
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Supplementary Materials:

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

A. Examples

Our setup allows for many popular multi-armed bandit algorithms, as the following examples illustrate.

Example 1 (Random A/B testing). We always choose each action uniformly at random: ⇡b(·|X) = 1
m+1 always holds for

any a 2 A and X 2 X .

Example 2 (Bernoulli Thompson Sampling). When the context Xt is given, we sample the potential reward Ỹ (a) from

the beta distribution Beta(Sta + ↵, Fta + �) for each action, where Sta =
Pt�1

t0=1 Yt0Dt0a, Fta = (t � 1) � Sta. ↵,�
are the parameters of the prior Beta distribution. We then choose the action with the highest sampled potential reward,

argmax
a02A

Ỹ (a0). As a result, this algorithm chooses actions with the following probabilities:

⇡(a|Xt) = Pr{a = argmax
a02A

Ỹ (a0)}.

B. Definitions of Off-Policy Estimators

Here, we summarize several standard OPE methods.

Direct Method (DM). A widely-used method, DM (Beygelzimer & Langford, 2009), first learns a supervised machine
learning model, such as random forest, ridge regression, and gradient boosting, to estimate the mean reward function. DM
then uses it to estimate the policy value as

V̂DM (⇡e;D, µ̂) =
1

T

TX

t=1

mX

a=0

µ̂(Xt, a)⇡e(a|Xt).

where µ̂(x, a) is the estimated reward function. If µ̂(x, a) is a good approximation to the mean reward function, this
estimator accurately estimates the policy value of the evaluation policy V (⇡e). If µ̂(x, a) fails to approximate the mean
reward function well, however, the final estimator is no longer consistent. The model misspecification issue is problematic
because the extent of misspecification cannot be easily quantified from data (Farajtabar et al., 2018).

Inverse Probability Weighting (IPW). To alleviate the issue with DM, researchers often use another estimator called
IPW (Precup et al., 2000; Strehl et al., 2010). IPW re-weights the rewards by the ratio of the evaluation policy and behavior
policy as

V̂IPW (⇡e;D) =
1

T

TX

t=1

Yt
⇡e(At|Xt)

⇡b(At|Xt)
.

When the behavior policy is known, the IPW estimator is unbiased and consistent for the policy value. However, it can have
a large variance, especially when the evaluation policy significantly deviates from the behavior policy.

Doubly Robust (DR). DR (Dudı́k et al., 2014) combines DM and IPW as

V̂DR(⇡e;D, µ̂) = V̂DM (⇡e;D, µ̂) +
1

T

TX

t=1

(Yt � µ̂(Xt, At))
⇡e(At|Xt)

⇡b(At|Xt)
.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

DR mimics IPW to use a weighted version of rewards, but DR also uses the estimated mean reward function as a control
variate to decrease the variance. It preserves the consistency of IPW if either the importance weight or the mean reward
estimator is accurate (a property called double robustness). Moreover, DR is semiparametric efficient (Narita et al., 2019)
when the mean reward estimator is correctly specified. On the other hand, when it is wrong, this estimator can have larger
asymptotic mean-squared-error than IPW (Kallus & Uehara, 2019) and perform poorly in practice (Kang et al., 2007).

Self-Normalized Inverse Probability Weighting (SNIPW) . SNIPW is an approach to address the variance issue with
the original IPW. It estimates the policy value by dividing the sum of weighted rewards by the sum of importance weights as:

V̂SNIPW (⇡e;D) =
1

PT
t=1

⇡e(At|Xt)
⇡b(At|Xt)

TX

t=1

Yt
⇡e(At|Xt)

⇡b(At|Xt)
.

SNIPW is more stable than IPW, because estimated policy value by SNIPW is bounded in the support of rewards and its
conditional variance given action and context is bounded by the conditional variance of the rewards (Kallus & Uehara, 2019).
IPW does not have these properties.

Switch Doubly Robust (Switch-DR) . The DR estimator can still be subject to the variance issue, particularly when the
importance weights are large due to low overlap. Switch-DR aims to reduce the effect of the variance issue by using DM
where importance weights are large as:

V̂Switch-DR(⇡e;D, µ̂) =
1

T

TX

t=1

mX

a=0

⇡e(a|Xt)µ̂(Xt, a) +
1

T

TX

t=1

(Yt � µ̂(Xt, At))
⇡e(At|Xt)

⇡b(At|Xt)
I{⇡e(At|Xt)

⇡b(At|Xt)
 ⌧}.

where I{·} is the indicator function and ⌧ � 0 is a hyperparameter. Switch-DR interpolates between DM and DR. When
⌧ = 0, it coincides with DM, while ⌧ ! 1 yields DR. This estimator is minimax optimal when ⌧ is appropriately
chosen (Wang et al., 2017).

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

Algorithm 1 Experimental Protocol for Evaluating Off-Policy Estimators

Require: a policy ⇡(1); two different logged bandit feedback datasets D(1) = {(X(1)
t , A(1)

t , Y (1)
t)}Tt=1 and D(2) =

{(X(2)
t , A(2)

t , Y (2)
t)}Tt=1 where D(1) is collected by ⇡(1) and D(2) is collected by a different one; an off-policy estimator

to be evaluated V̂ ; split-point t̃
Ensure: the mean and standard deviations of relative-EE (V̂)

1: S ;
2: Define the evaluation set: (in-sample case) Deval := D(2)

1:T , (out-sample case) Deval := D(2)

1:t̃

3: Define the test set: (in-sample case) Dtest := D(1)
1:T , (out-sample case) Dtest := D(1)

t̃+1:T

4: Approximate V (⇡(1)) by its on-policy estimation using Dtest

5: for k = 1, . . . ,K do

6: Sample data from Deval with replacement and construct k-th bootstrapped samples D(k)
eval

7: Estimate the policy value of ⇡(1) by V̂ (⇡(1);D(k)
eval)

8: S S [{relative-EE (V̂ ;D(k)
eval)}

9: end for

10: Estimate the mean and standard deviations of relative-EE (V̂) by using S

Table 5. Estimation Performances of the Regression Model (µ̂)

Campaigns

Metric Behavior Policies All Men’s Women’s

AUC
RANDOM 0.56097 [0.55625, 0.56507] 0.58256 [0.57395, 0.58976] 0.55797 [0.55552, 0.56035]

BERNOULLI TS 0.57073 [0.57012, 0.57144] 0.57576 [0.57296, 0.57855] 0.54737 [0.54574, 0.54903]

RCE
RANDOM 0.00221 [0.00127, 0.00300] 0.00409 [0.00140, 0.00650] -0.00022 [-0.00319, 0.00195]

BERNOULLI TS 0.00573 [0.00560, 0.00583] 0.00593 [0.00553, 0.00632] 0.00314 [0.00305, 0.00331]

Notes: This table presents the and relative cross-rntropy (RCE) of the regression model on a validation set. The accuracy measures
averaged over 5 different bootstrapped samples are reported.

C. Additional Experimental Settings and Results

C.1. Detailed Experimental Protocol

We describe detailed protocols for evaluating OPE estimators in Algorithm 1.

C.2. Prediction Accuracy of the Regression Model

We evaluate the performance of the regression model by using the following two evaluation metrics in classification.

Relative Cross Entropy (RCE). RCE is defined as the improvement of a prediction relative to the naive prediction, which
predicts the mean CTR for every data. We calculate this metric using a size n of validation samples {(xt, yt)}nt=1 as:

RCE of µ̂ = 1�
Pn

t=1 yt log(µ̂(xt)) + (1� yt) log(1� µ̂(xt))Pn
t=1 yt log(µ̂naive) + (1� yt) log(1� µ̂naive)

where µ̂naive = n�1
Pn

t=1 yt is the naive prediction. A larger value of RCE means better performance of a predictor.

Area Under the ROC Curve (AUC). AUC is defined as the probability that positive samples are ranked higher than
negative items by a classifier under consideration.

AUC of µ̂ =
1

nposnneg

nposX

t=1

nnegX

j=1

I{µ̂(xpos
t) > µ̂(xneg

j)}

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

Table 6. Comparing Relative-Estimation Errors of OPE Estimators (Men’s Campaign)

OPE Situations and in- or out-sample

Random! Bernoulli TS Bernoulli TS! Random

Estimators in-sample out-sample in-sample out-sample

DM 0.24151 ±0.01914 0.28127 ±0.03001 0.24275 ±0.00961 0.11324 ±0.01370

IPW 0.09806 ±0.03203 0.20723 ±0.05773 0.03682 ±0.01626 0.06987 ±0.02281

SNIPW 0.08153 ±0.03409 0.18744 ±0.05693 0.04165 ±0.02909 0.14973 ±0.03938

DR 0.08530 ±0.03336 0.19176 ±0.05559 0.10129 ±0.06458 0.21363 ±0.08588

SWITCH-DR (⌧ = 0.1) 0.25981 ±0.03032 0.25981 ±0.03032 0.24373 ±0.00954 0.11409 ±0.01370

SWITCH-DR (⌧ = 1.0) 0.26697 ±0.03223 0.26697 ±0.03223 0.24653 ±0.01041 0.11636 ±0.01400

SWITCH-DR (⌧ = 10) 0.19176 ±0.05559 0.10983 ±0.01913 0.17704 ±0.00482 0.05485 ±0.01064

Notes: The averaged relative-estimation errors of estimators and their unbiased standard deviations are reported. ⇡(2) ! ⇡(1) represents
the OPE situation where the estimators aim to estimate the policy value of ⇡(1) using logged bandit data collected by ⇡(2).

Table 7. Comparing Relative-Estimation Errors of OPE Estimators (Women’s Campaign)

OPE Situations and in- or out-sample

Random! Bernoulli TS Bernoulli TS! Random

Estimators in-sample out-sample in-sample out-sample

DM 0.22886 ±0.00758 0.24886 ±0.01825 0.31892 ±0.00678 0.22413 ±0.00737

IPW 0.03252 ±0.02158 0.02831 ±0.01974 0.04635 ±0.01498 0.10508 ±0.01520

SNIPW 0.03179 ±0.02225 0.03073 ±0.02519 0.07551 ±0.01308 0.12611 ±0.02006

DR 0.03224 ±0.02233 0.03006 ±0.02446 0.08971 ±0.01580 0.13877 ±0.02285

SWITCH-DR (⌧ = 0.1) 0.23109 ±0.00716 0.25084 ±0.01815 0.32055 ±0.00676 0.22585 ±0.00730

SWITCH-DR (⌧ = 1.0) 0.21877 ±0.00797 0.24223 ±0.01777 0.31825 ±0.00734 0.22611 ±0.00820

SWITCH-DR (⌧ = 10) 0.05674 ±0.02379 0.08696 ±0.05231 0.21710 ±0.01148 0.12253 ±0.00825

Notes: The averaged relative-estimation errors of estimators and their unbiased standard deviations are reported. ⇡(2) ! ⇡(1) represents
the OPE situation where the estimators aim to estimate the policy value of ⇡(1) using logged bandit data collected by ⇡(2).

where I{·} is the indicator function. {xpos
t }npos

t=1 and {xneg
j }nneg

j=1 are sets of positive and negative samples in the validation
set, respectively. A larger value of AUC means better performance of a predictor.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

D. Open Bandit Pipeline (OBP) Package

As described in Section 3, Open Bandit Pipeline contains implementations of dataset preprocessing, offline bandit simulator,
several bandit policies, and OPE estimators.

Below, we show an example of conducting an offline evaluation of the performance of BernoulliTS using Replay Method (Li
et al., 2011) as an OPE estimator and the Random policy as a behavior policy. We see that only ten lines of code are
sufficient to complete OPE from scratch (Code Snippet 1).

a case for implementing OPE of BernoulliTS using log data generated by Random

>>> from obp.dataset import OpenBanditDataset

>>> from obp.policy import BernoulliTS

>>> from obp.simulator import run_bandit_simulation

>>> from obp.ope import OffPolicyEvaluation, ReplayMethod

(1) Data loading and preprocessing

>>> data = OpenBanditDataset(behavior_policy=’random’, campaign=’women’)

>>> bandit_feedback = data.obtain_batch_bandit_feedback()

(2) Offline Bandit Simulation

>>> new_policy = BernoulliTS(n_actions=data.n_actions, len_list=data.len_list)

>>> action_dist = run_bandit_simulation(bandit_feedback, policy=new_policy)

(3) Off-Policy Evaluation

>>> ope = OffPolicyEvaluation(bandit_feedback, ope_estimators=[ReplayMethod()])

>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

estimated performance of BernoulliTS relative to the ground-truth performance of Random

>>> ground_truth_random = bandit_feedback[’reward’].mean()

>>> relative_policy_value = estimated_policy_value[’rm’] / ground_truth_random

>>> print(relative_policy_value) # 1.120574...

Code Snippet 1: Overall Flow of using OBP

In the following subsections, we explain some important features in the example flow.

D.1. Data Loading and Preprocessing

We prepare easy-to-use data loader for Open Bandit Dataset. The obp.dataset.OpenBanditDataset class will
download and preprocess the data.

load and preprocess raw data in "Women" campaign collected by the Random policy

>>> data = OpenBanditDataset(behavior_policy=’random’, campaign=’women’)

obtain logged bandit feedback generated by behavior policy

>>> bandit_feedback = data.obtain_batch_bandit_feedback()

Code Snippet 2: Data Loading and Preprcessing

Users can implement their own feature engineering in the pre process method of OpenBanditDataset class.
Moreover, by following the interface of BaseBanditDataset in the dataset module, one can handle future open datasets
for bandit algorithms. The dataset module also provide a class to generate synthetic bandit datasets.

D.2. Offline Bandit Simulation

After preparing our data, we now run offline bandit simulation on the logged bandit feedback as follows.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Open Dataset, Pipeline, and Benchmark for Off-Policy Evaluation

define a counterfacutal policy (Bernoulli TS)

>>> new_policy = BernoulliTS(n_actions=data.n_actions, len_list=data.len_list)

‘action_dist‘ is an array representing the distribution over action by the evaluation

policy

>>> action_dist = run_bandit_simulation(bandit_feedback, policy=new_policy)

Code Snippet 3: Offline Bandit Simulation

run bandit simulation takes a bandit policy and bandit feedback (a dictionary storing logged bandit feedback)
as inputs and runs offline bandit simulation of a given evaluation bandit policy. selected actions is an array of selected
actions during the offline bandit simulation by the evaluation policy. Users can implement their own bandit algorithms by
following the interface of obp.policy.BanditPolicy.

D.3. Off-Policy Evaluation

Our final step is OPE, which attempts to estimate the performance of bandit algorithms using log data generated by offline
bandit simulations. Our pipeline also provides an easy procedure for doing OPE as follows.

estimate the policy value of BernoulliTS based on actions

selected by that policy in offline bandit simulation

it is possible to set multiple OPE estimators to the ‘ope_estimators‘ argument

>>> ope = OffPolicyEvaluation(bandit_feedback, ope_estimators=[ReplayMethod()])

>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

>>> print(estimated_policy_value)

{’rm’: 0.005155..}

compare the estimated performance of BernoulliTS (evaluation policy)

with the ground-truth performance of Random (on-policy estimation of behavior policy)

>>> ground_truth_random = bandit_feedback[’reward’].mean()

>>> relative_policy_value = estimated_policy_value[’rm’] / ground_truth_random

our OPE procedure suggests that BernoulliTS improves Random by 12.05%

>>> print(relative_policy_value)

1.120574...

Code Snippet 3: Off-Policy Evaluation

Users can implement their own OPE estimator by following the interface of BaseOffPolicyEstimator class.
OffPolicyEvaluation class summarizes and compares the estimated policy values by several off-policy estima-
tors. bandit feedback[’reward’].mean() is the empirical mean of factual rewards (on-policy estimate of the
policy value) in the log and thus is the ground-truth performance of the behavior policy (the Random policy).

