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A APPENDIX : ADDITIONAL DISCUSSIONS

A.1 EXTENDED RELATED WORK

Other related works : Several other prior works have previously considered the batch RL setting
(Lange et al., 2012) for off-policy evaluation, counterfactual risk minimization (Swaminathan &
Joachims, 2015a;b), learning value based methods such as DQN (Agarwal et al., 2019), and others
(Kumar et al., 2019; Wu et al., 2019b). Recently, batch off-policy optimization has also been
introduced to reduce the exploitation error (Fujimoto et al., 2019) and for regularizing with arbitrary
behaviour policies (Wu et al., 2019b). However, due to the per-step importance sampling corrections
on episodic returns (Precup et al., 2000), off-policy batch RL methods is challenging. In this work,
we instead consider marginalized importance sampling corrections and correct for the stationary state-
action distributions (Nachum et al., 2019a; Uehara & Jiang, 2019; Zhang et al., 2020). Additionally,
under the framework of Constrained MDPs (Altman & Asingleutility, 1999), risk-sensitive and
constrained actor-critic algorithms have been proposed previously (Chow et al., 2017; Chow &
Ghavamzadeh, 2014; Achiam et al., 2017). However, these works come with their own demerits, as
they mostly require minimizing the risk (ie, variance) term, where finding the gradient of the variance
term often leads a double sampling issue (Baird, 1995). We avoid this by instead using Fenchel
duality (Boyd & Vandenberghe, 2004), inspired from recent works (Nachum & Dai, 2020; Dai et al.,
2018) and cast risk constrained actor-critic as a max-min optimization problem. Our work is closely
related to (Bisi et al., 2019), which also consider per-step variance of returns, w.r.t state occupancy
measures in the on-policy setting, while we instead consider the batch off-policy optimization setting
with per-step rewards w.r.t stationary distribution corrections.

Constrained optimization has previously been studied in in reinforcement learning for batch policy
learning (Le et al., 2019), and optimization (Achiam et al., 2017), mostly under the framework of
constrained MDPs (Altman & Asingleutility, 1999). In such frameworks, the cumulative return
objective is augmented with a set of constraints, for safe exploration (Garcı́a et al., 2015; Perkins &
Barto, 2003; Ding et al., 2020), or to reduce risk measures (Chow et al., 2017; A. & Fu, 2018; Castro
et al., 2012). Batch learning algorithms (Lange et al., 2012) have been considered previously for
counterfactual risk minimization and generalization (Swaminathan & Joachims, 2015a;b) and policy
evaluation (Thomas et al., 2015a; Li et al., 2015), although little has been done for constrained offline
policy based optimization. This raises the question of how can we learn policies in RL from fixed
offline data, similar to supervised or unsupervised learning.

A.2 WHAT MAKES OFFLINE OFF-POLICY OPTIMIZATION DIFFICULT?

Offline RL optimization algorithms often suffer from distribution mismatch issues, since the under-
lying data distribution in the batch data may be quite different from the induced distribution under
target policies. Recent works (Fujimoto et al., 2019; Kumar et al., 2019; Agarwal et al., 2019; Kumar
et al., 2020) have tried to address this, by avoiding overestimation of Q-values, which leads to the
extraplation error when bootstrapping value function estimates. This leads to offline RL agents
generalizing poorly for unseen regions of the dataset. Additionally, due to the distribution mismatch,
value function estimates can also have large variance, due to which existing online off-policy algo-
rithms (Haarnoja et al., 2018; Lillicrap et al., 2016; Fujimoto et al., 2018) may fail without online
interactions with the environment. In this work, we address the later problem to minimize variance of
value function estimates through variance related risk constraints.

B APPENDIX : PER-STEP VERSUS EPISODIC VARIANCE OF RETURNS

Following from (Castro et al., 2012; A. & Ghavamzadeh, 2016), let us denote the returns with
importance sampling corrections in the off-policy learning setting as :

Dπ(s, a) =

T∑
t=0

γtr(st, at)
( T∏
t=1

π(at | st)
µ(at | st)

)
| s0 = s, a0 = a, τ ∼ µ (17)

From this definition in equation 17, the action-value function, with off-policy trajectory-wise im-
portance correction is Qπ(s, a) = E(s,a)∼dµ(s,a)[D

π(s, a)], and similarly the value function can
be defined as : V π(s) = Es∼dµ(s)[Dπ(s)]. For the trajectory-wise importance corrections, we can
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define the variance of the returns, similar to (A. & Fu, 2018) as :
VP(π) = E(s,a)∼dµ(s,a)[D

π(s, a)2]− E(s,a)∼dµ(s,a)[D
π(s, a)]2 (18)

where note that as in (Sobel, 1982), equation 18 also follows a Bellman like equation, although due to
lack of monotonocitiy as required for dynamic programming (DP), such measures cannot be directly
optimized by standard DP algorithms (A. & Fu, 2018).

In contrast, if we consider the variance of returns with stationary distribution corrections (Nachum
et al., 2019a; Liu et al., 2018), rather than the product of importance sampling ratios, the variance
term involves weighting the rewards with the distribution ratio ωπ/µ. Typically, the distribution ratio
is approximated using a separate function class (Uehara & Jiang, 2019), such that the variance can be
written as :

Wπ(s, a) = ωπ/D(s, a) · r(s, a) | s = s, a ∼ π(· | s), (s, a) ∼ dD(s, a) (19)
where we denote D as the data distribution in the fixed dataset, collected by either a known or
unknown behaviour policy. The variance of returns under occupancy measures is therefore given by :

VD(π) = E(s,a)∼dD(s,a)

[
Wπ(s, a)2

]
− E(s,a)∼dD(s,a)

[
Wπ(s, a)

]2
(20)

where note that the variance expression in equation 20 depends on the square of the per-step rewards
with distribution correction ratios. We denote this as the dual form of the variance of returns, in
contrast to the primal form of the variance of expected returns (Sobel, 1982).

Note that even though the variance term under episodic per-step importance sampling corrections
in equation 18 is equivalent to the variance with stationary distribution corrections in equation 20,
following from (Bisi et al., 2019), considering per-step corrections, we will show that the variance
with distribution corrections indeed upper bounds the variance of importance sampling corrections.
This is an important relationship, since constraining the policy improvement step under variance
constraints with occupancy measures therefore allows us to obtain a lower bound to the offline
optimization objective, similar to (Kumar et al., 2020).

B.1 PROOF OF LEMMA 1 : VARIANCE INEQUALITY

Following from (Bisi et al., 2019), we show that the variance of per-step rewards under occupancy
measures, denoted by VD(π) upper bounds the variance of episodic returns VP(π).

VP(π) ≤
VD(π)
(1− γ)2

(21)

Proof. Proof of Lemma 1 following from (Bisi et al., 2019) is as follows. Denoting the returns, as
above, but for the on-policy case with trajectories under π, as Dπ(s, a) =

∑∞
t=0 γ

tr(st, at), and

denoting the return objective as J(π) = Es0∼ρ,at∼π(·|st),s′∼P
[
Dπ(s, a)

]
, the variance of episodic

returns can be written as :

VP(π) = E(s,a)∼dπ(s,a)

[(
Dπ(s, a)− J(π)

(1− γ)

)2]
(22)

= E(s,a)∼dπ(s,a)

[
(Dπ(s, a))2

]
+

J(π)

(1− γ)2
− 2J(π)

(1− γ)
E(s,a)∼dπ(s,a)

[
Dπ(s, a)

]
(23)

= E(s,a)∼dπ(s,a)

[
Dπ(s, a)2

]
− J(π)2

(1− γ)2
(24)

Similarly, denoting returns under occupancy measures as Wπ(s, a) = dπ(s, a)r(s, a), and the
returns under occupancy measures, equivalently written as J(π) = E(s,a)∼dπ(s,a)[r(s, a)] based on
the primal and dual forms of the objective (Uehara & Jiang, 2019; Nachum & Dai, 2020), we can
equivalently write the variance as :

VD(π) = E(s,a)∼dπ(s,a)

[(
r(s, a)− J(π)

)2]
(25)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
+ J(π)2 − 2J(π)E(s,a)∼dπ(s,a)[r(s, a)] (26)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
− J(π)2 (27)
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Following from equation 22 and 25, we therefore have the following inequality :

(1− γ)2Es0∼ρ,a∼π
[
Dπ(s, a)2

]
≤ (1− γ)2Es0∼ρ,a∼π

[( ∞∑
t=0

γt
)( ∞∑

t=0

γtr(st, at)
2
)]

(28)

= (1− γ)Es0∼ρ,a∼π
[ ∞∑
t=0

γtr(st, at)
2
]

(29)

= E(s,a)∼dπ(s,a)

[
r(s, a)2

]
(30)

where the first line follows from Cauchy-Schwarz inequality. This concludes the proof.

We can further extend lemma 1, for off-policy returns under stationary distribution corrections (ie,
marginalized importance sampling) compared importance sampling. Recall that we denote the
variance under stationary distribution corrections as :

VD(π) = E(s,a)∼dD(s,a)

[(
ωπ/D(s, a) · r(s, a)− J(π)

)2]
(31)

= E(s,a)∼dD(s,a)

[
ωπ/D(s, a)

2 · r(s, a)2
]
− J(π)2 (32)

where J(π) = E(s,a)∼dD(s,a)

[
ωπ/D(s, a) · r(s, a)

]
. We denote the episodic returns with importance

sampling corrections as : Dπ =
∑T
t=0 γ

trtρ0:t. The variance, as denoted earlier is given by :

VP(π) = E(s,a)∼dπ(s,a)

[
Dπ(s, a)2

]
− J(π)2

(1− γ)2
(33)

We therefore have the following inequality

(1− γ)2Es0∼ρ,a∼π
[
Dπ(s, a)2

]
≤ (1− γ)2Es0∼ρ,a∼π

[( T∑
t=0

γt
)( T∑

t=0

γtr(st, at)
2
)( T∏

t=0

π(at|st)
µD(at|st)

)2]
= (1− γ)Es0∼ρ,a∼π

[ ∞∑
t=0

γtr(st, at)
2
( T∏
t=0

π(at|st)
µD(at|st)

)2]
(34)

= E(s,a)∼dD(s,a)

[
ωπ/D(s, a)

2 · r(s, a)2
]

(35)
which shows that lemma 1 also holds for off-policy returns with stationary distribution corrections.

B.2 DOUBLE SAMPLING FOR COMPUTING GRADIENTS OF VARIANCE

The gradient of the variance term often leads to the double sampling issue, thereby making it
impractical to use. This issue has also been pointed out by several other works (A. & Ghavamzadeh,
2016; Castro et al., 2012; Chow et al., 2017), since the variance involves the squared of the objective
function itself. Recall that we have:

VD(θ) = E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)2

]
−
{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}2

(36)
The gradient of the variance term is therefore :

∇θVD(θ) = ∇θE(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)2

]
− 2 ·

{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}
· ∇θ

{
E(s,a)∼dD

[
ωπ/D(s, a) · r(s, a)

]}
(37)

where equation 37 requires multiple samples to compute the expectations in the second term. To see
why this is true, let us denote

J(θ) = EdD(s,a)

[
ωπ/D(s, a)︸ ︷︷ ︸ ·r(s, a)IS(ω,πθ)

]
where we have IS(ω, πθ) as the returns in short form. The variance of the returns with the stationary
state-action distribution corrections can therefore be written as :

VD(θ) = EdD(s,a)

[
IS(ω, πθ)2

]
︸ ︷︷ ︸

(a)

−EdD(s,a)

[
IS(ω, πθ)

]2
︸ ︷︷ ︸

(b)

(38)
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We derive the gradient of each of the terms in (a) and (b) in equation 38 below. First, we find the
gradient of the variance term w.r.t θ :

∇θEdD(s,a)

[
IS(ω, πθ)2

]
= ∇θ

∑
s,a

dD(s, a)IS(ω, πθ)2 =
∑
s,a

dD(s, a)∇θIS(ω, πθ)2

=
∑
s,a

dD(s, a) · 2 · IS(ω, πθ) · IS(ω, πθ) · ∇θ log πθ(a | s)

= 2 ·
∑
s,a

dD(s, a)IS(ω, πθ)2∇θ log πθ(a | s)

= 2 · EdD(s,a)

[
IS(ω, πθ)2 · ∇θ log πθ(a | s)

]
(39)

Equation 39 interestingly shows that the variance of the returns w.r.t πθ has a form similar to the policy
gradient term, except the critic estimate in this case is given by the importance corrected returns,
since IS(ω, πθ) = [ωπ/D(s, a) · r(s, a)]. We further find the gradient of term (b) from equation 38.
Finding the gradient of this second term w.r.t θ is therefore :

∇θEdD(s,a)

[
IS(ω, πθ)

]2
= ∇θJ(θ)2 = 2 · J(θ) · EdD(s,a)

[
ωπ/D · {∇θ log πθ(a | s) ·Qπ(s, a)}

]
(40)

Overall, the expression for the gradient of the variance term is therefore :

∇θVD(θ) = 2 · EdD(s,a)

[
IS(ω, πθ)2 · ∇θ log πθ(a | s)

]
− 2 · J(θ) · EdD(s,a)

[
ωπ/D · {∇θ log πθ(a | s) ·Qπ(s, a)}

]
(41)

The variance gradient in equation 41 is difficult to estimate in practice, since it involves both the
gradient of the objective and the objective J(θ) itself. This is known to have the double sampling
issue (Baird, 1995) which requires separate independent rollouts. Previously, (Castro et al., 2012)
tackled the variance of the gradient term using simultaneous perturbation stochastic approximation
(SPSA) (Spall, 1992), where we can keep running estimates of both the return and the variance
term, and use a two time scale algorithm for computing the gradient of the variance regularizer with
per-step importance sampling corrections.

B.3 ALTERNATIVE DERIVATION : VARIANCE REGULARIZATION VIA FENCHEL DUALITY

In the derivation of our algorithm, we applied the Fenchel duality trick to the second term of the
variance expression 25. An alternative way to derive the proposed algorithm would be to see what
happens if we apply the Fenchel duality trick to both terms of the variance expression. This might be
useful since equation 41 requires evaluating both the gradient terms and the actual objective J(θ),
due to the analytical expression of the form ∇θJ(θ) · J(θ), hence suffering from a double sampling
issue. In general, the Fenchel duality is given by :

x2 = max
y

(2xy − y2) (42)

and applying Fenchel duality to both the terms, since they both involve squared terms, we get :

EdD(s,a)

[
IS(ω, πθ)2

]
≡ EdD(s,a)

[
max
y

{
2 · IS(ω, πθ) · y(s, a)− y(s, a)2

}]
= 2 ·max

y

{
EdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− EdD(s,a)

[
y(s, a)2

]} (43)

Similarly, applying Fenchel duality to the second (b) term we have :

EdD(s,a)

[
IS(ω, πθ)

]2
= max

ν

{
2 · EdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
− ν2

}
(44)

Overall, we therefore have the variance term, after applying Fenchel duality as follows, leading to an
overall objective in the form maxymaxν VD(θ), which we can use as our variance regularizer

VD(θ) = 2 ·max
y

{
EdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− EdD(s,a)

[
y(s, a)2

]}

−max
ν

{
2 · EdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
− ν2

}
(45)
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Using the variance of stationary distribution correction returns as a regularizer, we can find the
gradient of the variance term w.r.t θ as follows, where the gradient terms dependent on the dual
variables y and ν are 0.

∇θVD(θ) = 2 · ∇θEdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− 0− 2 · ∇θEdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
+ 0

= 2·EdD(s,a)

[
IS(ω, πθ)·y(s, a)·∇θ log πθ(a | s)

]
−2·EdD(s,a)

[
IS(ω, πθ)·ν(s, a)·∇θ log πθ(a | s)

]

= 2 · EdD(s,a)

[
IS(ω, πθ) · ∇θ log πθ(a | s) ·

{
y(s, a)− ν(s, a)

}]
(46)

Note that from equation 46, the two terms in the gradient is almost equivalent, and the difference
comes only from the difference between the two dual variables y(s, a) and ν(s, a). Note that our
variance term also requires separately maximizing the dual variables, both of which has the following
closed form updates :

∇νVD(θ) = −2 · ∇νEdD(s,a)

[
IS(ω, πθ) · ν(s, a)

]
+∇νν2 = 0 (47)

Solving which exactly, leads to the closed form solution ν(s, a) = EdD(s,a)

[
IS(ω, πθ)

]
. Similarly,

we can also solve exactly using a closed form solution for the dual variables y, such that :

∇yVD(θ) = 2 · ∇yEdD(s,a)

[
IS(ω, πθ) · y(s, a)

]
− 2 · ∇yEdD(s,a)

[
y(s, a)2

]
= 0 (48)

Solving which exactly also leads to the closed form solution, such that y(s, a) = 1
2 · IS(ω, πθ) =

1
2 ·

dπ(s,a)
dµ(s,a)

· r(s, a). Note that the exact solutions for the two dual variables are similar to each other,
where ν(s, a) is the expectation of the returns with stationary distribution corrections, whereas y(s, a)
is only the return from a single rollout.

C APPENDIX : MONOTONIC PERFORMANCE IMPROVEMENT GUARANTEES
UNDER VARIANCE REGULARIZATION

We provide theoretical analysis and performance improvements bounds for our proposed variance
constrained policy optimization approach. Following from (Kakade & Langford, 2002; Schulman
et al., 2015; Achiam et al., 2017), we extend existing performance improvement guarantees based
on the stationary state-action distributions instead of only considering the divergence between the
current policy and old policy. We show that existing conservative updates in algorithms (Schulman
et al., 2015) can be considered for both state visitation distributions and the action distributions, as
similarly pointed by (Achiam et al., 2017). We can then adapt this for the variance constraints instead
of the divergence constraints. According to the performance difference lemma (Kakade & Langford,
2002), we have that, for all policies π and π′ :

J(π′)− J(π) = Es∼dπ′ ,a∼π′ [A
π(s, a)] (49)

which implies that when we maximize 49, it will lead to an improved policy π′ with policy improve-
ment guarantees over the previous policy π. We can write the advantage function with variance
augmented value functions as :

Aπλ = Qπλ(s, a)− V πλ (s) = Es′∼P
[
r(s, a)− λ(r(s, a)− J(π))2 + γV πλ (s′)− V πλ (s)

]
However, equation 49 is often difficult to maximize directly, since it additionally requires samples
from π′ and dπ′ , and often a surrogate objective is instead proposed by (Kakade & Langford, 2002).
Following (Schulman et al., 2015), we can therefore obtain a bound for the performance difference
based on the variance regularized advantage function :

J(π′) ≥ J(π) + Es∼dπ(s),a∼π′(a|s)
[
Aπλ(s, a)

]
(50)

where we have the augmented rewards for the advantage function, and by following Fenchel duality
for the variance, can avoid policy dependent reward functions. Otherwise, we have the augmented
rewards for value functions as r̃(s, a) = r(s, a)− λ(r(s, a)− J(π))2. This however suggests that
the performance difference does not hold without proper assumptions (Bisi et al., 2019). We can
therefore obtain a monotonic improvement guarantee by considering the KL divergence between
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policies :
Lπ(π′) = J(π) + Es∼dπ,a∼π′ [Aπ(s, a)] (51)

which ignores the changes in the state distribution dπ′ due to the improved policy π′. (Schulman
et al., 2015) optimizes the surrogate objectives Lπ(π′) while ensuring that the new policy π′ stays
close to the current policy π, by imposing a KL constraint (Es∼dπ [DKL(π

′(· | s)||π(· | s)] ≤ δ). The
performance difference bound, based on the constraint between π and π′ as in TRPO (Schulman
et al., 2015) is given by :

Lemma 4. The performance difference lemma in (Schulman et al., 2015), where α = Dmax
TV =

maxsDTV(π, π
′)

J(π′) ≥ Lπ(π′)−
4εγ

(1− γ)2
(Dmax

TV (π′||π))2 (52)

where ε = maxs,a |Aπ(s, a)|, which is usually denoted with α, where

The performance improvement bxound in (Schulman et al., 2015) can further be written in terms
of the KL divergence by following the relationship between total divergence (TV) and KL, which
follows from Pinsker’s inequality, DTV(p||q)2 ≤ DKL(p||q), to get the following improvement bound
:

J(π′) ≥ Lπ(π′)−
4εγ

(1− γ)2
DKL(π

′||π) (53)

We have a performance difference bound in terms of the state distribution shift dπ′ and dπ. This
justifies that Lπ(π′) is a sensible lower bound to J(π′) as long as there is a total variation distance
between dπ′ and dπ which ensures that the policies π′ and π stay close to each other. Finally,
following from (Achiam et al., 2017), we obtain the following lower bound, which satisfies policy
improvement guarantees :

J(π′) ≥ Lπ(π′)−
2γεπ

1− γ
Es∼dπ [DTV(π

′(· | s)||π(· | s))] (54)

Equation 53 and 54 assumes that there is no state distribution shift between π′ and π. However, if we
explicitly assume state distribution changes, dπ′ and dπ due to π′ and π respectively, then we have
the following performance improvement bound :

Lemma 5. For all policies π′ and π, we have the performance improvement bound based on the
total variation of the state-action distributions dπ′ and dπ

J(π′) ≥ Lπ(π′)− επDTV(dπ′ ||dπ) (55)
where επ = maxs |Ea∼π′(·|s)[Aπ(s, a)]|

which can be further written in terms of the surrogate objective Lπ(π′) as :
J(π′) ≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επDTV(dπ′ ||dπ)
= Lπ(π′)− επDTV(dπ′ ||dπ) (56)

C.1 PROOF OF THEOREM 1 : POLICY IMPROVEMENT BOUND WITH VARIANCE
REGULARIZATION

Proof. We provide derivation for theorem 1. Recall that for all policies π′ and π, and corresponding
state visitation distributions dπ′ and dπ , we can obtain the performance improvement bound in terms
of the variance of state-action distribution corrections

J(π′)− J(π) ≥ Es∼dπ,a∼π′
[
Aπ(s, a)

]
− Vars∼dπ,a∼π

[
f(s, a)

]
(57)

where f(s, a) is the dual function class, for the divergence between dπ′(s, a) and dπ(s, a) Following
from Pinsker’s inequality, the performance difference lemma written in terms of the state visitation
distributions can be given by :

J(π′) ≥ Lπ(π′)− επDTV(dπ′ ||dπ)
≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επDTV(dπ′ ||dπ)

≥ J(π) + Es∼dπ,a∼π′ [Aπ(s, a)]− επ
√
DKL(dπ′ ||dπ) (58)
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Following from (Schulman et al., 2015), we can alternately write this follows, where we further apply
the variational form of TV
J(π′) ≥ J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C · Es∼dπ

[
DTV(dπ′ ||dπ)2

]
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C · Es∼dπ

[(
max
f
{Es∼dπ′ ,a∼π[f(s, a)]− Es∼dπ,a∼π[f(s, a)]}

)2]
≥ J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f
Es∼dπ

[(
Es∼dπ′ ,a∼π[f(s, a)]− Es∼dπ,a∼π[f(s, a)]

)2]
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f

{(
Es∼dπ,a∼π[f(s, a)]− Es∼dπ,a∼π[Es∼dπ,a∼π[f(s, a)]]

)2}
= J(π) + Es∼dπ,a∼π′

[
Aπ(s, a)

]
− C ·max

f
Vars∼dπ,a∼π

[
f(s, a)

]
(59)

Therefore the policy improvement bound depends on maximizing the variational representation
f(s, a) of the f-divergence to guaranetee improvements from J(π) to J(π′). This therefore leads to
the stated result in theorem 1.

D APPENDIX : LOWER BOUND OBJECTIVE WITH VARIANCE
REGULARIZATION

D.1 PROOF OF LEMMA 3

Recalling lemma 3 which states that, the proof of this follows from (Metelli et al., 2018). We extend
this for marginalized importance weighting, and include here for completeness. Note that compared
to importance weighting, which leads to an unbiased estimator as in (Metelli et al., 2018), correcting
for the state-action occupancy measures leads to a biased estimator, due to the approximation ω̂π/D.
However, for our analysis, we only require to show a lower bound objective, and therefore do not
provide any bias variance analysis as in off-policy evaluation.

Var(s,a)∼dD(s,a)

[
ω̂π/D

]
≤ 1

N
||r||2∞F2(dπ||dD) (60)

Proof. Assuming that state action samples are drawn i.i.d from the dataset D, we can write :

Var(s,a)∼dD(s,a)

[
ω̂π/D(s, a)

]
≤ 1

N
Var(s1,a1)∼dD(s,a)

[ dπ(s1, a1
dD(s1, a1)

· r(s1, a1)
]

≤ 1

N
E(s1,a1)∼dD(s,a)

[( dπ(s1, a1)
dD(s1, a1)

· r(s1, a1)
)2]

≤ 1

N
||r||2∞E(s1,a1)∼dD(s,a)

[( dπ(s1, a1)
dD(s1, a1)

· r(s1, a1)
)2]

=
1

N
||r||2∞F2(dπ||dD) (61)

D.2 PROOF OF THEOREM 2:

First let us recall the stated theorem 2. By constraining the off-policy optimization problem with
variance constraints, we have the following lower bound to the optimization objective with stationary
state-action distribution corrections

J(π) ≥ E(s,a)∼dD(s,a)[
dπ(s, a)

dD(s, a)
r(s, a)]−

√
1− δ
δ

Var(s,a)∼dµ(s,a)[
dπ(s, a)

dD(s, a)
r(s, a)] (62)

Proof. The proof for the lower bound objective can be obtained as follows. We first define a
relationship between the variance and the α-divergence with α = 2, as also similarly noted in (Metelli
et al., 2018). Given we have batch samples D, and denoting the state-action distribution correction
with ωπ/D(s, a), we can write from lemma 3 :

Var(s,a)∼dD(s,a)

[
ω̂π/D

]
≤ 1

N
||r||2∞F2(dπ||dD) (63)

where the per-step estimator with state-action distribution corrections is given by ωπ/D(s, a) · r(s, a).
Here, the reward function r(s, a) is a bounded function, and for any N > 0 the variance of the
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per-step reward estimator with distribution corrections can be upper bounded by the Renyi-divergence
(α = 2). Finally, following from (Metelli et al., 2018) and using Cantelli’s inequality, we have with
probability at least 1− δ where 0 < δ < 1 :

Pr
(
ωπ/D − J(π) ≥ λ

)
≤ 1

1 + λ2

Var(s,a)∼dD(s,a)[ωπ/D(s,a)·r(s,a)]
(64)

and by using δ = 1

1+ λ2

Var(s,a)∼dD(s,a)[ωπ/D(s,a)·r(s,a)]
we get that with probability at least 1− δ, we have:

J(π) = E(s,a)∼dπ(s,a) ≥ E(s,a)∼dD(s,a)[ωπ/D(s, a) · r(s, a)]−
√

1− δ
δ

Var(s,a)∼dD(s,a)[ωπ/D(s, a) · r(s, a)]
(65)

where we can further replace the variance term with α = 2 for the Renyi divergence to conclude
the proof for the above theorem. We can further write the lower bound for for α-Renyi divergence,
following the relation between variance and Renyi-divergence for α = 2 as :

J(π) = E(s,a)∼dπ(s,a)[r(s, a)] ≥ E(s,a)∼dD(s,a)[
dπ(s, a)

dD(s, a)
· r(s, a)]− ||r||∞

√
(1− δ)d2(dπ||dD)

δN
This hints at the similarity between our proposed variance regularized objective with that of other
related works including AlgaeDICE (Nachum et al., 2019b) which uses a f-divergence D

f (dπ||dD)

between stationary distributions.

E APPENDIX : ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTAL ABLATION STUDIES

In this section, we present additional results using state-action experience replay weightings on
existing offline algorithms, and analysing the significance of our variance regularizer on likelihood
corrected offline algorithms. Denoting ω(s, a) for the importance weighting of state-action occupancy
measures based on samples in the experience replay buffer, we can modify existing offline algorithms
to account for state-action distribution ratios.

The ablation experimental results using the Hopper control benchmark are summarized in figure 2.
The same base BCQ algorithm is used with a modified objective for BCQ (Fujimoto et al., 2019)
where the results for applying off-policy importance weights are denoted as “BCQ+I.W.”. We employ
the same technique to obtain ω(s, a) for both the baseline and for adding variance regularization
as described. The results suggest that adding the proposed per-step variance regularization scheme
significantly outperforms just importance weighting the expected rewards for off-policy policy
learning.

(a) Hopper Expert ablation (b) Hopper Medium ablation (c) Hopper Random ablation (d) Hopper Mixed ablation

Figure 2: Ablation performed on Hopper. The mean and standard deviation are reported over 5 random seeds.
The offline datasets for these experiments are same as the corresponding ones in Fig 1 of the main paper.

E.2 EXPERIMENTAL RESULTS IN CORRUPTED NOISE SETTINGS

We additionally consider a setting where the batch data is collected from a noisy environment, i.e, in
settings with corrupted rewards, r → r + ε, where ε ∼ N (0, 1). Experimental results are presented
in figures 1, 3. From our results, we note that using OVR on top of BCQ (Fujimoto et al., 2019), we
can achieve significantly better performance with variance minimization, especially when the agent is
given sub-optimal demonstrations. We denote it as medium (when the dataset was collected by a half
trained SAC policy) or a mixed behaviour logging setting (when the data logging policy is a mixture
of random and SAC policy). This is also useful for practical scalability, since often data collection is
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Domain Task Name BCQ+OVR BCQ BEAR BRAC-p aDICE SAC-off

Adroit

pen-human 64.12 56.58 -1 8.1 -3.3 6.3
hammer-human 1.05 0.75 0.3 0.3 0.3 0.5
door-human 0.00 0.00 -0.3 -0.3 0 3.9
relocate-human -0.13 -0.08 -0.3 -0.3 -0.1 0
pen-cloned 40.84 41.09 26.5 1.6 -2.9 23.5
hammer-cloned 0.78 0.35 0.3 0.3 0.3 0.2
door-cloned 0.03 0.03 -0.1 -0.1 0 0
relocate-cloned -0.22 -0.26 -0.3 -0.3 -0.3 -0.2
pen-expert 99.32 89.42 105.9 -3.5 -3.5 6.1
hammer-expert 119.32 108.38 127.3 0.3 0.3 25.2
door-expert 100.39 101.33 103.4 -0.3 0 7.5
relocate-expert 31.31 23.55 98.6 -0.3 -0.1 -0.3

Table 2: The results on D4RL tasks compare BCQ (Fujimoto et al., 2019) with and without OVR, bootstrapping
error reduction (BEAR) (Kumar et al., 2019), behavior-regularized actor critic with policy (BRAC-p) (?),
AlgeaDICE (aDICE) (Nachum et al., 2019b) and offline SAC (SAC-off) (Haarnoja et al., 2018). The results
presented are the normalized returns on the task as per Fu et al. (2020) (see Table 3 in Fu et al. (2020) for the
unnormalized scores on each task).

expensive from an expert policy. We add noise to the dataset, to examine the significance of OVR
under a noisy corrupted dataset setting.

(a) Hopper Expert w/ Noise (b) Hopper Medium w/ Noise (c) Hopper Random w/ Noise (d) Hopper Mixed w/ Noise

(e) Walker Expert w/ Noise (f) Walker Medium w/ Noise (g) Walker Random w/ Noise (h) Walker Mixed w/ Noise

Figure 3: Evaluation of the proposed approach and the baseline BCQ on a suite of three OpenAI Gym
environments. We consider the setting of rewards that are corrupted by a Gaussian noise. Results for the
uncorrupted version are in Fig. 1. Experiment results are averaged over 5 random seeds

E.3 EXPERIMENTAL RESULTS ON SAFETY BENCHMARK TASKS

Safety Benchmarks for Variance as Risk : We additionally consider safety benchmarks for
control tasks, to analyse the significance of variance regularizer as a risk constraint in offline policy
optimization algorithms. Our results are summarized in table 3.

E.4 DISCUSSIONS ON OFFLINE OFF-POLICY OPTIMIZATION WITH STATE-ACTION
DISTRIBUTION RATIOS

In this section, we include several alternatives by which we can compute the stationary state-action
distribution ratio, borrowing from recent works (Uehara & Jiang, 2019; Nachum et al., 2019a).

Off-Policy Optimization with Minimax Weight Learning (MWL) : We discuss other possible
ways of optimizing the batch off-policy optimization objective while also estimating the state-action
density ratio. Following from (Uehara & Jiang, 2019) we further modify the off-policy optimization
part of the objective J(θ) in L(θ, λ) as a min-max objective, consisting of weight learning ωπ/D
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Table 3: Results on
the Safety-Gym envi-
ronments Ray et al..
We report the mean
and S.D. of episodic
returns and costs over
five random seeds and
1 million timesteps.
The goal of the agent
is to maximize the
episodic return, while
minimizing the cost in-
curred.

PointGoal1 PointGoal2
Reward Cost Reward Cost

BCQ 43.1 ± 0.3 137.0 ± 3.6 32.7± 0.7 468.2 ± 9.1

BCQ+OVR 44.2 ± 0.3 127.1 ± 4.0 33.2 ± 0.7 453.9 ± 7.3

PointButton1 PointButton2
Reward Cost Reward Cost

BCQ 30.9 ± 2.2 330.8 ± 8.3 18.1 ± 1.1 321.6 ± 4.1

BCQ+OVR 30.7 ± 2.3 321.5 ± 6.8 19.6 ± 1.0 305.7 ± 6.1

and optimizing the resulting objective J(θ, ω). We further propose an overall policy optimization
objective, where a single objective can be used for estimating the distribution ratio, evaluating the
critic and optimizing the resulting objective. We can write the off-policy optimization objective with
its equivalent starting state formulation, such that we have :

EdD(s,a)

[
ωπθ/D(s, a) · r(s, a)

]
= (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(66)

Furthermore, following Bellman equation, we expect to have E[r(s, a)] = E[Qπ(s, a)−γQπ(s′, a′)]
EdD(s,a)

[
ωπθ/D(s, a)·{Q

π(s, a)−γQπ(s′, a′)}
]
= (1−γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(67)

We can therefore write the overall objective as :

J(ω, πθ, Q) = EdD(s,a)

[
ωπθ/D(s, a) · {Q

π(s, a)− γQπ(s′, a′)}
]

− (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(68)

This is similar to the MWL objective in (Uehara & Jiang, 2019) except we instead consider the
bias reduced estimator, such that accurate estimates of Q or ω will lead to reduced bias of the value
function estimation. Furthermore, note that in the first part of the objective J(πθ, ω,Q)2, we can
further use entropy regularization for smoothing the objective, since instead ofQπ(s′, a′) in the target,
we can replace it with a log-sum-exp and considering the conjugate of the entropy regularization
term, similar to SBEED (Dai et al., 2018). This would therefore give the first part of the objective as
an overall min-max optimization problem :

J(ω, πθ) = Edµ(s,a)
[
ωπθ/D(s, a) · {r(s, a) + γQπ(s′, a′) + τ log π(a | s)−Qπ(s, a)}

]
+ (1− γ)Es0∼β0(s),a0∼π(·|s0)

[
Qπ(s0, a0)

]
(69)

such that from our overall constrained optimization objective for maximizing θ, we have turned it into
a min-max objective, for estimating the density ratios, estimating the value function and maximizing
the policies

ω∗π/D, Q
∗, π∗ = argmin

ω,Q
argmax

π
J(πθ, ω,Q)2 (70)

where the fixed point solution for the density ratio can be solved by minimizing the objective :

ω∗π/D = argmin
ω

L(ωπ/D, Q)2 = Edµ(s,a)
[
{γω(s, a) ·Qπ(s′, a′)− ω(s, a)Qπ(s, a)}+

(1− γ)Eβ(s,a)Qπ(s0, a0)
]

(71)

DualDICE : In contrast to MWL (Uehara & Jiang, 2019), DualDICE (Nachum et al., 2019a)
introduces dual variables through the change of variables trick, and minimizes the Bellman residual
of the dual variables ν(s, a) to estimate the ratio, such that :

ν∗(s, a)− Bπν∗(s, a) = ωπ/D(s, a) (72)
the solution to which can be achieved by optimizing the following objective

min
ν
L(ν) = 1

2
EdD

[
(ν − Bπν)(s, a)2

]
− (1− γ)Es0,a0∼β(s,a)

[
ν(s0, a0)

]
(73)

Minimizing Divergence for Density Ratio Estimation : The distribution ratio can be estimated
using an objective similar to GANs (Goodfellow et al., 2014; Ho & Ermon, 2016), as also similarly
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proposed in (Kostrikov et al., 2019).

max
h
G(h) = E(s,a)∼dD

[
log h(s, a)

]
+ E(s,a)∼dπ

[
log(1− h(s, a))

]
(74)

where h is the discriminator class, discriminating between samples from dD and dπ. The optimal
discriminator satisfies :

log h∗(s, a)− log(1− h∗(s, a)) = log
dD(s, a)

dπ(s, a)
(75)

The optimal solution of the discriminator is therefore equivalent to minimizing the divergence between
dπ and dD, since the KL divergence is given by :

−DKL(dπ||dD) = E(s,a)∼dπ

[
log

dD(s, a)

dπ(s, a)

]
(76)

Additionally, using the Donsker-Varadhan representation, we can further write the KL divergence
term as :

−DKL(dπ||dD) = min
x

logE(s,a)∼dD

[
expx(s, a)

]
− E(s,a)∼dπ

[
x(s, a)

]
(77)

such that now, instead of the discriminator class h, we learn the function class x, the optimal solution
to which is equivalent to the distribution ratio plus a constant

x∗(s, a) = log
dπ(s, a)

dD(s, a)
(78)

However, note that both the GANs like objective in equation 74 or the DV representation of the KL
divergence in equation 77 requires access to samples from both dπ and dD. In our problem setting
however, we only have access to batch samples dD. To change the dependency on having access to
both the samples, we can use the change of variables trick, such that : x(s, a) = ν(s, a)−Bπν(s, a),
to write the DV representation of the KL divergence as :

−DKL(dπ||dD) = min
ν

logE(s,a)∼dD

[
exp ν(s, a)− Bπν(s, a)

]
−E(s,a)∼dπ

[
ν(s, a)−Bπν(s, a)

]
(79)

where the second expectation can be written as an expectation over initial states, following from
DualDICE, such that we have
−DKL(dπ||dD) = min

ν
logE(s,a)∼dD

[
exp ν(s, a)− Bπν(s, a)

]
−(1−γ)E(s,a)∼β0(s,a)

[
ν(s0, a0)

]
(80)

By minimizing the above objective w.r.t ν, which requires only samples from the fixed batch data dD
and the starting state distribution. The solution to the optimal density ratio is therefore given by :

x∗(s, a) = ν∗(s, a)− Bπν∗(s, a) = log
dπ(s, a)

dD(s, a)
= logω∗(s, a) (81)

Empirical Likelihood Ratio : We can follow Sinha et al. (2020) to compute the state-action
likelihood ratio, where they use a binary a classifier to classify samples between an on-policy and
off-policy distribution. The proposed classifier, φ, is trained on the following objective, and takes
as input the state-action tuples (s, a) to return a probability score that the state-action distribution is
from the target policy. The objective for φ can be formulated as

Lcls = max
φ
−Es,a∼D[log(φ(s, a))] + Es∼D[log(φ(s, π(s))] (82)

where s, a ∼ D are samples from the behaviour policy, and s, π(s) are samples from the target policy.
The density ratio estimates for a given s, a ∼ D are simply ω(s, a) = σ(φ(s, a)) like in Sinha et al.
(2020). We then use these ω(s, a) for density ratio corrections for the target policy in equantion ??.
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