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A APPENDIX

INDEX OF THE APPENDIX
In the following, we briefly recap the contents of the appendix.

e Appendix[A.T|contains additional related works
o Appendix [A.2]reports all proofs and derivations.
e Appendix [A.J]illustrates implementation details and pseudocode.

e Appendix [A.4]provides the hyperparameters used in the experiments and further results.

A.1 ADDITIONAL RELATED WORKS

Recently we learned about Policy Evaluation Networks (PENs) (Harb et al., 2020) which are
closely related to our work and share the same motivation. There are many differences between
our approach to learning V' (6) and theirs (Harb et al., |2020). For example, we do not use a
fingerprint mechanism (Harb et al., 2020) for embedding the weights of complex policies. Instead,
we simply parse all the policy weights as inputs to the value function, even in the nonlinear case.
However, fingerprinting (Harb et al.| 2020) may be important for representing nonlinear policies
without losing information about their structure and for saving memory required to store the weights.

Other differences concern the optimization problem: we do not predict a bucket index for
discretized reward, but perform a regression task. Therefore our loss is simply the mean squared
error between the prediction of V' (6) and the reward obtained by 7y, while their loss (Harb et al.,
2020) is the KL divergence between the predicted and target distributions. Both approaches
optimize the undiscounted objective when learning V' (6).

Harb et al.| (2020) focus on the offline setting. They first collect a batch of randomly initial-
ized policies and perform rollouts to collect reward from the environment. The PSSVF V() is then
trained using the data collected. Once V is trained, many gradient ascent steps through V yield
new, unseen, randomly initialized policies in a zero-shot manner, exhibiting improved performance.
In our offline experiment in section we used a more difficult setting where each episode in
the environment is composed by sub-trajectories generated using different policies. Episode-based
approaches like PSSVF are not suitable for this task, while our PSVF can effectively learn how to
improve the policy without waiting for the end of an episode.

Harb et al.| (2020) train their value function using small nonlinear policies of one hidden
layer and 30 neurons on Swimmer-v3. They evaluate 2000 deterministic policies on 500 episodes
each (1 million policy evaluations), achieving a final expected return of ~ 180 on new policies
trained from scratch through V and a maximum observed return of 250. On the other hand, in our
offline experiment using a linear PSSVF, after only 100 policy evaluations, we obtain a return of 297.

In our main experiments, we showed that a fingerprint mechanism is not necessary for the
tasks we analyzed: even when using a much bigger 2-layers MLP policy, we are able to outperform
the results in PEN. Although [Harb et al.| (2020) use Swimmer-v3 “to scale up their experiments”,
our results suggest that Swimmer-v3 does not conclusively demonstrate possible benefits of their
policy embedding.

A.2 PROOFS AND DERIVATIONS

Theorem 3.1. For any Markov Decision Process, the following holds:

mo(als)
my(als)

VoJ (7o) = Esams (s),ammy(.|s) (Q(s,a,0)Vglogmg(als) + VeQ(s,a,0))| . (9
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Proof
Vo () = Vo /S 4™ (s)V (5, 0) ds (13)
:Ve/sd’“(s)Awe(a|s)Q(s,a79)dads (14)
:/Sd”b(s)A[Q(s,a,e)vm(a|s)+7r9(a|s)v9Q(s,a,9)] dads (15)
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O
Theorem 3.2. Under standard regularity assumptions (Silver et al., 2014), for any Markov Decision
Process, the following holds:
VoJ () = Egogm(s) [VaQ(S,a,0)|amry(s) Voo (s) + VoQ(s, a, )| amry(s)] - (12)
Proof.
Vod(ma) = [ d™ (5905, mo(s),6) ds (18)
s
= / dﬂ-b(s) [VaQ(s,a, 9)‘a=ﬂ9(s)v979(s) + VGQ(Sa a,9)|a=7r9(s)} ds (19)
s
= Eswd"b (s) [VaQ(S7 a, 9)|a:7‘rg (s)veﬂe(s) + VQQ(Sa a, 9)‘(1:779(5)] (20)

A.3 IMPLEMENTATION DETAILS

A3.1

In this appendix, we report the implementation details for PSSVF, PSVF, PAVF and the baselines.
We specify for each hyperparameter, which algorithms and tasks are sharing them.

Shared hyperparameters:

Policy architecture (continuous control tasks): We use three different deterministic policies:
a linear mapping between states and actions; a single-layer MLP with 32 neurons and tanh
activation; a 2-layers MLP (64,64) with tanh activations. All policies contain a bias term
and are followed by a tanh nonlinearity in order to bound the action.

Policy architecture (discrete control tasks): We use three different deterministic policies:
a linear mapping between states and a probability distribution over actions; a single-layer
MLP with 32 neurons and tanh activation; a 2-layers MLP (64,64) with tanh activations.
The deterministic action « is obtained choosing a = arg max mg(a|s). All policies contain
a bias term.

Policy initialization: all weights and biases are initialized using the default Pytorch initial-
ization for PVFs and DDPG and are set to zero for ARS.

Critic architecture: 2-layers MLP (512,512) with bias and ReLU activation functions for
PSVEF, PAVF; 2-layers MLP (256,256) with bias and ReLU activation functions for DDPG.

Critic initialization: all weights and biases are initialized using the default Pytorch initial-
ization for PVFs and DDPG.

Batch size: 128 for DDPG, PSVF, PAVF; 16 for PSSVFE.

Actor’s frequency of updates: every episode for PSSVF; every batch of episodes for ARS;
every 50 time steps for DDPG, PSVF, PAVFE.
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e Critic’s frequency of updates: every episode for PSSVF; every 50 time steps for DDPG,
PSVEF, PAVE.

e Replay buffer: the size is 100k; data are sampled uniformly.
e Optimizer: Adam for PVFs and DDPG.

Tuned hyperparameters:

e Number of directions and elite directions for ARS ([directions, elite directions]): tuned
with values in [[1, 1], [4, 1], [4, 4], [16, 1], [16, 4], [16, 16]].

e Policy’s learning rate: tuned with values in [le — 2, 1e — 3, 1e — 4].
e Critic’s learning rate: tuned with values in [le — 2, le — 3, 1le — 4].

e Noise for exploration: the perturbation for the action (DDPG) or the parameter is sampled
from N(0,c1) with o tuned with values in [1,1e — 1] for PSSVE, PSVF, PAVF; [le —
1,1e — 2] for DDPG; [1,1e — 1,1e — 2, 1e — 3] for ARS.

Environment hyperparameters:

e Environment interactions: 1M time steps for Swimmer-v3 and Hopper-v3; 100k time steps
for all other environments.
e Discount factor for TD algorithms: 0.999 for Swimmer; 0.99 for all other environments.

o Survival reward in Hopper: True for DDPG, PSVF, PAVF; False for ARS, PSSVF.
Algorithm-specific hyperparameters:

e Critic’s number of updates: 50 for DDPG, 5 for PSVF and PAVF; 10 for PSSVF.
e Actor’s number of updates: 50 for DDPG, 1 for PSVF and PAVF; 10 for PSSVFE.

Observation normalization: False for DDPG; True for all other algorithms.

Starting steps in DDPG (random actions and no training): first 1%.
Polyak parameter in DDPG: 0.995.

ARS For ARS, we used the official implementation provided by the authors and we modified it
in order to use nonlinear policies. More precisely, we used the implementation of ARSv2-t (Mania
et al.| |2018), which uses observation normalization, elite directions and an adaptive learning rate
based on the standard deviation of the return collected. To avoid divisions by zero, which may
happen if all data sampled have the same return, we perform the standardization only in case the
standard deviation is not zero. In the original implementation of ARS (Mania et al., 2018)), the
survival bonus for the reward in the Hopper environment is removed to avoid local minima. Since
we wanted our PSSVF to be close to their setting, we also applied this modification. We did not
remove the survival bonus from all TD algorithms and we did not investigate how this could affect
their performance. We provide a comparison of the performance of PSSVF with and without the
bonus in figure 5]
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Figure 5: Performance of PSSVF with and without the survival bonus for the reward in Hopper-v3
when using the hyperparameters maximizing the average return. Learning curves are averaged over
5 seeds

14



Under review as a conference paper at ICLR 2021

DDPG For DDPG, we used the Spinning Up implementation provided by OpenAl (Achiam,
2018)), which includes target networks for the actor and the critic and no learning for a fixed set
of time steps, called starting steps. We did not include target networks and starting steps in our
PVFs, although they could potentially help stabilizing training. The implementation of DDPG that
we used (Achiam, 2018) does not use observation normalization. In preliminary experiments we
observed that it failed to significantly increase or decrease performance, hence we did not use it.
Another difference between our TD algorithms and DDPG consists in the number of updates of the
actor and the critic. Since DDPG’s critic needs to keep track of the current policy, the critic and the
actor are updated in a nested form, with the first’s update depending on the latter and vice versa.
Our PSVF and PAVF do not need to track the policy learned, hence, when it is time to update, we
need only to train once the critic for many gradient steps and then train the actor for many gradient
steps. This requires less compute. On the other hand, when using nonlinear policies, our PVFs suffer
the curse of dimensionality. For this reason, we profited from using a bigger critic. In preliminary
experiments, we observed that DDPG’s performance did not change significantly through a bigger
critic. We show differences in performance for our methods when removing observation normaliza-
tion and when using a smaller critic (MLP(256,256)) in figure[6] We observe that the performance is
decreasing if observation normalization is removed. However, only for shallow policies in Swimmer
and deep policies in Hopper there seems to be a significant benefit. Future work will assess when
bigger critics help.

Swimmer-v3 [] Swimmer-v3 [64, 64] Hopper-v3 [] Hopper-v3 [64, 64]
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Figure 6: Learning curves for PSVF and PAVF for different environments and policies removing
observation normalization and using a smaller critic. We use the hyperparameters maximizing the
average return. Learning curves are averaged over 5 seeds.

Discounting in Swimmer For TD algorithms, we chose a fixed discount factor v = 0.99 for all
environments but Swimmer-v3. This environment is known to be challenging for TD based algo-
rithms because discounting causes the agents to become too short-sighted. We observed that, with
the standard discounting, DDPG, PSVF and PAVF were not able to learn the task. However, making
the algorithms more far-sighted greatly improved their performance. In figure[7]we report the return
obtained by DDPG, PSVF and PAVF for different values of the discount factor in Swimmer.
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Figure 7: Effect of different choices of the discount factor in Swimmer-v3 for PSVF, PAVF and
DDPG, with shallow and deep policies. We use the hyperparameters maximizing the average return.
Learning curves are averaged over 5 seeds

A.3.2 PSEUDOCODE

Algorithm 2 Actor-critic with TD prediction for V' (s, 0)

Input: Differentiable critic V4, : S X © — R with parameters w; deterministic actor mg with
parameters 6; empty replay buffer D
Output : Learned Vi, ~ V (s, 0), learned 7y ~ my~
Initialize critic and actor weights w, 6
repeat:
Observe state s, take action a = 7y(s), observe reward r and next state s’
Store (s,0,,s") in the replay buffer D
if it’s time to update then:
for many steps do:
Sample a batch By = {(s,6,r,s’)} from D
Update critic by stochastic gradient descent:
vW|Bill| ]E(s,é,r,s’)eBl [Vw(S, 0) - (T + ’YVW(S/ﬂ 0))]2
end for
for many steps do:
Sample a batch By = {(s)} from D
Update actor by gradient ascent: Vg \Bilzl Esen, [Vaw(s,0)]
end for
end if
until convergence
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Algorithm 3 Stochastic actor-critic with TD prediction for Q(s, a, §)

Input: Differentiable critic @y, : S X A x © — R with parameters w; stochastic differentiable
actor 7y with parameters 0; empty replay buffer D
Output : Learned Qy = Q(s, a, ), learned 7y ~ 7y~
Initialize critic and actor weights w, 6
repeat:
Observe state s, take action a = 7y(s), observe reward r and next state s’
Store (s, a, 0, r,s') in the replay buffer D
if it’s time to update then:
for many steps do:
Sample a batch By = {(s,a,0,r,s')} from D
Update critic by stochastic gradient descent:
Vot Efuadpoyes [Qu(s.0.0) — (r +1Qu (', 0 ~ m5(s'), 6))]?
end for
for many steps do:
Sample a batch By = {(s, a, )} from D
Update actor by stochastic gradient ascent:

B By, | 2223 (Q(s,0,0)Volog mo(als) + VoQ(s, 0,6))]
end for
end if
until convergence

Algorithm 4 Deterministic actor-critic with TD prediction for Q(s, a, 6)

Input: Differentiable critic Qw : S X A X ©® — R with parameters w; differentiable determin-
istic actor my with parameters 6; empty replay buffer D
Output : Learned Qv =~ Q(s, a, ), learned 7y = 7y~
Initialize critic and actor weights w, 6
repeat:
Observe state s, take action a = my(s), observe reward r and next state s’
Store (s, a, 8, r,s’) in the replay buffer D
if it’s time to update then:
for many steps do:
Sample a batch By = {(s,a,0,r,s")} from D
Update critic by stochastic gradient descent:
Vot B aiimsnc, [@u(5,0.0) = (7 +1Qu(, m3(5'), O)
end for
for many steps do:
Sample a batch By = {(s)} from D
Update actor by stochastic gradient ascent:
ﬁ Ese,[Vomo(5)VaQw(5,a,0)|a=ry(s) + VoQw(8,a,0)|a=r,(s)]
end for
end if
until convergence

A.4 EXPERIMENTAL DETAILS

A4.1 LQR

For our visualization experiment, we employ an instance of the Linear Quadratic Regulator. Here,
the agent observes a 1-D state, corresponding to its position and chooses a 1-D action. The transi-
tions are s’ = s + a and there is a quadratic negative term for the reward: R(s,a) = —s? — a?.
The agent starts in state s = 1 and acts in the environment for 50 time steps. The state space is
bounded in [-2,2]. The goal of the agent is to reach and remain in the origin. The agent is expected

to perform small steps towards the origin when it uses the optimal policy. For this task, we do not
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use a tanh nonlinearity and we do not use observation normalization. We use a learning rate of le—3
for the policy and le — 2 for the PSSVE. Weights are perturbed every episode using o = 0.5. The
policy is initialized with weight 3.2 and bias —3.5. All the other hyperparameters are set to their
default. The true J(#) is computed by running 10,000 policies in the environment with parameters
in [—5, —5] x [—5, 5]. V,,(6) is computed by measuring the output of the PSSVF on the same set of
policies. Each red arrow in figure[T|represents 200 update steps of the policy.

A.4.2 OFFLINE EXPERIMENTS

Zero-shot learning In this task we use the same hyperparameters found in tables 3] [5|and[6] When
new policies are trained offline, we use a learning rate of 0.02. We evaluate the performance of the
policies learned from scratch evaluating them with 5 test trajectories every 5 gradient steps.

Offline learning with fragmented behaviors In this task, data are generated by perturbing a
randomly initialized policy every 200 time steps and using it to act in the environment. We use
o = 0.5 for the perturbations. After the dataset is collected, the PSVF is trained using a learning
rate of 1le — 3 with a batch size of 128. When the policy is learned, we use a learning rate of 0.02.
All other hyperparameters are set to default values.

A.4.3 FULL EXPERIMENTAL RESULTS

Methodology In order to ensure a fair comparison of our methods and the baselines, we adopt
the following procedure. For each hyperparameter configuration, for each environment and policy
architecture, we run 5 instances of the learning algorithm using different seeds. We measure the
learning progress by running 100 evaluations while learning the deterministic policy (without action
or parameter noise) using 10 test trajectories. We use two metrics to determine the best hyperparam-
eters: the average return over policy evaluations during the whole training process and the average
return over policy evaluations during the last 20% time steps. For each algorithm, environment and
policy architecture, we choose the two hyperparameter configurations maximizing the performance
of the two metrics and test them on 20 new seeds, reporting average and final performance in table/T]
and [2]respectively.

Figures[§|and [9]report all the learning curves from the main paper and for a small non linear policy
with 32 hidden neurons.

A.4.4 SENSITIVITY ANALYSIS

In the following, we report the sensitivity plots for all algorithms, policies and environments. In
particular, figure [0} [T1] [12} [13] and [I4] show the performance of each algorithm given different
hyperparameters tried during training. We observe that in general deep policies are more sensitive
and, apart for DDPG, achieve often a better performance than smaller policies. The higher sensitivity
displayed by ARS is in part caused by the higher number of hyperparameters we tried when tuning
the algorithm.

A.4.5 TABLE OF BEST HYPERPARAMETERS

We report for each algorithm, environment, and policy architecture the best hyperparameters found
when optimizing for average return or final return in tables [3] (4] [5] [] and
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Table 1: Average return with standard deviation (across 20 seeds) for hypermarameters optimizing
the average return during training. Square brackets represent the number of neurons per layer of the
policy. [] represents a linear policy.

Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-vO0  Pendulum-v2 -v2 -v3 -v3

ARS 63+ 6 886 £ 72 —-9.2+0.3 228489 1184+ 345

PSSVF 85+ 4 944 + 33 —11.74+0.9 259447 1392 + 287

DDPG 0+0 612 £+ 169 —-86+09 95+£112 629+ 145

PSVF 84 + 20 926 £ 34 —19.74+6.0 188471 917 +249

PAVF 82+ 21 913 £ 40 —17.0+7.7 2314+56 814 +223

Policy:[32]

ARS 37+11 851 £ 46 —-9.6+£0.3 13978 1003 £ 66

PSSVF 60 + 33 701 £ 138 10.4+0.5 189 +35 707 £ 668

DDPG 0+0 816 £ 36 —5.7+£0.3 61+32 1384 +125

PSVF 71+ 25 529 £ 281 —11.94+1.2 2264+33 864 +272

PAVF 71+ 27 563 + 228 —10.94+1.1 222428 793 + 322

Policy: [64,64]

ARS 28 + 8 812 £ 239 —9.8+0.3 129468 964 4+ 47

PSSVF 72 4+ 22 850 93 —10.74+0.2 158 4+59 922 + 568

DDPG 0+0 834 £ 36 —55+£04 92117 767 £627

PSVF 80+ 9 580 £ 107 —10.74+0.6 137438 843 + 282

PAVF 73+ 10 399 + 219 —10.74+05 142426 875+136

Policy: [] Acrobot-vl  CartPole-v1

ARS —161 +23 476 £ 13

PSSVF —1374+14 443 4+ 105

PSVF —148 + 25 459 £ 28

Policy:[32]

ARS —296 + 38 395 £ 141

PSSVF —251 4+ 80 463 £ 18

PSVF —270 £ 113 413 £ 61

Policy: [64,64]

ARS —335+35 416 £+ 105

PSSVF —281 £ 117 452 + 34

PSVF -397+ 71 394 £ 71
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Table 2: Final return with standard deviation (across 20 seeds) for hypermarameters optimizing the

final return during training.

Policy: [] MountainCar Inverted Reacher Swimmer Hopper
Continuous-v0  Pendulum-v2 -v2 -v3 -v3

ARS 73+5 657 £ 477 —8.6 £0.5 334 +34 1443+ 713

PSSVF 84 + 28 970 + 126 —-10.0+1.0 350 £ 8 1560 + 911

DDPG 0t1 777 £ 320 —-73+04 146 =152 704 £+ 234

PSVF 76 £+ 36 906 + 289 —16.5+1.6 2384107 1067 4+ 340

PAVF 68 + 42 950 + 223 —17.2+15.4 298 +40 720 + 281

Policy:[32]

ARS 54+ 20 936 + 146 -9.24+0.4 239 +£117 1048 £ 68

PSSVF 89 + 22 816 + 234 —-10.2+1.0 294 +41 1204 +615

DDPG 0+0 703 + 283 —4.6 £ 0.6 179+ 150 1290 + 348

PSVF 84 + 31 493 + 462 —11.3+0.8 290 £70 1003 £+ 572

PAVF 9247 854 + 295 —-10.1+0.9 307 £ 34 967 £ 411

Policy: [64,64]

ARS 11+ 30 976 + 83 —-94+04 157 + 54 1006 £ 47

PSSVF 91 + 16 898 + 227 —10.7+ 0.6 224 +99 1412 4+ 691

DDPG 0+0 943 + 73 —4.44+0.4 196 £ 151 1437 + 752

PSVF 93+1 1000+ 0 —-10.6 £ 1.0 257+ 26 1247 4+ 344

PAVF 93 +2 827 £+ 267 —-106+04 232 +42 1005+ 155

Policy: [] Acrobot-vl  CartPole-v1

ARS —126 + 26 499 + 2

PSSVF —97+6 482 £ 53

PSVF —100 + 18 500+ 0

Policy:[32]

ARS —2154+97 471 £ 110

PSSVF —116 + 33 500+ 0

PSVF —244 + 151 488 £+ 36

Policy: [64,64]

ARS —182+45 492 + 18

PSSVF —233 + 139 500 £0

PSVF —406 + 51 499 + 2
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Figure 8: Learning curves representing the average return as a function of the number of time steps
in the environment (across 20 runs) with different environments and policy architectures. We use
the best hyperparameters found while maximizing the average reward for each task. For each
subplot, the square brackets represent the number of neurons per policy layer. [] represents a linear
policy.
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Figure 9: Learning curves representing the average return as a function of the number of time steps
in the environment (across 20 runs) with different environments and policy architectures. We use the
best hyperparameters found while maximizing the final reward for each task. For each subplot,
the square brackets represent the number of neurons per policy layer. [] represents a linear policy.
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Figure 10: Sensitivity of PSSVFs to the choice of the hyperparameter. Performance is shown
by percentile using all the learning curves obtained during hyperparameter tuning. The median
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Figure 11: Sensitivity of PSVFs to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the
number of neurons per layer of the policy. [] represents a linear policy.
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Figure 12: Sensitivity of PAVFs to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the
number of neurons per layer of the policy.
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Figure 13: Sensitivity of DDPG to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the

number of neurons per layer of the policy.
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Figure 14: Sensitivity of ARS to the choice of the hyperparameter. Performance is shown by
percentile using all the learning curves obtained during hyperparameter tuning. The median perfor-
mance is depicted as a dark line. For each subplot, the numbers in the square brackets represent the
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Table 3: Table of best hyperparameters for PSSVFs

Learning rate policy Policy: [1 [32] [64,64]

Metric: avg last avg last avg last
Acrobot-v1 le-2 1e-3 le-4 1le-4 le-4 le-4
MountainCarContinuous-v0 le-2 1e-3 1le4 led4 le-4 le4
CartPole-v1 le-3 1e-3 1le-3 1le3 le4 le4
Swimmer-v3 le-3 1le-3 1le-3 1e-3 1le-2 le4
InvertedPendulum-v2 le-3 1le-3 1le-3 1le-3 le-4 le4
Reacher-v2 le-4 le4 le-4 led le-4 le4
Hopper-v3 le-4 le-4 le-4 le-3 led4 le4
Learning rate critic
Acrobot-v1 le-2 1e-3 le-2 le2 le-2 le-2
MountainCarContinuous-v0 le-3 le2 1le-3 1le2 le-2 le2
CartPole-v1 le-2 1le-2 1le-3 1e-3 1le-2 le-2
Swimmer-v3 le-3 1le-3 le-2 1le2 1le-3 le-2
InvertedPendulum-v2 le-2 le2 1le-3 1le2 1le-3 1le-3
Reacher-v2 le-3 1le-3 1le-3 1e-3 le-4 le4
Hopper-v3 le-3 le-3 le-2 le-2 le2 le-2
Noise for exploration
Acrobot-v1 1.0 1.0 le-1 1le-1 le-1 1le-1
MountainCarContinuous-v0 1.0 1.0 le-1 1le-1 1le-1 le-1
CartPole-v1 1.0 1.0 1.0 1.0  le-1 1le-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 le-1
InvertedPendulum-v2 1.0 1.0 1.0 1.0 le-1 le-1
Reacher-v2 le-1 le-1 le-1 1le-1 le-1 le-1
Hopper-v3 1.0 1.0 le-l1 1.0 le-l1 Ile-1

Table 4: Table of best hyperparameters for ARS

Learning rate policy Policy: (] [32] [64,64]

Metric: avg last avg last avg last
Acrobot-v1 le-2 le-3 le-2 le-2 le-2 le-2
MountainCarContinuous-v0 le-2 le-2 le-2 le-2 le-2 le-2
CartPole-v1 le-2 le-2 le-2 le-2 le-2 le-2
Swimmer-v3 le-2 le-2 le-2 le-2 le-2 le-2
InvertedPendulum-v2 le-2 le-2 le-2 le-2 le-2 le-2
Reacher-v2 le-2 le-2 le-3 le-2 le-3 le-3
Hopper-v3 le-2 le-2 le-2 le-2 le-2 le-2
Number of directions
and elite directions
Acrobot-v1 4,4) 4,4) (1,1) (1,1) (1,1) (1,1)
MountainCarContinuous-v0 (1,1) (1,1) (1,1 (d16.4) (1,1) (1,1
CartPole-v1 4,4) “4.4) (L,n (@€,1n @1 @
Swimmer-v3 (1,1) (1,1) (L,nH &1 (G, (1,1
InvertedPendulum-v2 4.4 “4,4) (,nH @44 @1 de6,)
Reacher-v2 (16,16) (16,16) (1,1) (16,4 (1,1) (1,1
Hopper-v3 4,1) 4,1) (L, (1,1 (1,1 (1,1
Noise for exploration
Acrobot-v1 le-2 le-3 le-1 le-1 le-1 le-1
MountainCarContinuous-v0 le-1 le-1 le-1 le-1 le-1 le-1
CartPole-v1 le-2 le-2 le-1 le-1 le-2 le-2
Swimmer-v3 le-1 le-1 le-2 le-1 le-1 le-1
InvertedPendulum-v2 le-2 le-2 le-2 le-2 le-2 le-2
Reacher-v2 le-2 le-2 le-2 le-2 le-2 le-2
Hopper-v3 le-1 le-1 le-1 le-1 le-1 le-1
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Table 5: Table of best hyperparameters for PSVFs

Learning rate policy Policy: [1 [32] [64,64]
Metric: avg last avg last avg last
Acrobot-v1 le-2 1le-2 le-4 1le-4 le-4 le-2
MountainCarContinuous-v0 le-2 1le-3 le-2 led 1le-3 le4
CartPole-v1 le-2 1le-2 1le-2 1le4 1le-3 le4
Swimmer-v3 le-3 1le-3 1le-3 1e-3 1le-3 1le-3
InvertedPendulum-v2 le2 1le-3 1le4 led le-4 le4
Reacher-v2 le-3 le2 le4 led le4 le4
Hopper-v3 le-3 1le-3 1le4 1le4 le4d le3
Learning rate critic
Acrobot-v1 le-3 le-4 le-2 le2 1le-3 le-2
MountainCarContinuous-v0 le-4 1e-3 1le-2 1led4 1le-3 1le-3
CartPole-v1 le-2 le-2 1le-2 1e-3 le-2 le4
Swimmer-v3 le-4 le-4 le-4 led4d le-4 le4
InvertedPendulum-v2 le-3 le2 1le-3 1led 1le-4 1le-3
Reacher-v2 le-2 1le-2 1le-3 1e-3 le-4 le4
Hopper-v3 le-2 le-2 le-4 le-4 le2 le4
Noise for exploration
Acrobot-v1 1.0 1.0 le-1 1le-1 1le-1 le-1
MountainCarContinuous-v0 1.0  le-1 le-1 1.0 le-1 le-1
CartPole-v1 1.0 1.0 1.0  le-1 1le-1 le-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 le-1 le-1 1le-1 le-1
Reacher-v2 1.0 1.0 1.0 1.0  le-1 le-1
Hopper-v3 1.0 1.0 le-l le-1 le-l1 1.0

Table 6: Table of best hyperparameters for PAVFs

Learning rate policy Policy: [1 [32] [64,64]
Metric: avg last avg last avg last
MountainCarContinuous-v0 le-2 1le-3 1le-3 led le-4 le4
Swimmer-v3 le-3 1le-3 1le-3 1e-3 1le-3 1le-3
InvertedPendulum-v2 le-2 1e-3 1le-3 1le4 le-4 le4
Reacher-v2 le-3 1le-3 le4 led le-4 le4
Hopper-v3 le-3 le4 le4 led led le3
Learning rate critic
MountainCarContinuous-v0 le-4 le-4 le-4 1le-3 le-4 le-3
Swimmer-v3 le-4 le-4 le-4 le4 led le4
InvertedPendulum-v2 le-3 le2 1le-2 1led4 le-2 1le-3
Reacher-v2 le-3 1le-3 1le-3 1le-2 1le-3 le-3
Hopper-v3 le-4 le-3 1le3 le2 le4d le3
Noise for exploration
MountainCarContinuous-v0Q 1.0 le-1 1le-1 1le-1 1le-1 le-1
Swimmer-v3 1.0 1.0 1.0 1.0 1.0 1.0
InvertedPendulum-v2 1.0 1.0 1le-1 1le-1 1le-1 le-1
Reacher-v2 le-1 le-1 le-1 1.0 1.0 1.0
Hopper-v3 1.0 1.0 le-1 1le-1 1lel1 1.0
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Table 7: Table of best hyperparameters for DDPG

Learning rate policy Policy: [1 [32] [64,64]
Metric: avg last avg last avg last
MountainCarContinuous-v0 le2 1le-2 le-2 le4 1le-3 1le-3
Swimmer-v3 le-3 1e-3 1le-2 1le-2 1le2 le2
InvertedPendulum-v2 le-4 le-4 1e-3 1e-3 1le-3 le4
Reacher-v2 le-4 1le-3 le-2 1le-2 1le-3 1le-3
Hopper-v3 le-2 le2 le2 led le2 le-2
Learning rate critic
MountainCarContinuous-v0 le-4 le-4 1le-4 1e-3 1le-3 1le-3
Swimmer-v3 le-3 1le-3 1le-3 1e-3 le-2 le-3
InvertedPendulum-v2 le-3 1le-3 1le-3 1led4 1le-3 1le-3
Reacher-v2 le-3 1le-3 1le-3 1e-3 1le-3 1le-3
Hopper-v3 le-3 le-3 le4 le4 led le4
Noise for exploration
MountainCarContinuous-v0 le-2 1le-2 le-2 le-1 le-1 le-1
Swimmer-v3 le-1 le-1 1le-2 1le-2 1le-2 le-1
InvertedPendulum-v2 le-1 le-1 le-2 1le2 1le-2 le-2
Reacher-v2 le-1 1e-2 1le-1 1le-1 1le-1 le-1
Hopper-v3 le-1 le-1 le-1 1le-2 le-1 le-2
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