOR-REGULARIZED MODEL-FREE RL

A variety of recent offline RL approaches have incorporated constraints or penalties on the learned
policy’s divergence from the empirical behavioral policy. In particular, recent works have used both
KL Divergence (Wu et al., 2019) and mean measure of divergence (MMD) (Kumar et al., 2019).
MMD is sometimes used over KL Divergence because MMD approximately constrains the learned
policy to be in the support of the behavioral policy, which is less restricting than KL Divergence.
However, most behavior-regularization or policy-constraint methods require the behavioral policy to
be represented explicitly in order to estimate these divergences or to enforce their policy constraint
(Laroche et al., 2019). In contrast, AWAC (Nair et al., 2020) or CRR (Wang et al., 2020) is able to
incorporate a KL divergence constraint without explicitly representing the behavioral policy. They
do this by reformulating the policy-constrained RL optimization equations into a form that resembles
behavioral cloning re-weighted by the exponential of the advantage. Wang et al. (2020) demonstrates
that this method can effectively learn complex control tasks purely from offline data, and Nair et al.
(2020) demonstrate that performance can even be improved with further online data collection. In
this work, we demonstrate that these properties make AWAC work exceptionally well when used for
initialization as well as when used for fine-tuning with Model-Based Policy Optimization (MBPO)
(Janner et al., 2019).

2.3 UNCERTAINTY-AWARE MODEL-BASED RL

MB RL algorithms have several natural advantages for offline RL compared to model-free RL algo-
rithms. First, MB RL algorithms rely on supervised learning, which provide more robust gradient
signals compared to bootstrapped learning and policy gradients. Second, learning a dynamics model
often provides strong task-independent supervision, which allows MB RL algorithms to learn from
sub-optimal trajectories. These benefits make generalization easier, and can allow MB RL algo-
rithms to surpass the performance of the demonstrated data. In fact, in many environments, MB
RL methods have already been effective in learning with offline or randomly collected datasets.
Recently, incorporating uncertainty estimation techniques from supervised learning in MB RL has
demonstrated further improvement in both online (Chua et al., 2018) and offline deep RL. In par-
ticular, two recent works, Model-Based Offline Policy Optimization (MOPO) (Yu et al., 2020) and
Model-Based Offline Reinforcement Learning (MoREL) (Kidambi et al., 2020), have demonstrated
impressive results by incorporating uncertainty-aware MB RL with the Dyna (Sutton, 1991) style
algorithm MBPO (Janner et al., 2019). Both methods use these models to create conservative MDPs
that have a lower potential expected sum of rewards compared to the true MDP. By performing pol-
icy optimization in the conservative MDP through MBPO they are able to learn a conservative policy
that can outperform the demonstrated trajectories. However, these methods can often fail to recover
the expert policy even though it was demonstrated in the dataset. We believe that this is largely due
to a lack of effective methods for estimating epistemic uncertainty for neural network regression.

3 PRELIMINARIES

In RL, we assume our agent operates within a standard Markov decision process (MDP) M =
(S,A, T, r, ρ0, γ), where S denotes the state space,A denotes the action space, T (s′|s, a) represents
the probabilistic transition dynamics, r is the reward function, ρ0 is the initial state distribution, and
γ ∈ (0, 1) is the discount factor. The objective in RL is to learn a policy π(a|s) that optimizes the
expected discounted sum of rewards Rπ = Eπ,T,ρ0 [

∑∞
t=0 γ

tr(st, at)].

In offline RL, we assume that during training we only have access to a fixed dataset Dβ containing
a set of tuples (s, a, s′, r) of environment transitions and associated rewards. We assume that the
data was collected by a policy πβ , which we call the behavioral policy. Typically, when training
with data not collected by your current policy π, we either use off-policy model-free algorithms
or model-based algorithms. The most common off-policy model-free algorithms are actor-critic
algorithms that use policy iteration. Policy iteration involves alternating between policy evaluation
and policy improvement in order to learn an effective policy. In policy evaluation, these methods
train a parametric Q-function by iteratively minimizing the temporal difference equation

Qπk+1 = arg min
Q

Es,a,s′∼D
[
((r(s, a) + γEa′∼π(·|s′)[Qπk (s′, a′)])−Qπ(s, a))2

]
(1)
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In policy improvement, we update our parametric policy π to maximize our current Q-function
πk+1 = arg max

π
Es∼D,a∼π(·|s)[Qπk(s, a)] (2)

In MB RL, we attempt to learn a model T̂ of the transition dynamics and a model r̂ of the reward
function. With this learned model of the dynamics and reward function we can create a model MDP
M̂ = (S,A, T̂ , r̂, ρ0, γ) to estimate the true underlying MDP M . These methods tend to use either
trajectory optimization or policy optimization in the model MDP to produce their policy.

4 MODEL-BASED BEHAVIOR-REGULARIZED POLICY OPTIMIZATION FOR
OFFLINE FINE-TUNING

For many offline datasets, it could be much harder to learn an effective model of the MDP than to
learn a reasonable policy. This is especially the case when there is low variability or insufficient
coverage of the state and action space in the collected dataset, or in environments with complex
observations, like images, or long horizons. To overcome these issues, recent works (Yu et al.,
2020; Kidambi et al., 2020) have leveraged uncertainty estimation methods in order to construct
conservative MDPs that use soft penalties or hard thresholds on model uncertainty to discourage de-
viating from the confident regions. However, these methods rely on the efficacy of ensemble-based
neural network uncertainty estimation methods which currently are not particularly effective at esti-
mating epistemic uncertainty in regression settings. Therefore, we propose Model-Based Behavior-
Regularized Policy Optimization (MB2PO). In MB2PO, we follow the offline uncertainty-aware MB
framework of MOPO, but use the behavior-regularized model-free algorithm AWAC (also known as
CRR-exp) instead of SAC (Haarnoja et al., 2018) for policy optimization.

4.1 CONSERVATIVE MBPO

In this work, we use MOPO (Yu et al., 2020) as a basis for our conservative MBPO, due to its sim-
plicity and prior effective results on the D4RL benchmarks. In MOPO, they construct a conservative
MDP by augmenting the reward function as follows

r̃(s, a) = r̂(s, a)− λu(s, a) (3)
where r̂ is the learned estimate of the reward and u is the estimated uncertainty for the model
transition. Note, that this general formulation for a conservative MDP has also been explored in
other prior work such as (Ghavamzadeh et al., 2016). Still, we specifically follow MOPO in using the
maximum standard deviation across an ensemble of probabilistic dynamics models as our measure
of uncertainty. Therefore, we can decompose our Q-function in this conservative MDP as

Qπ(s, a) = Q̂πr (s, a)− λQπu(s, a) (4)

where Q̂πr represents our estimate of the expected discounted sum of rewards in the real MDP and
Qπu represents our expected discounted sum of uncertainty penalties. Now at convergence, if our
policy π deviates from the behavioral policy πβ that collected the data, then we expect for all states
in the conservative MDP that

E[Qπ] ≥ E[Qπβ ] (5)
Thus, by plugging in our decomposition we get

E[Q̂πr (s, a)] ≥ E[Q̂
πβ
r (s, a)] + λE[Qπu(s, a)] (6)

While in theory, with well-calibrated uncertainty estimates and a proper tuning of λ, this should
lead to only safe policy improvements over the behavioral policy, in practice it seems that MOPO
is often unable to recover expert-level performance when it is provided in the offline dataset. This
is unsurprising given that it is hard to generate well-calibrated epistemic uncertainty estimates in
regression settings, and there will inevitably be model errors that will lead to overestimated Q-
values.

To address these issues, we use policy constrained model-free RL in MB2PO. In policy constrained
model-free RL, we attempt to optimize the following policy objective

π = arg max
π

Ea∼π(·|s)[Qπ(s, a)] (7)

s.t. DKL(π(·|s)‖πβ(·|s)) ≤ ε
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If we estimate both π and πβ to be roughly univariate Gaussians with similar variances, then the KL
constraint becomes an `2 constraint on the policy mean. Because we expect our models to be locally
accurate around the data, this constraint can help ensure that we stay in the effective region of the
estimated MDP even if we have poorly calibrated uncertainty estimation. Additionally, Janner et al.
(2019) demonstrated that the difference between the true expected returns J(π) and the expected
returns Ĵ(π) of an MDP induced by an approximate model can be bounded by

J(π) ≥ Ĵ(π)−
[

2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
1− γ

]
(8)

where rmax is the maximum reward, γ is the discount factor, εm is a bound on the total variation
distance (TVD) between the learned model and the true model, and επ is a bound on the TVD
between π and πβ on the demonstrated states. By Pinker’s inequality, bounding the KL divergence
also bounds the TVD. Therefore, by leveraging policy constraints in the policy optimization in
MBPO, we can reduce the gap in expected returns and improve the algorithm’s robustness to model
errors.

4.2 BEHAVIOR-REGULARIZED MODEL-FREE RL WITH AWAC

For performing behavior-regularized policy optimization, we use AWAC (Nair et al., 2020), also
known as CRR-exp (Wang et al., 2020) due to its impressive results in offline RL and its ability to
be fine-tuned with additional online data.

By enforcing the KKT conditions (Peng et al., 2019; Peters & Schaal, 2007; Gómez et al., 2014),
we can derive an analytic solution to Equation 7, where the Lagrangian is

L(π, α) = Ea∼π(·|s) [Qπ(s, a)] + α(ε−DKL(π(·|s)‖πβ(·|s)))

We can substitute Aπ(s, a) for Qπ(s, a) because it does not affect the optimum and get the closed-
form solution

π∗(a|s) =
1

Z(s)
πβ(a|s) exp

(
Aπ(s, a)

α

)
where Z(s) is the normalizing partition function. In order to project this solution into our policy
space, we update our parameters by minimizing DKL(π∗‖πθ). This leads to the following iterative
update

θk+1 = arg min
θ

Es,a∼D
[
− log πθ(a|s)

1

Z(s)
exp

(
Aπk(s, a)

α

)]
(9)

We follow Wang et al. (2020) and Peng et al. (2019) and avoid estimating Z(s) and instead clamp
the exponential term to be at most 20. Additionally, one could adaptively learn α using dual gradient
descent, but this would require us to explicitly model the behavioral policy πβ . Instead, we use a
fixed α for all of our results. Additionally, the Q-function is updated off-policy using the Bellman
equations as described in Equation 2 and the improvements from section 2.1.

One of the major benefits of using AWAC with a fixed α is that we can leverage behavior regular-
ization in a principled manner without needing to explicitly represent the behavioral policy. This is
particularly important in 3 major cases: 1. when there are not enough data to learn the behavioral
policy; 2. when the data was collected by a variety of different policies or sources; 3. when the data
was collected by a policy outside of your policy class, such as a human expert or a controller that
leverages hidden state information.

Additionally, we can view AWAC as a reweighted behavioral cloning algorithm. Unlike SAC
(Haarnoja et al., 2018) and DDPG (Lillicrap et al., 2015), it does not rely on the reparametriza-
tion trick or gradients of your learned Q-function to perform policy updates. This allows us to use
a wider ranger of policy classes, which in this work we take advantage of by using a tanh squashed
GMM with 5 components. We suspect that there are also some additional benefits to not depending
on the gradients of the learned Q-function, which might be particularly bad in offline settings, but
leave further investigation to future work.

An important thing to note with AWAC is that we can influence the implicit behavioral penalty by
controlling the source of the data we train with. This holds, for example, if we perform a series
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of policy updates only using data collected by the previous policy iterate. Then, we are implicitly
performing a trust-region policy update like TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017) of the form

πk+1 = arg max
π

Ea∼π(·|s)[Qπk(s, a)] (10)

s.t. DKL(π(·|s)‖πk(·|s)) ≤ ε

In fact, if we train on data collected by the last n policy iterates, then we are approximately con-
straining our policy to a weighted sum of the previous n policies π(n)

k = 1
n

∑n−1
i=0 πk−i and damping

our learning process in the policy space.

In our work, we train with a ω ∈ [0, 1] portion of the data from offline data collected by πβ and a
(1− ω) portion of the data collected online from the last n policy iterates in the conservative MDP
defined by our learned models. Therefore, we are approximately optimizing the following objective

Ea∼π(·|s)
[
Q̂π(s, a)

]
− α

(
ωDKL(π(·|s)‖πβ(·|s)) + (1− ω)DKL(π(·|s)‖π(n)

k )
)

(11)

Therefore, by using AWAC as the policy optimization algorithm in MB2PO, we can easily perform
behavior-regularized policy optimization with soft damped trust region updates in the conservative
MDP to reduce the effects of model errors and poor uncertainty estimation.

4.3 MODEL-BASED BEHAVIOR-REGULARIZED POLICY OPTIMIZATION

Algorithm 1: MB2PO
Train πθ, Qφ with AWAC with samples from Dβ
Train an ensemble of N probabilistic dynamics
{T̂ iθ(st+1, r|st, at) = N (µiθ(st, at),Σ

i
θ(st, at))}Ni=1 on the data in Dβ

for epoch k= 1, 2, . . . do
Initialize empty replay buffer Dk
for 1, 2, . . . , batchsize do

Sample state s1 from Dβ
for j = 1, 2, . . . , h do

aj ∼ π(sj)

Uniformly sample T̂ from {T̂ i}Ni=1

sj+1, rj ∼ T̂ (sj , aj)
r̃j = rj − λmaxNi=1 ‖Σi(sj , aj)‖F
Add sample (sj , aj , r̃j , sj=1) to Dk

end
end
Draw ω portion of the samples from Dβ and the rest uniformly from {Dk−i}99i=0 to train πθ

and Qφ with AWAC
end

We first initialize our policy by training with AWAC solely on the offline data.

Next for fine-tuning with MB2PO, we train an ensemble of probabilistic dynamics models repre-
sented by neural networks that output a diagonal Gaussian distribution over the next state and re-
ward: {T̂ iθ(st+1, r|st, at) = N (µiθ(st, at),Σ

i
θ(st, at))}Ni=1. We construct a conservative MDP that

at every time step uses a randomly drawn dynamics model from {T̂ iθ}Mi=1 to determine the next state
transition. Additionally, we incorporate a penalty on the largest predicted standard deviation among
the dynamics models as a practical means of penalizing both epistemic and aleatoric uncertainty.

Then, we alternate between collecting data with our current policy in the conservative MDP and
updating our policy and Q-network using Equation 9 and Equation 2 respectively. When collecting
data in the conservative MDP, we collect h-length truncated trajectories starting from states in the
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original offline dataset. By collecting data this way, we are able to collect a variety of imagined
data without relying on long model rollouts, which would inevitably lead to compounding errors.
When performing training updates, we sample ω ∈ [0, 1] of the data from the original dataset and
the remaining 1 − ω uniformly from the last 100 policy iterates. Our full algorithm is outlined in
Algorithm 1.

5 EXPERIMENTS

Task and Dataset AWAC AWAC +
MB2PO(Ours)

MOPO BEAR BRAC-
v

CQL
(H)

halfcheetah-random 18.8 ±1.5 25.5 ±1.1 31.9 ± 2.8 25.5 28.1 35.4
hopper-random 11.2 ±0.1 11.4 ±0.1 13.3 ± 1.6 9.5 12.0 10.8
walker2d-random 1.4 ±3.0 0.2 ±2.3 13.0 ± 2.6 6.7 0.5 7.0
halfcheetah-medium 40.9 ±0.3 40.7 ±0.2 40.2 ± 2.7 38.6 45.5 44.4
hopper-medium 35.0 ±3.9 55.7 ±14.6 26.5 ± 3.7 47.6 32.3 58.0
walker2d-medium 74.3 ±1.6 80.4 ±0.9 14.0± 10.1 33.2 81.3 79.2
halfcheetah-expert 106.7 ±0.6 105.1 ±1.3 108.2 -1.1 104.8
hopper-expert 108.1 ±3.8 105.5 ±10.5 110.3 3.7 109.9
walker2d-expert 100.5 ±12.3 107.4 ±1.1 106.1 0.0 153.9
halfcheetah-medium-expert 104.7 ±1.6 104.8 ±1.1 57.9± 24.8 51.7 45.3 62.4
hopper-medium-expert 75.1 ±15.9 79.1 ±13.5 51.7± 42.9 4.0 0.8 111.0
walker2d-medium-expert 81.8 ±18.9 86.2 ±35.5 55.0± 19.1 26.0 66.6 98.7
halfcheetah-mixed 42.3 ±0.3 55.6 ±0.6 54.0 ±2.6 36.2 45.9 46.2
hopper-mixed 30.1 ±0.9 72.6 ±25.5 92.5 ±6.3 25.3 0.8 48.6
walker2d-mixed 16.9 ±1.7 61.9 ±8.2 42.7 ±8.3 10.8 0.9 26.7

Table 1: Here we compare AWAC (averaged over 4 seeds) and AWAC + MB2PO (Ours) (averaged
over 4 seeds) to recent offline model-free and model-based RL algorithms. We report the normalized
score where 100 is the performance of a fully trained SAC policy and 0 is the performance of a
uniform random policy. For the other methods, we report the results from their own papers or the
original D4RL paper. ”-expert” results for MOPO were not included in the original paper and thus
are omitted here. We include the stand deviation for our results and for previous results if reported.
We bold the highest mean.

In our experiments, we aim to address two questions: (1) Is AWAC an effective initialization algo-
rithm? (2) Can we further improve performance by fine-tuning with MB2PO?

We evaluate (1) by comparing AWAC to other state-of-the-art model-free offline RL algorithms. In
particular, we compare our results to BRAC-v (Wu et al., 2019), BEAR (Kumar et al., 2019), and
CQL (Kumar et al., 2020) on the Gym-MuJoCo tasks in the D4RL benchmark.

We evaluate (2) by fine-tuning the policy and Q-function, after running AWAC for 500000 gradient
steps, with MB2PO. In addition to the model-free offline RL algoirthm above, we also compare
these results to MOPO, which to the best of our knowledge is the state-of-the-art MB offline RL
algorithm on the Gym-MuJoCo tasks in the D4RL benchmark. All of our hyperparameters for
AWAC and MB2PO are given in the appendix.

The Gym-MuJoCo tasks are a standard in evaluating modern deep RL algorithms. The goal in
these tasks is to learn to travel as far forward as possible within a set horizon on a variety of dif-
ferent robots. The D4RL benchmark contains a variety of precollected datasets for the halfchee-
tah, walker2d, and hopper tasks. For each robot task, there are 5 different provided datasets. The
”-random” datasets contain 1 million samples collected from a randomly initialized policy. The
”-medium” datasets contain 1 million samples collected from a RL policy partially trained to a per-
formance of approximately 33. The ”-expert” datasets contain 1 million samples collected from a
fully trained RL policy that reaches approximately 100. The ”-mixed” datasets contain all the data in
the replay buffer from the partially trained ”medium” policy. Finally, the ”-medium-expert” datasets
are a combination of the ”-medium” and ”-expert” datasets. An important thing to note is that all
datasets besides the ”-mixed” datasets were collected with only 1 or 2 policies, and thus probably
only cover a narrow part of the state-action distribution. On the other hand, the ”-mixed” dataset
contains the data collected by all of the policy iterates during an incomplete RL training run, and
thus represents a much wider part of the state-action distribution.
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Results in Table 1 demonstrate that AWAC on its own can get reasonable results on all the datasets
and can approach state-of-the-art results on ”-expert” and ”-medium-expert” datasets. Unlike the
other behavior-regularized model-free methods, AWAC and CQL are able to get near or fully recover
expert-level performance when trained on the ”medium-expert-” datasets. This indicates that AWAC
and CQL are more robust as there is less of a drop in performance compared to other methods when
incorporating additional sub-optimal trajectories.

Next, we fine-tune the trained AWAC policies with MB2PO. For each task and dataset, we pretrain
an ensemble of 5 probabilistic dynamics models for 100000 gradient steps on the behavioral dataset.
We then perform MB2PO for 500 iterations. Each iteration consists of collecting 1000000 steps
from h-length truncated trajectories in the conservative MDP, which should run in a few seconds on
modern GPU hardware, followed by 1000 AWAC gradient steps.

Results in Table 1 demonstrate that our method is effective in improving the performance over
AWAC in 11 of the 15 tasks. In particular, we find that MB2PO significantly improves the per-
formance on all of the ”-mixed” datasets and even achieves state-of-the-art on ”walker2d-mixed”
by a large margin. These strong results in the ”-mixed” datasets demonstrate that our model-based
fine-tuning method can be especially beneficial when there is sufficient variation in the behavioral
dataset. Additionally, the noticeable improvement in some of the ”-medium” and ”-medium-expert”
datasets demonstrate that our fine-tuning can be effective even when the data was collected by one or
two policies. In the 4 cases where MB2PO fine-tuning degrades performance, it is always negligible
and never over 3 points.

Our method is quite competitive with CQL as we beat it for 7 of the 15 tasks, and generally our
results are quite comparable. One important note is that our method significantly outperforms CQL
in all of the ”-mixed” datasets. These results indicate the potential benefits of leveraging learned
models when there is variety in the offline dataset.

Finally, our method outperforms MOPO, the most direct comparison, in 8 out of the 12 comparable
tasks. These results demonstrate the benefits of combining behavior-regularized model-free RL with
uncertainty-aware MB RL as we are able to get the best of both worlds. We are able to recover high-
level performance when available like the ”-expert” and ”-medium-expert” datasets, and we can still
generalize and learn to outperform the best observed trajectory as demonstrated in the ”-medium”
and ”-mixed” datasets.

6 CONCLUSION

We proposed an algorithmic framework that leverages the benefits of both behavior-regularized
model-free methods and uncertainty-aware model-based methods. We do this by first training an
initial policy with the offline model-free AWAC algorithm. Then, we fine-tune with our MB2PO
algorithm. We perform this by learning uncertainty-aware models that are used to create a conser-
vative MDP. Then, we continue to use AWAC to further update our policy and Q-function in this
conservative MDP. By using AWAC, we are able to perform policy optimization while implicitly
constraining the learned policy’s KL divergence to the behavioral policy. We demonstrate that this
two-stage process allows us to get the best of both worlds between behavior-regularized model-free
methods and uncertainty-aware model-based methods. Specifically, the initial AWAC training al-
lows us to often recover the best-performing behavior in the dataset, and MB2PO fine-tuning can
allow us to generalize and outperform the demonstrated behavior.

We see four important directions of future work in order to extend the effectiveness and applicability
of MB2PO: 1. developing a rigorous means of determining for what datasets MB2PO fine-tuning can
be effective; 2. improving MB RL and neural network uncertain estimation to increase the number
of datasets where MB2PO can be effective; 3. better leveraging behavior-regularization in the policy
optimization or the conservative MDP to improve MB2PO’s ability to recover expert behavior when
available; 4. improving off-policy evaluation (Thomas et al., 2015) for neural network policies in
order to facilitate offline hyperparameter tuning.
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7 APPENDIX

All methods were trained with the Adam optimizer(Kingma & Ba, 2014)

7.1 AWAC

Our Q-networks and policies were represented with [256, 256, 256, 256] fully connected networks
with relu hidden-activations. The policy was a 5-head tanh squashed GMM. The Q-network out-
putted 100 quantiles and was trained with the following Q-learning improvement: Quantile Regres-
sion DQN (Dabney et al., 2017), Clipped DQN(Fujimoto et al., 2018), Double DQN(van Hasselt
et al., 2015), and Invertible Transforms(Pohlen et al., 2018). The advantage was estimated with 10
samples. We ran AWAC for 500000 gradient steps. The rest of the parameters were taken from the
original AWAC paper (Nair et al., 2020): α = 1., batch size 1024, policy weight decay 1.e − 4,
policy and Q learning rate 3.e− 4, soft target network update 5.e− 3.

7.2 MB RL (MOPO)

Our probabilistic dynamics models were represented with [200, 200, 200, 200] fully connected
networks with swish hidden-activations. The model inputs were normalized as x−µx

σx
based on the

statistics of the offline dataset. The models outputted a mean and variance for every state variable
and the reward. We trained the models for 100000 gradient steps. The rest of the parameters are:
batch size 256, weight decay 1.e− 4, learning rate 1.e− 3.

7.3 MB2PO

MB2PO used the same AWAC parameters as before, but changed α according to the table below.
We ran MB2PO for 500 iterations where each iteration consisted of collecting 1000000 samples
from truncated h-length trajectories with the current GMM policy, then training for 1000 steps with
ω of the data from real dataset and 1−ω of the data from imagined model rollouts from the last 100
iterations. We picked the better of α = 1, ω = {0.01, 0.05} for the mixed datasets, and the better of
α = {1, 2}, ω = 0.8 for the other datasets. We used h = 5 for several of the halfcheetah datasets
and h = 1 for the rest because any larger h tended to cause the Q-values to explode.

Task and Dataset alpha omega h lambda
halfcheetah-random 1. 0.8 5 1
hopper-random 1. 0.8 1 1
walker2d-random 1. 0.8 1 1
halfcheetah-medium 1. 0.8 5 1
hopper-medium 1. 0.8 1 1
walker2d-medium 1. 0.8 1 1
halfcheetah-expert 2. 0.8 1 1
hopper-expert 2. 0.8 1 1
walker2d-expert 2. 0.8 1 1
halfcheetah-medium-expert 2. 0.8 1 1
hopper-medium-expert 2. 0.8 1 1
walker2d-medium-expert 2. 0.8 1 1
halfcheetah-mixed 1. 0.01 5 1
hopper-mixed 1. 0.01 1 1
walker2d-mixed 1. 0.01 1 1
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