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Abstract

In this paper, we aim to solve data-driven model-based optimization (MBO) prob-
lems, where the goal is to find an input that maximizes an unknown objective
function provided access to only a static dataset of inputs and their corresponding
score values. Such data-driven optimization procedures are the only applicable
and scalable methods in many practical domains where active data collection is
expensive (e.g., when optimizing over proteins) or dangerous (e.g., when opti-
mizing over aircraft designs). Typical methods for MBO that optimize the input
against a learned model of the unknown score function are affected by erroneous
overestimation in the learned model that drives the optimizer to low-scoring or even
invalid inputs. To overcome this problem, we propose conservative objective mod-
els (COMs), a method that obtains estimators that are robust to out-of-distribution
inputs. In practice, COMs outperform existing methods on a wide range of MBO
problems over neural network controller weights, robot morphologies, molecule
substructures, superconducting materials, and proteins, in high-dimensional cases
achieving a performance of 1.3-2x times the best existing method.

1 Introduction

Black-box model-based optimization (MBO) problems are ubiquitous in a wide range of domains such
as protein [1] or molecule design [2], designing controllers [3] or robot morphologies [4], optimizing
neural network designs [5] and aircraft design [6]. Existing methods to solve such model-based
optimization problems often rely on a tight interaction loop between optimization and active data
collection [7]. Active data collection can be expensive or even dangerous: evaluating a real design
involves complex real-world procedures that must be performed under special conditions. While these
problems can be solved by building simulators, mimicking reality is often impossible. Therefore,
making progress on a broad range of MBO problems requires developing data-driven methods that
can obtain optimized designs by training highly generalizable and expressive deep neural network
models on a previously collected dataset of inputs (x) and their corresponding objective values (y),
without access to the true function or any form of active data collection [8]. Moreover, in a number
of these practical domains, such as protein [9] or molecule design [2], plenty of prior data already
exists and it can be utilized for completely offline model-based optimization.

Typical approaches for addressing MBO problems learn some sort of a model of the unknown
objective function (f̂(x)) that maps an input [7] (or a representation of the input [10]) to its objective
value via supervised regression, and then optimize the input against this learned model via, for
instance, gradient ascent. For MBO problems where the space of valid inputs forms a narrow
manifold in a high-dimensional space, any overestimation errors in the learned model will drive the
optimization procedure towards off-manifold, invalid and low-scoring inputs [8], as these will falsely
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Figure 1: Diagram of training and optimization using COMs. The section on the left indicates
that each task provides a static dataset that is collected offline without an MBO algorithm in-the-loop.
The section on the right shows how an objective model is used to refine promising designs using
gradient ascent, and how these designs are inputs to a conservative regularizer.

appear optimistic under the learned model. Since the procedure has no active data collection, the
algorithm is unable to recover from poor solutions which it erroneously predicts are optimal.

If we can instead learn a conservative model of the objective function, which represents a robust
version of the true function even on out-of-distribution inputs, optimizing against this conservative
model would produce solutions that perform well with respect to the true function, while avoiding the
aforementioned overestimation issue. In this paper, we propose a method to learn such conservative
objective models (COMs), and then optimize the design against this conservative function using
a very simple gradient-ascent procedure. Building on recent advances in offline reinforcement
learning [11, 12], the key idea behind our method is to train the learned score model with an
additional objective that maximizes the expected function value on inputs observed in the dataset and
minimizes the expected function value on out-of-distribution designs, generated using a specially
designed adversarial procedure. Further we use specially-designed variants of typically used ensemble
techniques to then perform hyperparameter selection for COMs, effectively making the void of any
new hyperparmeter.

The primary contribution of this paper is a novel approach for addressing data-driven model-based
optimization problems by learning a conservative model of the unknown objective function that is
robust to out-of-distribution inputs, and then optimizing the input against this conservative model via
an extremely simple gradient ascent procedure. COMs are simple to implement: they only require
training a model for the objective function, as opposed to other recent approaches that also train
generative models. By using specially designed techniques for offline hyperparameter selection, we
empirically demonstrate the efficacy of COMs on six complex MBO tasks that span a wide range
of real-world tasks including protein and molecule substructure design, neural network parameter
optimization, robot morphology design, and superconducting material design. On some tasks, COMs
outperform the best existing method on that task by a factor of 1.3-2x.

2 Preliminaries
The goal in data-driven, offline model-based optimization [8] is to find best possible or near-optimal
solution, x∗, to optimization problems of the form

x∗ ← argmax
x

f(x), (1)

where f(x) is an unknown (possibly stochastic) objective function. The MBO algorithm is provided
access to a static dataset D of inputs and their objective values, D = {(x1, y1), · · · , (xN , yN )}.
While a variety of MBO methods have been developed [10, 1, 8, 13], most methods for tackling
MBO problems fit a parametric model to the samples of the true objective function in D, f̂θ(x), via
supervised training: f̂θ(x)← argminθ

∑
i(f̂θ(xi)−yi)2, and find x∗ in Equation 1 by optimizing x

against this learned model f̂θ(x), typically with some mechanism to additionally minimize distribution
shift. Since closed-form optimization solutions may not exist when complex parametric models
such as deep neural networks are used, a common choice for optimizing x in Equation 1 is gradient

2



Algorithm 1 COM: Training Conservative Models

1: Initialize f̂θ . Partition D into validation data, Dval, and
train data D \ Dval. Pick T (Ttrain), η, α.

2: for i = 1 to training_steps do
3: Sample (x0, y) ∼ D
4: Find xT via gradient ascent from x0:
5: xt+1 = xt + η∇xf̂θ(x)

∣∣
x=xt

.
6: Minimize L(θ;α) with respect to θ.
7: L(θ;α) = (f̂θ(x)− y)2 − αf̂θ(x) + αf̂θ(xT )
8: θ ← θ − λθ∇θL(θ;α)
9: end for

Algorithm 2 COM: Finding x?

1: Select N values of α: {α1, · · · , αN}.
2: Run Algorithm 1 for each αi, to obtain the

corresponding f̂?θ (i).
3: Select α∗ using Equation 6 and let the corre-

sponding function be denoted as f̂?θ .
4: Initialize optimizer at the optimum in D:
5: x̃ = argmax(x,y)∈D y
6: Find x? via gradient ascent from x̃:
7: xt+1 = xt + η∇xf̂

?
θ (x)

∣∣
x=xt

.
8: Return the solution x? = xTeval .

descent on the learned function as given by

xk+1 ← xk + α∇xf̂θ(x)|x=xk
, for k ∈ [1, T ], x? = xT . (2)

The fixed point of the above procedure xT is then the output of the MBO procedure. In high-
dimensional input spaces, where valid x values lie on a narrow manifold in a high-dimensional space,
such an optimization procedure is prone to producing low-scoring inputs, which may not even be
valid. This is because f̂ may erroneously overestimate objective values at out-of-distribution points
which would naturally lead the optimization to such invalid points. For notational convenience let,
D̂(x) =

∑
xi∈D δx=xi

denote the empirical distribution of inputs x in the dataset.

3 Conservative Objective Models for Model-Based Optimization
In this section, we present our approach, conservative objective models (COMs). COMs learn
estimates of the true function that is robust to out-of distribution inputs. Robustness of the objective
function prevents erroneous overestimation that would drive the optimizer (Equation 2) to produce
out-of-distribution and low-scoring inputs, giving rise to stable and robust optimization behavior. We
first discuss a procedure for learning such robust estimates and explain how these conservative models
can be used for MBO, and then discuss a simple, ensembling-based procedure for hyperparameter
selection that makes COMs fully amenable to completely offline training.

Learning conservative objective models (COMs). Building on recent methods from offline
RL [12], the key idea behind our approach is to augment the training of a learned objective model,
f̂θ(x), with a regularizer that minimizes the expected value of this function under a specially chosen
adversarial distribution µ(x), while also maximizing the expected value of this function under the
empirical distribution of the inputs x, D̂(x), in the dataset D. We will discuss the choice of µ(x) in
the next part of this section. Formally, this objective is given by the following equation, where α is a
parameter that trades off conservatism for regression.

f̂?θ ← argmin
θ∈Θ

α
(
Ex∼µ(x)

[
f̂θ(x)

]
− Ex∼D

[
f̂θ(x)

])
+

1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]
, (3)

The value of α and the choice of distribution µ(x) play a crucial role in determining the utility of
this bound. For instance, if µ(x) is not chosen carefully, then the learned function f̂?θ may not be a
lower-bound on the x of interest (for example, the value of x found by the optimization procedure).
Similarly, if the chosen α is very small, then the resulting f̂?θ (x) may not be a robust estimate of
the actual function f(x), whereas if the chosen α is too large, then the learned function will behave
primarily as a discriminator between µ(x) and D̂(x), and be less useful for optimization. We will
how to choose µ(x) and α in this section, but we first discuss how f̂ can be used for optimization.

Using COMs for offline model-based optimization. Once we have obtained a conservative model
of the score function from Equation 3, we must use this learned model for finding the best possible
input, x?. While prior works [8, 1] use f̂?θ in conjunction with generative models, we find it sufficient
to run T iterations of naïve gradient ascent on f̂?θ , starting from the best point x0 ∈ D, as shown in
Equation 4 (and in Algorithm 2, Line 6):

x? = xT , where xt+1 = xt + η∇xf̂
?
θ (x)

∣∣
x=xt

∀ t ∈ [1, · · · , T ] and x0 ∼ D. (4)
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Choosing µ(x). Since our goal is to use the conservative objective model f̂?θ for optimization, as
dictated by Equation 4, we are primarily interested in preventing erroneous overestimation on xT
generated from the learned objective model. As a result, our choice of µ(x) specifically selects
candidate points x that can be generated by performing T steps of gradient ascent starting from
any data point x0 sampled from the dataset, on the current instance of f̂θ. To convert this into a
valid training objective, we design a minimax optimization problem that selects µ(x) in the manner
described above, which is given below, with changes from Equation 3 indicated in red:

min
θ∈Θ

max
µ(xT |x0)

L(θ, µ;α) := α
(
Ex0∼D,xT∼µ(xT |x0)

[
f̂θ(xT )

]
− Ex∼D

[
f̂θ(x)

])
+

1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]
+

1

2η
Ex0∼D,xT∼µ(xT |x0)

[
||x0 − xT ||22

]
. (5)

Choosing α. The remaining piece in converting the procedure discussed in Equations 3 and 5 into a
viable algorithm is to devise a scheme that automatically selects the values of the hyperparameter
α. As discussed previously, if α is too large, f̂?θ is expected to behave like a discriminator, and not
as an objective function, since it would assign higher values to inputs in the dataset, and low values
to all other inputs even if they have high objective values. Automating the selection of α is hard,
since its value depends strongly on the magnitude of the groundtruth objective, which is unknown in
general. Instead, we use a modified training procedure in Equation 3 or 5 that poses Equation 3 as
a constrained optimization problem with α assuming the role of a Lagrange dual variable towards
satisfying a constraint that controls the difference in values of the learned objective under µ(x) and
D(x). This is formally captured as solving the following optimization problem:

f̂?θ ← argmin
θ∈Θ

1

2
E(x,y)∼D

[(
f̂θ(x)− y

)2
]

s.t.
(
Ex∼µ(x)

[
f̂θ(x)

]
− Ex∼D

[
f̂θ(x)

])
≤ τ. (6)

While Equation 6 introduces a new hyperparameter τ in place of α, we argue that τ can uniformly
be controlled over all he tasks without considerations for the landscape of the groundtruth objective
function. Empirically, we demonstrate in Section 5 that COMs are considerably robust to the values
of τ ≤ 0.1, and a single value of τ = 0.05 is effective on every task.

Selecting optimized designs x?. So far we have discussed how COMs can be trained and used
for optimization, however we have not established a way to determine which xt (Equation 4) en-
countered in the optimization trajectory should be used as our final solution x?. Simply picking
a random xt ∼ Xopt := {x1, · · · ,xTeval} is not sufficient as performance is generally highly vari-
able within this set Xopt (see Section 5), which motivates the need for an offline model-selection
strategy to select promising xt samples. Our mechanism for model-selection uses an ensemble of
separately trained objective models to rank the performance of different xt values obtained during
gradient ascent and we then return x? that performs the best in terms of its prediction under this
ensemble of models. Concretely, our ensemble consists of N independently trained standard ob-
jective models, (f̃1(x), · · · , f̃N (x)) and we use the minimum predicted value over the ensemble,
f̃(x) := min(f̃1(x), · · · , f̃N (x)) as the ranking statistic for input iterates x1, · · · ,xTeval obtained via
gradient ascent on the COM for large enough values of Teval. We then return x? := argmaxx f̃(x)
that maximizes the ranking statistic as the solution to the optimization problem.

Overall algorithm and practical implementation. Finally, we combine the individual components
discussed above to obtain a complete algorithm for offline model-based optimization. Pseudocode
for our algorithm is shown in Algorithm 1. COMs parameterize the objective model, f̂θ(x), via a
feed-forward neural network with parameters θ. Our method then alternates between approximately
generating samples xTtrain ∼ µ(x) via gradient ascent (Line 4), and optimizing parameters θ using
Equation 5 (Lines 7 and 8). Crucially, note that when optimizing θ using gradient ascent (Line 6),
we utilize the complete derivative w.r.t. θ and do not stop gradient flow through the θ-dependent
process that generates xT starting from x0. Finally, at the end of training, we run the gradient ascent
procedure over the learned objective model f̂?θ (x) for a large Teval number of gradient steps and then
use our specially designed model-selection strategy to select one of the inputs encountered in the
optimization trajectory Xopt = (x1, · · · ,xTeval) as our final solution x?.

Implementation details. For all of our experiments, the conservative objective model f̂θ is modeled
as a neural network with two hidden layers of size 2048 each and leaky ReLU activations. More
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D (best) MINs CbAS Autofocus Grad. ascent COMs (ours)
A 3.152 3.315 ± 0.033 3.408 ± 0.029 3.365 ± 0.023 2.894 ± 0.001 3.305 ± 0.024
B 6.558 6.508 ± 0.236 6.301 ± 0.131 6.345 ± 0.141 6.401 ± 0.186 6.876 ± 0.128
C 73.90 80.23 ± 10.67 72.17 ± 8.652 77.07 ± 11.11 89.64 ± 9.201 110.0 ± 6.804
D 1361.6 746.1 ± 636.8 547.1 ± 423.9 443.8 ± 142.9 1050.8 ± 284.5 2395.7 ± 561.7
E 108.5 388.5 ± 9.085 393.0 ± 3.750 386.9 ± 10.58 399.9 ± 4.941 378.8 ± 10.01
F 215.9 352.9 ± 38.65 369.1 ± 60.65 376.3 ± 47.47 390.7 ± 49.24 341.4 ± 28.47

Table 1: Comparative evaluation of COMs against prior methods in terms of the mean 100%-
percentile score and its standard deviation over 16 trials. Task letters correspond to (A) GFP-v0, (B)
MoleculerActivity-v0, (C) Superconductor-v0, (D) HopperController-v0, (E) AntMorphology-v0,
and (F) DkittyMorphology-v0, standard tasks provided by [15]. COMs perform strictly better on
high-dimensional tasks, obtaining about 2x gains on HopperController-v0, and compelling gains on
MoleculeActivity-v0 and Superconductor-v0 tasks. In addition, COMs is shown to be stable across
domains, and is the only method that is able to consistently find solutions that outperform the best
training point for each task, given by D (best).

details on the network structure can be found in Appendix A. In order to train this conservative
objective model, we use the Adam optimizer [14] with a learning rate of 10−3. Empirically, we
found larger values of η to produce xT with extremely low values of f̂?θ (xT ) and thus selected the
largest η that avoided this phenomenon in practice. We utilize the ensemble-based model-selection
scheme to select the optimized input x? obtained out of set Xopt obtained by running gradient ascent
for a large Teval = 500. Crucially, our ensembles consist of 8 different neural networks with varying
activation functions (more details in Appendix B), which we found to be key in enabling effective
model-selection for x?. A naïve ensembling scheme which consists of neural network f̃i(x) with
the same architecture and activation function only produced generally selected x? = xTeval which
generally had worse performance. We set τ = 0.05 uniformly across all tasks, and use Lagrangian
dual descent for automatic tuning of the Lagrange multiplier α.

4 Related Work

We now briefly discuss prior works in model-based optimization, including prior work on active
model-based optimization and work that utilizes offline datasets for data-driven MBO.

Bayesian optimization. Most prior work on model-based optimization has focused on the active
setting, where derivative free methods such as the cross-entropy method [16] and other methods
derived from the REINFORCE trick [17, 18], reward-weighted regression [19], and Gaussian pro-
cesses [20, 21, 7] have been utilized. Most of these methods focus mainly on low-dimensional
tasks with active data collection. Practical approaches have combined these methods with Bayesian
neural networks [20, 7], latent variable models [22, 23, 24], and ensembles of learned score mod-
els [25, 26, 27]. These methods still require actively querying the true function f(x). Further,
as shown by [1, 13, 8], these Bayesian optimization methods are susceptible to producing invalid
out-of-distribution inputs in the offline setting. Unlike these methods, COMs are specifically designed
for the offline setting with high-dimensional inputs, and avoid out-of-distribution inputs.

Offline model-based optimization. Recent works have also focused on optimization in the com-
pletely offline setting. Typically these methods utilize a deep generative model [28, 29] that models
the manifold of inputs. [1, 13] use a variational autoencoder [28] to model the space of x and use it
alongside a learned objective function. [8] learn an inverse map from the scalar objective y to input x
and search for the optimal one-dimensional y during optimization. Modeling the manifold of valid
inputs globally can be extremely challenging (see Ant, Hopper and DKitty results in Section 5), and
as a result these generative models often need to be tuned for each domain [15]. In contrast, COMs
do not require any generative model, and instead fit an approximate objective function with a simple
regularizer, providing both a simpler algorithm and better empirical performance.

Adversarial examples. As discussed in Section 2, MBO methods based on learned objective models
naturally query the learned function on “adversarial” inputs, where the learned function erroneously
overestimates the true function. This is superficially similar to adversarial examples in supervised
learning [30] which can be generated by maximizing the input against the loss function. While
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Figure 2: Stability of conservative score models versus naive gradient ascent. The x-axis shows
the number of gradient ascent steps taken on the design X∗ and the y-axis shows the 100th percentile
of the ground truth task score function evaluated at every gradient step. The orange line corresponds
to the performance of samples from COMs, whereas the dark blue line corresponds to a naive gradient
ascent optimizer. Predictions of an ensemble of models that are not used for gradient calculation are
shown with dashed lines of the same color. In every case, COMs reaches solutions that remain at
higher performance for longer—indicating COMs have improved stability.

adversarial examples have been formalized as out-of-distribution inputs lying in the vicinity of the data
distribution and prior works have attempted to correct for them by encouraging smoothness [31] of the
learned function, and there is evidence that robust objective models help mitigate over estimation [32],
these solutions may be ineffective in MBO settings when the true function is itself non-smooth.
Instead making conservative predictions on such adversarially generated inputs may prevent poor
performance.

5 Experimental Evaluation

The goal of our experimental evaluation is to evaluate the efficacy of COMs for offline model-based
optimization. To this end, we first perform a comparative evaluation of COMs on six offline MBO
tasks based on problems in physical sciences, neural network design, and biology proposed in the
design-bench benchmark [15]. Then, we perform an empirical analysis on COMs that aims to answer
the following questions: (1) How effective is the ensembling strategy discussed in Section 3 for
hyperparameter selection?, (2) Is the conservative training loss essential for preventing optimization
from being driven to out-of-distribution inputs?, and (3) Are COMs robust to hyperparameter choices?
We answer these questions by comparing standard COMs and COMs when various components of
the method are turned off.

5.1 Empirical Performance on Benchmark Tasks

We first compare COMs to a range of recently proposed methods for offline MBO in high-dimensional
input spaces: CbAS [1], MINs [8] and autofocused CbAS [13], that augments CbAS with a re-
weighted objective model. CbAS and MINs train generative models such as VAEs [28] and GANs [29],
which generally require task-specific neural net architectures as compared to substantially simpler
COMs. Moreover, generative models can be hard to train in many cases, for example, a VAE/GAN
can be unstable when optimizing over discrete input spaces.

Our evaluation protocol is drawn follows prior work [1, 15]: we query each method to obtain the top
N = 128 most promising optimized samples according to the model x?1, · · · ,x?N , and then report
the 100th percentile ground truth objective values on this set of samples, max(x?1, · · · ,x?N ) averaged
over 16 trials. We would argue that such an evaluation scheme is reasonable as it is typically followed
in real-world MBO problems where a set of optimized inputs are produced by the model, and the best
performing one of them is finally used for evaluation.

Our results for different domains are shown in Table 1. The set of domains studied includes a
combination of those studied in prior work: (i) GFP-v0 [1], where the goal is to optimize over
238-dimensional protein sequences to maximize fluorescence using a dataset of 5000 points, (ii)
HopperController-v0 [8], where the goal is to optimize over 5126-dimensional weights of a neural
network policy on the Hopper-v2 gym domain using a dataset of 3200 points, (iii) Superconductor-
v0 [13], where the goal is to optimize over 81-dimensional superconductor designs to maximize the
critical temperature using 16953 points, (iv) Ant and DKittyMorphology-v0, where the goal is to

6



0 100 200 300 400 500

Gradient ascent steps

2000

4000

6000

8000

10000

P
re

d
ic

te
d

re
tu

rn

HopperController-v0

0 100 200 300 400 500

Gradient ascent steps

100

200

300

400

P
re

d
ic

te
d

te
m

p
e
ra

tu
re Superconductor-v0

0 100 200 300 400 500

Gradient ascent steps

3

4

5

6

P
re

d
ic

te
d

fl
u

o
re

sc
e
n

ce GFP-v0

0 100 200 300 400 500

Gradient ascent steps

0

50

100

150

P
re

d
ic

te
d

a
ct

iv
it

y

MoleculeActivity-v0

Training Prediction Naive Ensemble Varying Activations

Figure 3: Predictions of different models out-of-distribution. In each plot, the predictions of a
model whose input is optimized with gradient ascent is shown in solid orange, and the predictions
of two ensemble methods are shown with dashed lines. The Naive Ensemble trains with different
bootstraps, but uses the same architecture as the training model. The strategy labelled Varying
Architecture corresponds to our ensembling strategy. The x-axis indicates the number of gradient
ascent steps taken on the design x∗. The y-axis corresponds to model predicted scores.

design the 56-dimensional morphology of robots to maximize policy performance using datasets
of size 12300 and 9546 respectively, and (v) MoleculeActivity-v0 [33], where the goal is to design
1024-dimensional substructure fingerprints to maximize activity with a target assay using a dataset of
size 4216. Results for baseline methods are based on numbers reported by [15]. Additional details
for the setup of each offline MBO task is provided in Appendix Section C.

Observe in Table 1, that on all tasks COMs either attain the best results or attain results comparable
with the best performing method on that task. In addition, COMs are shown to be the only method to
attain higher performance that the best training point on every task. While COMs perform similarly to
CbAS and MINs on GFP-v0 and DKittyMorphology-v0, it substantially outperforms prior methods
on the high-dimensional HopperController-v0 and Superconductor-v0 tasks, by a factor of 1.3-2x.
A naïve objective model without the conservative term, which is prone to falling off-the-manifold
of valid inputs, indeed performs poorly in all cases. While combining this naïve model with our
proposed model-selection strategy improves its performance greatly, it is still worse as compared
to COMs in each case. These results indicate that COMs can serve as simple yet powerful method
for offline MBO across a variety of domains. Furthermore, note that COMs only require training a
parametric model y = f̂(x) of the objective function with a regularizer, without any need for training
a generative model, which may be harder in practice to tune.

5.2 Ablation Studies

In this section, we perform an experimental analysis of COMs to answer questions posed at the
beginning of Section 5. First we evaluate the efficacy of the proposed ensembling scheme for selecting
the optimized solution x?. In order to better compare the optimization trajectories from different
methods, we visualize the true objective value for each xt encountered during gradient-ascent in
Figure 2. Observe that a naïve objective model can attain good performance for a specific “hand-
tuned” number of ascent steps, and applying our model-selection scheme on this nav̈e model gives a
boost in its performance in some cases. Furthermore, note that a naïve ensemble that does not vary
activation functions in the ensemble has its predictions continually increase in Figure 3 and typically
selects the final xt, leading to worse performance. This evidence strongly indicates that effective
model-selection is crucial to the success of MBO methods that learn an objective model and optimize
with respect to it’s inputs, to which our proposed scheme is effective.
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Figure 4: Ablation of sensitivity to the conserva-
tive threshold τ . Performance is stable for a small
range of τ . This figure shows performance (y-axis)
evaluated using our offline stopping criterion that
leverages an ensemble’s predictions, versus several
values of the conservatism threshold τ (x-axis).
The value chosen in our experiments is τ = 0.05
which works well in both of these examples. While
performance decays when τ is too large, for val-
ues of τ close to 0.05 remain competitive with the
results we report in Table 1.

Next, we evaluate the necessity of conservatism
induced by COMs by comparing COMs in Fig-
ure 2 to a naïve objective model equipped with
our proposed model-selection scheme. Observe
that COMs are considerably more robust than a
naïve objective models, and significantly many
xt values in their optimization trajectory attain
good performance. Why is this important? Ob-
serve in Figure 2, that while our model-selection
strategy is reasonably effective in removing a
hand-tuned number of ascent steps, it does not
precisely select xt that are optimal, but selects
points that lie close to peak performance. If over-
estimation errors in a naïve learned model drive
the optimizer to out-of-distribution xt values
within a few ascent steps, it seems unlikely that
we will be able to perform robust and stable op-
timization with naïve models even with sophis-
ticated model-selection schemes. On the other
hand, our conservative method is relatively sta-
ble at peak performance giving rise to more ro-
bust optimization performance than prior meth-
ods.

Finally, we evaluate the sensitivity of COMs to the value of τ chosen universally across environments
by comparing the sensitivity of performance of COMs with respect to τ on two tasks (Superconductor
and MoleculeActivity) in Figure 4. Note that in both cases, a single value of τ = 0.05 gives rise to
effective optimization performance. Hence we can conclude that while COMs do not eliminate the
hyperparameter τ , τ is a domain-independent hyperparameter which can be fixed to a constant value,
such as τ = 0.05, a value strongly supported by the plots in Figure 4.

6 Discussion

We proposed conservative objective models (COM), a simple method for offline model-based op-
timization, that learns a conservative estimate of the actual objective function and optimizes the
input against this estimate. Empirically, COMs are more stable than prior MBO methods, returning
solutions that are comparable to and even better than the best existing MBO algorithms on six
benchmark tasks. In this evaluation, COMs are consistently high performing, and in the most high-
dimensional cases, COMs improves on the next best method by a factor of 1.3-2x. The simplicity of
COMs combined with their empirical strength make them a promising optimization backbone to find
solutions to challenging and high-dimensional offline MBO problems. In contrast to certain prior
methods, COMs are designed to mitigate overestimation of out-of-distribution inputs, and show an
improvement to stability once good solutions to the optimization problem are found. Coupled with
our effective model-selection criterion, the proposed algorithm is fully offline.

While our results suggest that COMs are effective on a number of MBO problems, there exists room
for improvement. The somewhat naïve gradient-ascent optimization procedure employed by COMs
can likely be improved by combining it with manifold modelling techniques, which can accelerate
optimization by alleviating the need to traverse the raw input space. Similar to offline RL and
supervised learning, learned objective models in MBO are prone to overfitting, especially in limited
data settings. Understanding different mechanisms by which overfitting can happen and correcting
for it is likely to greatly amplify the applicability of COMs to a large set of practical MBO problems
that only come with small datasets. Finally, despite improvements to stability provided by COMs,
a model-selection scheme is needed because samples eventually fall off-manifold. Understanding
why and how samples found by gradient ascent become off-manifold could result in a more powerful
gradient-ascent optimization procedure that does not require a model-selection scheme.
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Appendices
In this appendix we provide additional details about the network architectures used in the ensemble
of models that is used to determine when to stop taking gradient ascent steps in COMs.

A Network Details

The network architecture for each model in the ensemble consistent of an 8 layer fully connected
neural network with 32 hidden unite in every layer. The number hidden units was held fixed for every
task. In other words, the network architecture for these models was held fixed for every task. In
addition, each hidden layer is followed by a ReLU activation function for except for a single layer,
which instead uses a tanh activation function. For model i in the ensemble, every layer has a ReLU
activation function except for layer i, which employs a tanh activation function. We empirically found
that using an activation function that is bounded above and below, like tanh, in conjunction with an
activation function that is only bounded below (like ReLU) produced the best ensembling behavior
for determining when to stop taking gradient ascent steps.

B Ensemble Details

Like what was briefly mentioned in the previous section of the appendix, for every task we employ
an ensemble of 8 different neural networks, using the architecture selection method described in
Section A. Our selection method is intended to produce an ensemble of networks with different
architectures, such that each model is resilient to out-of-distributions found by COMs. In practice,
we found that * models is sufficient to achieve this resiliency. However, from our perspective, such
an empirical trick deserves to be the subject of further investigation, and that investigation, and
justification is left as future work. We stop at the max index of the min prediction in the ensemble.

C Data Collection

In this section, we detail the data collection steps used for creating each of the tasks in design-bench.
We answer (1) where is the data from, and (2) what pre-processing steps are used?

C.1 GFP-v0

The GFP task provided is a derivative of the GFP dataset [34]. The dataset we use in practice is that
provided by [35] at the url https://github.com/dhbrookes/CbAS/tree/master/data. We
process the dataset such that a single training example consists of a protein represented as a tensor
xGFP ∈ {0, 1}238×20. This tensor is a sequence of 238 one-hot vectors corresponding to which amino
acid is present in that location in the protein. We use the dataset format of [35] with no additional
processing. The data was originally collected by performing laboratory experiments constructing
proteins similar to the Aequorea victoria green fluorescent protein and measuring fluorescence.

C.2 MoleculeActivity-v0

The MoleculeActivity task is a derivative of a much larger dataset that is derived from ChEMBL [? ],
a large database of chemicals and their properties. The data, similar to GFP, was originally collected
by performing physical experiments on a large number of molecules, and measuring their activity
with a target assay. We have processed the original dataset presented in [33], which consists of more
than one million molecules and 11,000 assays, into a smaller scale task with 4216 molecules and
a single assay. We select this assay by first calculating the number of unique scores present in the
dataset per assay, and sorting the assays by the number of unique scores. We select assay 600885
from [33]. This particular assay has 4216 molecules after pre-processing. Our pre-processing steps
include converting each molecule into a one-hot tensor xMolecule ∈ {0, 1}1024×2. This is performed
by calculating the Morgan radius 2 substructure fingerprints of 1024 bits, which is implemented in
RDKit. This calculation requires the SMILES representation for each molecule, which is provided by
[33]. The final step of pre-processing, is to sub sample the dataset by defining a percentile used to

12

https://github.com/dhbrookes/CbAS/tree/master/data


select and discard high-performing molecules, such that difficulty of the task is artificially increased.
We use a split percentile of 80 for MoleculeActivity in the experiments in this paper.

C.3 Superconductor-v0

Superconductor-v0 is inspired by recent work [13] that applies offline MBO to optimize the properties
of superconducting materials for high critical temperature. The data we provide in our benchmark is
real-world superconductivity data originally collected by [36], and subsequently made available to the
public at the url https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#.
The original dataset consists of superconductors featurized into vectors xSuperconductor ∈ R81. One
issue with the original dataset is that the largest value of a single dimension in the dataset is 22590.0,
which appears to cause learning instability. We follow [13] and normalize each dimension of the
design-space to have zero mean and unit variance. However, we deviate from the remaining pre-
processing steps in [13]. In order to promote task realism, we directly use the superconductivity data,
whereas [13] re-samples by collecting iid unit gaussian samples and labelling them with the task
oracle function. This causes the scores in the dataset to correspond exactly to the scores provided by
the oracle. No other domain in design-bench re-samples nor re-labels static data, so we omit it here
for consistency.

C.4 HopperController-v0

The HopperController task is one that we provide ourselves. The goal of this task is to design a set of
weights for as neural network policy, in order to achieve high expected return when evaluating that
policy. The data collected for HopperController was taken by training a three layer neural network
policy with 64 hidden units and 5126 total weights on the Hopper-v2 MuJoCo task using Proximal
Policy Optimization [37]. Specifically, we use the default parameters for PPO provided in stable
baselines [38]. The dataset we provide with this benchmark has 3200 unique weights. In order to
collect this many, we run 32 experimental trials of PPO, where we train for one million steps, and
save the weights of the policy every 10,000 environment steps. The policy weights are represented
originally as a list of tensors. We first traverse this list and flatten each of the tensors, and we then
concatenate each of these flattened tensors into a single training example xHopper ∈ R5126. The result
is an optimization problem over neural network weights. After collecting these weights, we perform
no additional pre-processing steps. In order to collect scores we perform a single rollout for each x
using the Hopper-v2 MuJoCo environment. The horizon length for training and evaluation is limited
to 1000 simulation time steps.

C.5 AntMorphology-v0 & DKittyMorphology-v0

Both morphology tasks are collected by us, and share methodology. The goal of these tasks is to
design the morphology of a quadrupedal robot—an ant or a D’Kitty—such that the agent is able to
crawl quickly in a particular direction. In order to collect data for this environment, we create variants
of the MuJoCo Ant and the ROBEL D’Kitty agents that have parametric morphologies. The goal is
to determine a mapping from the morphology of the agent to the average return that an agent trained
for a particular intended morphology achieves. We implement this by pre-training a neural network
policy using SAC [39]. For both the Ant and the D’Kitty, we train agents for up to three million
environments steps, and a maximum episode length of 1000, with all other settings as default. These
agents are pre-trained for a fixed gold-standard morphology—the default morphology of the Ant
and D’Kitty respectively. Each morphology task consists of samples obtained by adding Gaussian
noise with standard deviation 0.02 for Ant and 0.01 for DKitty times the design-space range to the
gold-standard morphology. We label each sampled morphology by averaging the return of 16 rollouts
of length 100 of an agent with that morphology.

D Oracle Functions

We detail oracle functions for evaluating ground truth scores for each of the tasks in design-bench. A
common thread among these is that the oracle, if trained, is fit to a larger static dataset containing
higher performing designs than observed by a downstream MBO algorithm.
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D.1 GFP-v0

GFP-v0 uses the oracle function from [35]. This oracle is a Gaussian Process regression model with
a protein-specific kernel proposed by [40]. The Gaussian Process is fit to a larger dataset than the
static dataset packaged with GFP-v0, making it possible to sample a protein design that achieve a
higher score than any other protein seen during training. The oracle score for GFP-v0 is implemented
as the mean prediction of this Gaussian Process.

D.2 MoleculeActivity-v0

Following the procedure set by [33], the oracle function we use for MoleculeActivity-v0 is a random
forest regression model. In particular, we use the RandomForestRegressor provided in scikit-learn,
using identical hyperparameters to the random forest regression model used in [33]. The random
forest is trained on the entire task dataset. In practice, samples that score at most the 80th percentile
are observed by an MBO algorithm, which allows for sampling unobserved points that score higher
than the highest training point.

D.3 Superconductor-v0

The Superconductor-v0 oracle function is also a random forest regression model. The model we use
it the model described by [36]. We borrow the hyperparameters described by them, and we use the
RandomForestRegressor provided in scikit-learn. Similar to the setup for the previous two tasks,
this oracle is trained on the entire static dataset, and the task is instantiated with a split percentile.
Samples scoring at most in the 80th percentile are observed by an MBO algorithm, which allows for
sampling unobserved points that score in the unobserved top 20 percent.

D.4 HopperController-v0

Unlike the previously described tasks, HopperController-v0 and the remaining tasks implement an
exact oracle function. For HopperController-v0 the oracle takes the form of a single rollout using the
Hopper-v2 MuJoCo environment. The designs for HopperController-v0 are neural network weights,
and during evaluation, a policy with those weights is instantiated—in this case that policy is a three
layer neural network with 11 input units, two layers with 64 hidden units, and a final layer with 3
output units. The intermediate activations between layers are hyperbolic tangents. After building
a policy, the Hopper-v2 environment is reset and the reward for 1000 time-steps is summed. That
summed reward constitutes the score returned by the HopperController-v0 oracle. The limit of
performance is the maximum return that an agent can achieve in Hopper-v2 over 1000 steps.

D.5 AntMorphology-v0 & DKittyMorphology-v0

The final two tasks in design-bench use an exact oracle function, using the MuJoCo simulator. For
both morphology tasks, the simulator performs 16 rollouts and averages the sum of rewards attained
over them. Each task is accompanied by a pre-trained neural network policy. To perform evaluation,
a morphology is passed to the Ant or D’Kitty MuJoCo environments respectively, and a dynamic-
morphology agent is initialized inside these environments. These environments are very sensitive to
small morphological changes, and exhibit a high degree of stochasticity as a result. To compensate
for the increased stochasticity, we average returns over 16 rollouts.
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