
Supplementary material

A Training procedure details

A.1 Algorithm details

We train a policy, critic and reward model simultaneously as shown in Algorithm 1. However, the
reward model can be trained separately first, and then used to annotate datasets DE and DU with
reward estimates. Both these approaches result in similar agent performance.

Algorithm 1 implements ORIL with PU learning (ORILP). The data augmentation is done as in [40].
The critic update is based on the discrepancy between the current estimate of the action-value and
the TD-update (where the next step reward is estimated by reward model R). This discrepancy is
measured by a divergence measure or a metric D, such as KL-divergence or squared error. In this
paper, we use a distributional Q-function as in [37] and use the divergence measure proposed in [3].

Algorithm 1: Offline Reinforced Imitation Learning
Input: critic, policy and reward networks: Q✓ , ⇡� and R , and its target versions: Q✓0 , ⇡�0 , R 0 ,

divergence measure D, expert dataset DE and unlabeled dataset DU , hyperparameter ⌘, number of
updates nupdates;

Begin: Split DU in half to get D1
U and D2

U .
for nupdates do

/* Reward learning */
Sample expert and unlabeled batches, i.e. BE ⇢ DE and BU ⇢ D1

U ;
Augment images in BE and BU to obtain augmented batches BE and BU ;
Train reward model using augmented batches BE and BU :

Update reward network parameters with gradient:

�r ⌘Est⇠BE
[� log(R (st))]+Est⇠BU

[� log(1�R (st))]�⌘Est⇠BE
[� log(1�R (st))]

/* Policy and critic learning */
Sample additional unlabeled batch from D2

U , i.e. B2
U ⇢ D2

U ;
Concatenate (not augmented) expert and both unlabeled batches: B = BE [B1

U [B2
U ;

Apply CRR updates using rewards predicted by R 0 :
Update critic network parameters ✓ with gradient:
�r✓E(st,at,st+1)⇠BD

⇥
Q✓(st, at), R 0(st+1) + �Ea⇠⇡�0 (st+1)Q✓0(st+1, a)

⇤
;

Update policy network parameters � with gradient:
�r�E(st,at)⇠B log ⇡�(at|st)I [Q✓(st, at) > Q✓(st,⇡�(st))];

/* Target networks update */
Update the target networks every N steps by copying parameters: ✓0 ✓, �0 �, 0 ;

end

A.2 Hyperparameters

We parametrize the critic, policy and reward models with neural networks. The policy and critic
architectures are identical to the ones used in Critic Regularized Regression work [37], and the reward
model architecture is inspired by the critic network. All networks are described in details below and
presented in Figure 7.

We use the same hyperparameters as in [37]. We train all our models for 1e6 learner steps and always
with 3 seeds. We compute the mean return between 5e5 and 1e6 learner steps for each seed. This
gives three values of mean returns (one per seed) for every agent and we report mean, and standard
deviation across these results.

For pixel based tasks (i.e. Robotic Manipulation tasks), pixels are encoded with a residual CNN (see
Figure 7, bottom). Two separate image encoders are trained. One of them is shared between critic
and policy networks, and another is used (and trained) solely by the reward model.

11

 3x3 Conv 32

 3x3 Conv 16

tanh

Max Pool 2

sigmoid

elu

Actions and
prorpio

Instance Norm

FC layers

Policy Head

Layer Norm

GMMResidual
MLP

Residual
MLP

Proprio

Reward Head

Residual
MLP

Critic Head

Residual MLP

Image
encoder

Image
encoder

Proprio

Image encoder

relu

Figure 7: The architectures used by the critic, policy and reward models. There are two instances of the
image encoder, one is shared between the critic and policy networks while the other is part of the reward network.
All models implement the same residual MLP but it is never shared. GMM stands for Gaussian Mixture Model
which outputs the final policy prediction (see details in the main text). This figure is based on the architecture
figure from CRR paper [37].

All networks process proprio states (for critic, they are concatenated with actions) with one layer
MLP to obtain preliminary representations which are then concatenated with image representations
(for pixel based tasks) and further processed. The final layers depend on the network purpose (see
details below).

Policy head Proprioceptive input is processed with a fully connected layer, layer normalization
and tanh activation function, then concatenated with pixel encoding (when present) and passed into a
residual MLP (see Figure 7, top left). The output of the MLP defines the policy which is a mixture of
five multivariate Gaussians. Specifically, the output of the MLP is contains: five mean vectors; five
vectors that (after passing through a softplus function) define diagonal of the covariance matrix of
each Gaussian; and five scalars that define mixture log-probabilities.

Critic head Proprioceptive input concatenated with actions is processed through a fully connected
layer, layer normalization and tanh, then concatenated with pixel encoding (when present) and passed
into a residual MLP (see Figure 7, top left). The output of the MLP defines a discrete distribution of
the distributional critic.

Reward head Proprioceptive input is processed through a fully connected layer, layer normaliza-
tion and tanh, then concatenated with pixel encoding (when present) and passed into a residual MLP
(see Figure 7, top right). The output is proccesed by a fully connected layer to obtain a scalar which
is then scaled to (0, 1) by applying sigmoid.

12

B Positive-unlabeled learning

If we treat reward learning as a binary decision problem to distinguish success (DE) and failure (DF)
trajectories, we can write the loss for the reward model R as

⌘Est⇠DE [� log(R(st))] + (1� ⌘)Est⇠DF [� log(1�R(st))], (3)

where ⌘ is the proportion of the trajectory space corresponding to success. This corresponds to a
more general form of Equation 1 where before ⌘ = 0.5 was assumed.

The key insight of PU-learning [8, 7] is to observe that the second term in the loss (computed for DF)
can be written in terms of a dataset of unlabeled trajectories DU (that contains an unknown mixture
of successes and failures) and the dataset of positive trajectories DE :

(1� ⌘)Est⇠DF [� log(1�R(st))] = Est⇠DU [� log(1�R(st))]� ⌘Est⇠DE [� log(1�R(st))].
(4)

This allows the loss for the reward model to be rewritten in a way that avoids any dependence on
explicitly labeled failures

⌘Est⇠DE [� log(R(st))] + Est⇠DU [� log(1�R(st))]� ⌘Est⇠DE [� log(1�R(st))] (5)

In this paper we treat ⌘ as a hyperparameter and set it to ⌘ = 0.5 throughout.

C Task-relevant adversarial imitation learning

TRAIL proposes to constrain the GAIL discriminator such that it is not able to distinguish between
certain, preselected expert and agent observations which do not contain task behavior. For example,
the discriminator should not be able to distinguish whether early observations at the very start of an
episode come from the demonstration or unlabeled set, since no meaningful behavior has yet been
performed.

We adapt TRAIL to the offline setting and use early observations to form our constraint sets. Specifi-
cally, we construct subsets of early states, i.e. D0

U = {st 2 DU | t < 10}, and analogously D0
E for

DE . We compute reward loss as in Equation 1 for the original datasets and also, separately, for the
states from the constraint sets. The loss optimized by the reward model is the following:

L (DE ,DU)� 1R (D0
U)>R (D0

E)L (D0
E ,D0

U), (6)

where 1R (D0
E)>R (D0

U) is one if average prediction R for expert early observations (D0
E) is higher

than for unlabeled early observations (D0
U). Intuitively, we use early observations to first control if

the reward model is overfitting, and if so, we use them again to compute reversed loss to regularize
discriminator. We refer to the original paper [40] for motivation and detailed description.

The original paper [40] proposes another indicator for applying reversed loss, but we find the average
prediction for early observations used by us to work similarly well.

13

	1 Introduction
	2 Method
	2.1 Learning a reward function
	2.2 Reward model regularization
	2.3 Training an offline RL agent

	3 Experimental setup
	3.1 Environments
	3.2 Datasets
	3.3 Baseline and ablated models
	3.4 Hyperparameters

	4 Experimental results
	4.1 Robotic Manipulation
	4.2 DeepMind Control Suite

	5 Data set ablations
	5.1 Varying the amount of unlabeled data
	5.2 Adding low performance data to the unlabeled set
	5.3 Varying the number of demonstration episodes

	6 Related work
	7 Conclusion
	A Training procedure details
	A.1 Algorithm details
	A.2 Hyperparameters

	B Positive-unlabeled learning
	C Task-relevant adversarial imitation learning

