
Appendices479

A Experimental Setup Details480

Both our real and simulated environments use the following 6-dimensional control scheme:481

[x,y,z,wrist,gripperOpen,moveToNeutral]482

where the x,y,z dimensions command changes in the end-effector’s position in 3D space, wrist483

commands changes in the angle of the wrist, gripperOpen is a continuous value from [−1, 1] that484

triggers the gripper to close completely when less than−0.5 and open completely when greater than485

0.5, and moveToNeutral is also a continuous value from [−1, 1] that triggers the robot to move to486

its starting joint position when greater than 0.5.487

A.1 Data Collection Policies488

We describe our scripted data collection policies in this section. More details can be found in489

Algorithms 1-4.490

Scripted grasping. Our scripted grasping policy is supplied with the object’s (approximate) co-491

ordinates. In simulation, this information is readily available, while in the real world we use back-492

ground subtraction and a calibrated monocular camera to approximately localize the object. Note493

that this information does not need to be perfect, as we add a significant amount of noise to the494

scripted policy’s action at each timestep. After the object has been localized, the scripted policy takes495

actions that move the gripper toward the object (i.e action ← object position − gripper position).496

Once the gripper is within some pre-specified distance of the object, it executes the grasp action497

(which is a discrete action). Note that this distance threshold is also randomized – sampled from a498

Gaussian distribution with a mean of 0.04 and a standard deviation of 0.01 (in meters). For the sim-499

ulated pick and place environment, the scripted policy for grasping obtains a success rate of 50%,500

while the success rate is 30% for the drawer environment. For the real world drawer environment,501

the scripted success rate is 30%.502

Scripted pick and place. The pick part of the pick and place scripted policy is identical to the503

grasping policy described above. After the grasp has been executed, the scripted policy uniformly504

randomly selects a point in the workspace to place the object on, and then takes actions to move505

the gripper above that point. Once within a pre-specified (and randomized) distance to that point, it506

executes the gripper open action. The policy is biased to sample more drop points that lie inside the507

box to ensure we see enough successful pick and place attempts. Once the object has been dropped,508

the robot returns to its starting configuration (using the moveToNeutral action).509

Scripted place. This policy is used in scenes where the robot is already holding the object at the510

start of the episode. The placing policy is identical to the place component of the pick and place511

policy described above.512

Drawer opening and closing. The scripted drawer opening policy moves the gripper to grasp the513

drawer handle, then pulls on it to open the drawer. The drawer closing policy is similar, except it514

pushes on the drawer instead of pulling it. To introduce variability into the data collection process515

and to ensure that there is irrelevant data in the prior dataset as well, the drawer handle position516

passed to the scripted policy is incorrect with a probability of 0.25. Further, Gaussian noise is added517

to the policy actions at every timestep. After the opening/closing is completed, the robot returns to518

its starting configuration.519

Ending scripted trajectories with return to starting configuration We ended the scripted tra-520

jectories with a return to the robot’s starting configuration. We believe that this return to starting521

configuration increases the state-distribution overlap of the various datasets collected from scripted522

policies, making it possible to stitch together relevant trajectories from the prior dataset to extend523

the skill learned for the downstream task.524

12

Algorithm 1 Scripted Grasping
1: threshold ∼ N (0.04, 0.01)
2: numTimesteps← 25
3: for t in (0, numTimesteps) do
4: objPos← object position
5: eePos← end effector position
6: objGripperDist← distance(objPos, eePos)
7: if objGripperDist > threshold then
8: action← objPos − eePos
9: else if gripperOpened then

10: action← close gripper
11: else if object not raised high enough then
12: action← lift upward
13: else
14: action← 0
15: end if
16: noise ∼ N (0, 0.2)
17: action← action + noise
18: (s, r, s′)← env.step(action)
19: end for
20:

Algorithm 2 Scripted Pick and Place
1: threshold, dropDistThreshold ∼ N (0.04, 0.01)
2: numTimesteps← 30
3: for t in (0, numTimesteps) do
4: eePos← end effector position

5: dropPos←

{
point above box w/ prob. 0.75
point outside box w/ prob. 0.25

6: objectDropDist← distance(eePos, dropPos)
7: if object not grasped AND objectDropDist >

dropDistThreshold then
8: Execute grasp using Algorithm 1
9: else if objectDropDist> boxDistThreshold then

10: action← dropPos − eePos
11: action← lift upward
12: else if object not dropped then
13: action← open gripper
14: else
15: action← 0
16: end if
17: noise ∼ N (0, 0.2)
18: action← action + noise
19: (s, r, s′)← env.step(action)
20: end for

525

Algorithm 3 Scripted Drawer Opening
1: threshold ∼ N (0.04, 0.01)
2: error ∼ U(−0.2, 0.2)
3: numTimesteps← 30
4: for t in (0, numTimesteps) do
5: handlePos← handle center position

6: targetPos←

{
handlePos w/ prob. 0.75
handlePos+error w/ prob. 0.25

7: eePos← end effector position
8: targetGripperDist← dist(targetPos, eePos)
9: if targetGripperDist > threshold AND not

drawerOpened then
10: action← targetPos − eePos
11: else if not drawerOpened then
12: action← move left to open drawer
13: else if gripper not above drawer then
14: action← lift upward
15: else
16: action← moveToNeutral
17: End scripted trajectory
18: end if
19: noise ∼ N (0, 0.2)
20: action← action + noise
21: (s, r, s′)← env.step(action)
22: end for

Algorithm 4 Scripted Drawer Closing
1: threshold ∼ N (0.04, 0.01)
2: numTimesteps← 30
3: for t in (0, numTimesteps) do
4: drawerPos← drawer bottom center position
5: eePos← end effector position
6: if not drawerClosed AND gripper not next to

drawer then
7: action← go next to drawer
8: else if not drawerClosed then
9: action← eePos − drawerPos

10: // (this pushes the drawer closed)
11: else
12: action← moveToNeutral
13: End scripted trajectory
14: end if
15: noise ∼ N (0, 0.2)
16: action← action + noise
17: (s, r, s′)← env.step(action)
18: end for
19:

526

13

A.2 Neural Network Architectures527

Figure 6: Neural network architecture for real robot experiments. We map high dimensional image obser-
vations to low level robot commands, such as desired position of the end-effector, and gripper opening/closing.

Figure 7: Neural network architecture for simulated experiments. Note that we omit the information about
the gripper position and finger angle for our simulated experiments, since including this information did not
seem to make a difference in our simulated experiments.

Figures 6 and 7 show the neural network architectures used in our real world and simulated ex-528

periments, respectively. We experimented with several different architectures (varying the number529

of convolutional layers from 2 to 4, and varying the number of filters in each layer from 4 to 16),530

and found these two architectures to perform the best. Note that the real world neural network531

has substantially more parameters, which is likely due to the increased complexity of real world532

observations.533

A.3 Hyperparameters for Reinforcement Learning534

We used the conservative Q-learning (CQL) [20] algorithm for chaining behaviors. We now present535

the hyperparameters used by our method below:536

• Discount factor: 0.99 (identical to SAC, CQL),537

• Learning rates: Q-function: 3e-4, Policy: 3e-5 (identical to CQL),538

• Batch size: 256 (identical to SAC, CQL),539

• Target network update rate: 0.005 (identical to SAC, CQL),540

• Ratio of policy to Q-function updates: 1:1 (identical to SAC, CQL),541

• Number of Q-functions: 2 Q-functions, min(Q1, Q2) used for Q-function backup and policy542

update (identical to SAC, CQL),543

• Automatic entropy tuning: True, with target entropy set to − log |A| (identical to SAC),544

• CQL version: CQL(H) (note that this doesn’t contain an additional −α log π(a|s) term in the545

Q-function backup),546

• α in CQL: 5.0 (we used the non-Lagrange version of CQL(H)),547

14

• Number of negative samples used for estimating logsumexp: 1 (instead of the default of 10548

used in CQL; reduces training wall-clock time substantially when learning from image observa-549

tions)550

• Initial BC warmstart period: 40k gradient steps for drawer task, 10k for pick and place,551

• Evaluation maximum trajectory length: 80 timesteps for simulated drawer environment, 30552

timesteps for simulated pick and place. For real world drawer environment, this value is equal to553

35 timesteps.554

B Learning Curves555

0 25 50 75 100 125 150 175 200
Number of update steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Placing in Box with Initial Condition: Object on Tray
BC (init)
BC
BC (oracle)
Ours

0 50 100 150 200 250 300
Number of update steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Grasping with Initial Condition: Closed Drawer

0 100 200 300 400 500
Number of update steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Grasping with Initial Condition: Blocked Drawer 1

0 100 200 300 400 500
Number of update steps (in thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Grasping with Initial Condition: Blocked Drawer 2

Figure 8: Learning curves for simulated experiments by method and initial condition. Here we compare
the success rate curves of our method to the three behavioral cloning baselines in the four settings of Table 1
where prior data is essential for solving the task: the place in box task with the object starting in the tray (upper
left), as well as the grasp from drawer task with a closed drawer (upper right), blocked drawer 1 (lower left),
and blocked drawer 2 (lower right).

Here are detailed learning curves for the experiments we summarized in Table 1. Note that the x-556

axis here denotes number of update steps made to the policy and Q-function, and not the amount557

of data available to the method. Since we operate in an offline reinforcement learning setting, all558

data is available to the methods at the start of training. We see that our method is able to achieve559

a high performance across all initial conditions for both the tasks. We substantially outperform560

comparisons to prior approaches that are based on pretraining using behavior cloning, including an561

oracle version (shown above in a grey dashed line) that only trains on manually selected successful562

trajectories.563

15

