
Under review as a conference paper at ICLR 2021

A MBOLD IMPLEMENTATION DETAILS

A.1 DISTANCE FUNCTION

This section explains the implementation details for our distance function. Following prior
work (Fujimoto et al., 2018), we learn two independent Q-functions and use the minimum for per-
forming Bellman backups. Recall that we sampled goals from two distributions: future states in the
same trajectories, and states from different trajectories where the robot arm was in a similar posi-
tion. To implement the second strategy, we fit a k-nearest neighbors graph on 200000 (about 60% of
total) dataset observations, and use the `2 arm joint distance as the similarity key. Each batch con-
tains equal numbers of transitions generated from each goal sampling method. For computational
efficiency, we implement the k-NN search using the GPU-enabled FAISS library (Johnson et al.,
2017).

We also modify the reward specification scheme by providing a small positive reward at each step
where the goal is not reached, and then a large positive reward upon reaching the goal. Specifically,
we choose to give a reward of 1 by default and 10 when the goal is reached (compared to 0 and 1
respectively as presented in the discussion in Section 4), although we do not extensively tune this
parameter. We find that it does not affect performance in a statistically significant way (results for
each reward choice are within 1 standard deviation of one another) to choose this reward over the
(0, 1) rewards. Note that this does not change the interpretation of the Q-function as a shortest
path distance, merely slightly complicating the conversion calculations from Q-values to distances
in timesteps.

Finally, we add an additional loss term to perform conservative Q-learning (CQL) (Kumar et al.,
2020), a method for offline model-free RL, which penalizes Q-values of randomly selected actions
and increases Q-values of in-dataset actions. We use the Lagrangian version of CQL to automatically
tune the weighting term, and detail the parameters below. We find using CQL improves performance
on the door sliding task from a mean success rate of 41% to 58%, but does not significantly impact
performance on the others.

The Q-function network architecture consists of convolutional and fully connected layers. We define
a network called the convolutional encoder, which will be used throughout the appendix. This takes
as input an image of shape 64×64×6, containing the starting and goal images concatenated channel-
wise, and consists of 4 2D convolutional layers, with [8, 16, 32, 64] filters, respectively, with all with
kernel size (4, 4) and strides of (2, 2). We use Leaky ReLU activations after each intermediate
convolutional layer, and batch-norm layers after the second and third Leaky ReLUs.

We flatten the output of the convolutional encoder and feed the features through 6 fully-connected
linear layers of 128 units each, with the final layer outputting a single value. Each intermediate
fully-connected layer is followed by a ReLu activation and a batch-norm layer.

The actor network architecture first contains the above “convolutional encoder”, whose outputs are
flattened and input into a 10 layer MLP with 128 fully connected units each, and ReLu activations
and batch-norm layers in between. The final output, of dimension 4, is passed through a tanh
activation to constrain it to the normalized action space [−1, 1].

Additional training hyperparameters are detailed in Table 2.

A.2 MODEL-PREDICTIVE CONTROL

In Table 3, we describe the parameters for model-based planning in our experiments. These pa-
rameters are shared across all tasks and planning costs (in ablation experiments). Most values are
selected based on prior work (Ebert et al., 2018b). We find that replanning every 6 steps produces
slightly better performance than replanning every 13 steps, but not by a large margin, and we do
not tune this further due to computation constraints. We sample actions using the filtering scheme
described in Nagabandi et al. (2020) to make sequences smoother in time. We initialize sampling
distributions using each environment’s data collection parameters, as shown in Table 4.

To compute the planning cost described in Equation 3, we maximize over α by feeding in the final
predicted state to the policy network learned by TD3, and using the outputted action as the maxi-
mizer.

13



Under review as a conference paper at ICLR 2021

Dataset size 10000 trajectories
Train/test/val split 0.9/0.05/0.05
Trajectory length 30 steps

Observation dimensions 64× 64× 3
State observations in kNN graph 200000

Goal relabeling sampling parameter (p) 0.3 (tuned over [0.2, 0.3])
Discount factor (γ) 0.8

Learning rate 3e-4
Target network update Polyak factor 0.995

Batch size 64
Actor network noise σ 0.1

Actor network maximum noise magnitude 0.2
Training iterations 93750 (300 epochs)

Optimizer Adam
CQL Lagrange multiplier learning rate 1e-3

CQL slack parameter τ (object pushing) 3.0
CQL slack parameter τ (reaching) 3.0

CQL slack parameter τ (door sliding) 10.0
CQL number of randomly selected actions 10

Table 2: Hyperparameters for distance learning

Planning horizon (h) 13 steps
Actions executed per planning step (k) 6 actions

CEM Iterations 3 iterations
Elite sample fraction 0.05 (10 samples)

Samples per CEM iteration 200 samples

Table 3: Hyperparameters for model-based planning

A.3 ENVIRONMENTS

The Sawyer environments are adapted from the Meta-World benchmark (Yu et al., 2019a), and the
door sliding environment is based off of the environment presented by Lynch et al. (2020). For each
task, we define the 4-dimensional action space A such that actions control the Cartesian position of
the robot’s end-effector, as well as the robot’s gripper.

We randomly generate a set of 100 different test goals for each setting. Each task is defined by a goal
image and starting state, on which all methods are tested. We define success for each task in terms of
the final distance to the goal of each relevant object, e.g. object position for the object repositioning
task. A trial is considered successful if the final distance is below a certain threshold ε manually
chosen for each task, listed in the table below. We evaluate the success rate of each method over 5
different random training seeds.

We generate offline datasets for each task by running random policies for 1e4 episodes of 30
timesteps each. The random policy actions are drawn using a filtering technique, which smooths
random zero-mean Gaussian samples across time. We apply the correlated noise scheme described
by Nagabandi et al. (2020), setting the hyperparameter β = 0.5. The parameters of the multi-variate
Gaussian samples in each dimension are listed in Table 4.

Reaching Object pushing Door sliding
Data colln. stdev (diag(Σ)) [0.6, 0.6, 0.3, 0.3] [0.6, 0.6, 0.3, 0.3] [0.3, 0.3, 0.3, 0.15]

Object compared in success threshold Arm end effector Object Slide
Success distance threshold 0.05m 0.05m 0.075m

Table 4: Environment and task details

14



Under review as a conference paper at ICLR 2021

B COMPARATIVE EVALUATION IMPLEMENTATION DETAILS

B.1 RIG

In this section, we will discuss implementation details of our adaptation of RIG. We begin by train-
ing a β-VAE with latent dimension 8. The VAE is trained on randomly sampled states from the
entire offline dataset. For the loss, we use a combination of a maximum likelihood term and a KL
divergence term which constrains the latent space to a unit Gaussian. In particular, we compute the
mean pixel error, that is, 1

HW ‖s − ŝ‖
2
2, where s is the original image, and ŝ is the reconstruction,

both normalized to be in [0, 1]. We add this to the KL divergence between the latent distribution and
the unit Gaussian, with a weighting factor of 1e−3 on the KL penalty.

The architecture of the VAE encoder consists of the “convolutional encoder” described in section
A.1, whose features are passed through two FC layers with 128 units with a ReLu activation and
batch-norm layer in between. The VAE decoder takes as input latent states into two FC layers with
128 units with a batch-norm layer and ReLu activation after each. This is followed by the inverted
architecture of the encoder, consisting of transposed 2D convolutions.

Then, we perform model-free RL in a modified MDP, using encoded observations as a substitute for
environment observations, and computing rewards as negative `2 distances in latent space. We sam-
ple random goals from the multivariate Gaussian prior (N (0, I)) at the beginning of every episode.
We use the open-source implementation of soft actor-critic (SAC) in RLKit, and use the default SAC
parameters and architecture found in the implementation, making the following modifications: We
increase the number of layers of all MLP networks from 2 to 6. We use a maximum path length of
30 steps for consistency with our other experiments, and a discount factor of 0.95. Along with the
goal sampled from the prior at the beginning of each episode, we find that relabeling goals with the
achieved observation at the end of the trajectory improves performance, and add these transitions
to the replay buffer as well. Note that unlike in the original RIG formulation, we do not update the
weights of the learned VAE using data collected online. We evaluate the learned policy after 600
epochs of training, long after environment returns plateau.

B.2 DREAMER

Dreamer, a model-based method for image-based tasks, also uses a combination of value functions
and planning. We adapt Dreamer from its original single-task setting to learn a goal-conditioned
policy, reward predictor, and value function; however, we do not condition the dynamics model
on the goal. Dreamer has been previously demonstrated only in settings where the environment
provides rewards to the agent, so we modify the method to learn from unlabeled, offline data by using
experience replay. We find that using an indicator reward function as in our method or a heuristically
defined reward function, image MSE, causes Dreamer to struggle to learn. We thus additionally
demonstrate the performance of Dreamer using a manually specified arm distance reward for the
Sawyer reaching task.

We build off of the open source implementation of Dreamer by the original authors, written in
TensorFlow2 and found at https://github.com/danijar/dreamer. Specifically, to modify the networks
to support goal-conditioning, we add independent convolutional encoders which take the goal image
as input to each network. Each encoder consists of 2D convolution layers with [32, 64, 128, 256]
filters and kernel sizes of 4 to each network, and we concatenate the flattened features to the inputs
of each network. We additionally increase the number of fully-connected layers for the value and
actor networks from 3 and 2 respectively to 10. We use a discount factor of γ = 0.95. All other
hyperparameter values are defaults from the public implementation.

For training, we relabel trajectories sampled from the fixed, offline dataset with a uniformly ran-
domly selected observation from the trajectory as the goal. In most of our experiments, we compute
the negative pixel-wise MSE as the reward, but in one reaching experiment, we use the negative `2
Euclidean distance between the arm end-effector position and the goal end-effector position. We
train for 2000 iterations for each experiment, although initial experiments in which we trained for
20x longer did not yield improved results.

15

https://github.com/vitchyr/rlkit
https://github.com/vitchyr/rlkit/blob/master/examples/sac.py
https://github.com/danijar/dreamer


Under review as a conference paper at ICLR 2021

B.3 GOAL-CONDITIONED BEHAVIOR CLONING

To train a goal-conditioned behavior cloning policy, we begin by relabeling random transitions from
the dataset with goals which are later achieved in those trajectories. Specifically, we sample state-
goal pairs from trajectories in the dataset by first selecting the initial state index ti uniformly from
all timesteps, and then selecting the goal state index tg uniformly from timesteps greater than ti. We
then train a neural network to predict the transition action ai given the state si and the relabeled goal
sg , using a mean-squared error loss.

The network architecture is the same as that of the actor network used in Q-learning for MBOLD,
described in Appendix A.1. We train the model for 3125000 iterations (1000 epochs) using a batch
size of 32, and use the same optimizer and learning rate as the distance learned for MBOLD.

B.4 SEARCH ON THE REPLAY BUFFER

For SoRB, we train a distributional Q-function to represent distances as in the original paper. Dis-
tributional RL discretizes possible value estimates into a set of bins – we use 10 for all of our exper-
iments. We train this distributional Q-function for 300 epochs, as in the distance function training
for MBOLD. We also use the same architecture and training scheme, altering the number of out-
puts to 10 bins and using the KL-divergence loss for the distributional Q-function as in Eysenbach
et al. (2019). However, unlike in Eysenbach et al. (2019), we train on just the fixed, offline dataset.
We then perform the planning portion of SoRB with the “maxdist” parameter set to 4, after manual
tuning. We use a graph size of 2000 states for all experiments, due to computational constraints.

We find that the policy learned through Q-learning performs very poorly at reaching subgoals, so we
instead substitute the GCBC policy for this purpose. We find that this greatly improves performance
across all tasks.

B.5 VISUAL FORESIGHT

To compare MBOLD to visual foresight, we use the same dynamics model and planning setup as
in MBOLD, however, we substitute the learned dynamical distance function with the `2 pixel error
cost used in visual foresight.

C ABLATION EXPERIMENTS IMPLEMENTATION DETAILS

C.1 VAE DISTANCE

We use the same architecture as the VAE used in the RIG comparison described in Appendix B. We
set the latent space dimension to 256 and weight the KL divergence term using a factor of 1e−5.
We train the model for 3125000 iterations (1000 epochs) using a batch size of 32, and use the same
optimizer and learning rate as the distance learned for MBOLD.

C.2 TEMPORAL DISTANCE REGRESSION

To train the temporal distance regression model, we sample state-goal pairs from trajectories in the
dataset by first selecting the initial state index ti uniformly from all timesteps, and then selecting the
goal state index tg uniformly from timesteps greater than ti. We compute the label for this pair as
min(tg − ti,maxdist), where maxdist is a hyperparameter we set to 10. The maxdist parameter
helps to improve the optimality of distances on average. We train the neural network to regress this
target label using an `2 error loss. We train the network for 3125000 iterations (1000 epochs) with a
batch size of 32, and use the same optimizer and learning rate as the distance learned for MBOLD.

The architecture for the temporal distance regression model begins with the convolutional encoder
described in Appendix B. Its flattened outputs are fed into 5 fully-connected layers of 256 units each,
with batch-norm and ReLu activations after each intermediate layer.

16



Under review as a conference paper at ICLR 2021

C.3 Q-FUNCTION POLICY

We find that the policy directly learned by our method when learning distances performs extremely
poorly. However, performing Q-learning using random shooting over 100 uniformly random actions
selected from [−1, 1]4 to optimize over actions to compute target values produces much better results
when used directly as a policy, compared to using an actor network to perform this optimization as
in our method. Therefore, we report results from acting according to this random shooting method.
At test time, we estimate the optimal action a? = arg maxaQ(st, a, g) by again sampling 100
uniformly random actions, and selecting the best one.

17


	Introduction
	Related Work
	The Self-Supervised Offline RL Problem Statement
	Model-Based Visual Goal-Reaching
	Experiments
	Conclusion
	MBOLD Implementation Details
	Distance Function
	Model-Predictive Control
	Environments

	Comparative Evaluation Implementation Details
	RIG
	Dreamer
	Goal-Conditioned Behavior Cloning
	Search on the Replay Buffer
	Visual Foresight

	Ablation Experiments Implementation Details
	VAE Distance
	Temporal Distance Regression
	Q-Function Policy




