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A. Examples

Our setup allows for many popular multi-armed bandit algorithms, as the following examples illustrate.

Example 1 (Random A/B testing). We always choose each action uniformly at random: ⇡b(·|X) = 1
m+1 always holds for

any a 2 A and X 2 X .

Example 2 (Bernoulli Thompson Sampling). When the context Xt is given, we sample the potential reward Ỹ (a) from

the beta distribution Beta(Sta + ↵, Fta + �) for each action, where Sta =
Pt�1

t0=1 Yt0Dt0a, Fta = (t � 1) � Sta. ↵,�
are the parameters of the prior Beta distribution. We then choose the action with the highest sampled potential reward,

argmax
a02A

Ỹ (a0). As a result, this algorithm chooses actions with the following probabilities:

⇡(a|Xt) = Pr{a = argmax
a02A

Ỹ (a0)}.

B. Definitions of Off-Policy Estimators

Here, we summarize several standard OPE methods.

Direct Method (DM). A widely-used method, DM (Beygelzimer & Langford, 2009), first learns a supervised machine
learning model, such as random forest, ridge regression, and gradient boosting, to estimate the mean reward function. DM
then uses it to estimate the policy value as

V̂DM (⇡e;D, µ̂) =
1

T

TX

t=1

mX

a=0

µ̂(Xt, a)⇡e(a|Xt).

where µ̂(x, a) is the estimated reward function. If µ̂(x, a) is a good approximation to the mean reward function, this
estimator accurately estimates the policy value of the evaluation policy V (⇡e). If µ̂(x, a) fails to approximate the mean
reward function well, however, the final estimator is no longer consistent. The model misspecification issue is problematic
because the extent of misspecification cannot be easily quantified from data (Farajtabar et al., 2018).

Inverse Probability Weighting (IPW). To alleviate the issue with DM, researchers often use another estimator called
IPW (Precup et al., 2000; Strehl et al., 2010). IPW re-weights the rewards by the ratio of the evaluation policy and behavior
policy as

V̂IPW (⇡e;D) =
1

T

TX

t=1

Yt
⇡e(At|Xt)

⇡b(At|Xt)
.

When the behavior policy is known, the IPW estimator is unbiased and consistent for the policy value. However, it can have
a large variance, especially when the evaluation policy significantly deviates from the behavior policy.

Doubly Robust (DR). DR (Dudı́k et al., 2014) combines DM and IPW as

V̂DR(⇡e;D, µ̂) = V̂DM (⇡e;D, µ̂) +
1

T

TX

t=1

(Yt � µ̂(Xt, At))
⇡e(At|Xt)

⇡b(At|Xt)
.
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DR mimics IPW to use a weighted version of rewards, but DR also uses the estimated mean reward function as a control
variate to decrease the variance. It preserves the consistency of IPW if either the importance weight or the mean reward
estimator is accurate (a property called double robustness). Moreover, DR is semiparametric efficient (Narita et al., 2019)
when the mean reward estimator is correctly specified. On the other hand, when it is wrong, this estimator can have larger
asymptotic mean-squared-error than IPW (Kallus & Uehara, 2019) and perform poorly in practice (Kang et al., 2007).

Self-Normalized Inverse Probability Weighting (SNIPW) . SNIPW is an approach to address the variance issue with
the original IPW. It estimates the policy value by dividing the sum of weighted rewards by the sum of importance weights as:

V̂SNIPW (⇡e;D) =
1

PT
t=1

⇡e(At|Xt)
⇡b(At|Xt)

TX

t=1

Yt
⇡e(At|Xt)

⇡b(At|Xt)
.

SNIPW is more stable than IPW, because estimated policy value by SNIPW is bounded in the support of rewards and its
conditional variance given action and context is bounded by the conditional variance of the rewards (Kallus & Uehara, 2019).
IPW does not have these properties.

Switch Doubly Robust (Switch-DR) . The DR estimator can still be subject to the variance issue, particularly when the
importance weights are large due to low overlap. Switch-DR aims to reduce the effect of the variance issue by using DM
where importance weights are large as:

V̂Switch-DR(⇡e;D, µ̂) =
1

T

TX

t=1

mX

a=0

⇡e(a|Xt)µ̂(Xt, a) +
1

T

TX

t=1

(Yt � µ̂(Xt, At))
⇡e(At|Xt)

⇡b(At|Xt)
I{⇡e(At|Xt)

⇡b(At|Xt)
 ⌧}.

where I{·} is the indicator function and ⌧ � 0 is a hyperparameter. Switch-DR interpolates between DM and DR. When
⌧ = 0, it coincides with DM, while ⌧ ! 1 yields DR. This estimator is minimax optimal when ⌧ is appropriately
chosen (Wang et al., 2017).
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Algorithm 1 Experimental Protocol for Evaluating Off-Policy Estimators

Require: a policy ⇡(1); two different logged bandit feedback datasets D(1) = {(X(1)
t , A(1)

t , Y (1)
t )}Tt=1 and D(2) =

{(X(2)
t , A(2)

t , Y (2)
t )}Tt=1 where D(1) is collected by ⇡(1) and D(2) is collected by a different one; an off-policy estimator

to be evaluated V̂ ; split-point t̃
Ensure: the mean and standard deviations of relative-EE (V̂ )

1: S  ;
2: Define the evaluation set: (in-sample case) Deval := D(2)

1:T , (out-sample case) Deval := D(2)

1:t̃

3: Define the test set: (in-sample case) Dtest := D(1)
1:T , (out-sample case) Dtest := D(1)

t̃+1:T

4: Approximate V (⇡(1)) by its on-policy estimation using Dtest

5: for k = 1, . . . ,K do

6: Sample data from Deval with replacement and construct k-th bootstrapped samples D(k)
eval

7: Estimate the policy value of ⇡(1) by V̂ (⇡(1);D(k)
eval)

8: S  S [ {relative-EE (V̂ ;D(k)
eval)}

9: end for

10: Estimate the mean and standard deviations of relative-EE (V̂ ) by using S

Table 5. Estimation Performances of the Regression Model (µ̂)

Campaigns

Metric Behavior Policies All Men’s Women’s

AUC
RANDOM 0.56097 [0.55625, 0.56507] 0.58256 [0.57395, 0.58976] 0.55797 [0.55552, 0.56035]

BERNOULLI TS 0.57073 [0.57012, 0.57144] 0.57576 [0.57296, 0.57855] 0.54737 [0.54574, 0.54903]

RCE
RANDOM 0.00221 [0.00127, 0.00300] 0.00409 [0.00140, 0.00650] -0.00022 [-0.00319, 0.00195]

BERNOULLI TS 0.00573 [0.00560, 0.00583] 0.00593 [0.00553, 0.00632] 0.00314 [0.00305, 0.00331]

Notes: This table presents the and relative cross-rntropy (RCE) of the regression model on a validation set. The accuracy measures
averaged over 5 different bootstrapped samples are reported.

C. Additional Experimental Settings and Results

C.1. Detailed Experimental Protocol

We describe detailed protocols for evaluating OPE estimators in Algorithm 1.

C.2. Prediction Accuracy of the Regression Model

We evaluate the performance of the regression model by using the following two evaluation metrics in classification.

Relative Cross Entropy (RCE). RCE is defined as the improvement of a prediction relative to the naive prediction, which
predicts the mean CTR for every data. We calculate this metric using a size n of validation samples {(xt, yt)}nt=1 as:

RCE of µ̂ = 1�
Pn

t=1 yt log(µ̂(xt)) + (1� yt) log(1� µ̂(xt))Pn
t=1 yt log(µ̂naive) + (1� yt) log(1� µ̂naive)

where µ̂naive = n�1
Pn

t=1 yt is the naive prediction. A larger value of RCE means better performance of a predictor.

Area Under the ROC Curve (AUC). AUC is defined as the probability that positive samples are ranked higher than
negative items by a classifier under consideration.

AUC of µ̂ =
1

nposnneg

nposX

t=1

nnegX

j=1

I{µ̂(xpos
t ) > µ̂(xneg

j )}
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Table 6. Comparing Relative-Estimation Errors of OPE Estimators (Men’s Campaign)

OPE Situations and in- or out-sample

Random! Bernoulli TS Bernoulli TS! Random

Estimators in-sample out-sample in-sample out-sample

DM 0.24151 ±0.01914 0.28127 ±0.03001 0.24275 ±0.00961 0.11324 ±0.01370

IPW 0.09806 ±0.03203 0.20723 ±0.05773 0.03682 ±0.01626 0.06987 ±0.02281

SNIPW 0.08153 ±0.03409 0.18744 ±0.05693 0.04165 ±0.02909 0.14973 ±0.03938

DR 0.08530 ±0.03336 0.19176 ±0.05559 0.10129 ±0.06458 0.21363 ±0.08588

SWITCH-DR (⌧ = 0.1) 0.25981 ±0.03032 0.25981 ±0.03032 0.24373 ±0.00954 0.11409 ±0.01370

SWITCH-DR (⌧ = 1.0) 0.26697 ±0.03223 0.26697 ±0.03223 0.24653 ±0.01041 0.11636 ±0.01400

SWITCH-DR (⌧ = 10) 0.19176 ±0.05559 0.10983 ±0.01913 0.17704 ±0.00482 0.05485 ±0.01064

Notes: The averaged relative-estimation errors of estimators and their unbiased standard deviations are reported. ⇡(2) ! ⇡(1) represents
the OPE situation where the estimators aim to estimate the policy value of ⇡(1) using logged bandit data collected by ⇡(2).

Table 7. Comparing Relative-Estimation Errors of OPE Estimators (Women’s Campaign)

OPE Situations and in- or out-sample

Random! Bernoulli TS Bernoulli TS! Random

Estimators in-sample out-sample in-sample out-sample

DM 0.22886 ±0.00758 0.24886 ±0.01825 0.31892 ±0.00678 0.22413 ±0.00737

IPW 0.03252 ±0.02158 0.02831 ±0.01974 0.04635 ±0.01498 0.10508 ±0.01520

SNIPW 0.03179 ±0.02225 0.03073 ±0.02519 0.07551 ±0.01308 0.12611 ±0.02006

DR 0.03224 ±0.02233 0.03006 ±0.02446 0.08971 ±0.01580 0.13877 ±0.02285

SWITCH-DR (⌧ = 0.1) 0.23109 ±0.00716 0.25084 ±0.01815 0.32055 ±0.00676 0.22585 ±0.00730

SWITCH-DR (⌧ = 1.0) 0.21877 ±0.00797 0.24223 ±0.01777 0.31825 ±0.00734 0.22611 ±0.00820

SWITCH-DR (⌧ = 10) 0.05674 ±0.02379 0.08696 ±0.05231 0.21710 ±0.01148 0.12253 ±0.00825

Notes: The averaged relative-estimation errors of estimators and their unbiased standard deviations are reported. ⇡(2) ! ⇡(1) represents
the OPE situation where the estimators aim to estimate the policy value of ⇡(1) using logged bandit data collected by ⇡(2).

where I{·} is the indicator function. {xpos
t }npos

t=1 and {xneg
j }nneg

j=1 are sets of positive and negative samples in the validation
set, respectively. A larger value of AUC means better performance of a predictor.
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D. Open Bandit Pipeline (OBP) Package

As described in Section 3, Open Bandit Pipeline contains implementations of dataset preprocessing, offline bandit simulator,
several bandit policies, and OPE estimators.

Below, we show an example of conducting an offline evaluation of the performance of BernoulliTS using Replay Method (Li
et al., 2011) as an OPE estimator and the Random policy as a behavior policy. We see that only ten lines of code are
sufficient to complete OPE from scratch (Code Snippet 1).

# a case for implementing OPE of BernoulliTS using log data generated by Random

>>> from obp.dataset import OpenBanditDataset

>>> from obp.policy import BernoulliTS

>>> from obp.simulator import run_bandit_simulation

>>> from obp.ope import OffPolicyEvaluation, ReplayMethod

# (1) Data loading and preprocessing

>>> data = OpenBanditDataset(behavior_policy=’random’, campaign=’women’)

>>> bandit_feedback = data.obtain_batch_bandit_feedback()

# (2) Offline Bandit Simulation

>>> new_policy = BernoulliTS(n_actions=data.n_actions, len_list=data.len_list)

>>> action_dist = run_bandit_simulation(bandit_feedback, policy=new_policy)

# (3) Off-Policy Evaluation

>>> ope = OffPolicyEvaluation(bandit_feedback, ope_estimators=[ReplayMethod()])

>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

# estimated performance of BernoulliTS relative to the ground-truth performance of Random

>>> ground_truth_random = bandit_feedback[’reward’].mean()

>>> relative_policy_value = estimated_policy_value[’rm’] / ground_truth_random

>>> print(relative_policy_value) # 1.120574...

Code Snippet 1: Overall Flow of using OBP

In the following subsections, we explain some important features in the example flow.

D.1. Data Loading and Preprocessing

We prepare easy-to-use data loader for Open Bandit Dataset. The obp.dataset.OpenBanditDataset class will
download and preprocess the data.

# load and preprocess raw data in "Women" campaign collected by the Random policy

>>> data = OpenBanditDataset(behavior_policy=’random’, campaign=’women’)

# obtain logged bandit feedback generated by behavior policy

>>> bandit_feedback = data.obtain_batch_bandit_feedback()

Code Snippet 2: Data Loading and Preprcessing

Users can implement their own feature engineering in the pre process method of OpenBanditDataset class.
Moreover, by following the interface of BaseBanditDataset in the dataset module, one can handle future open datasets
for bandit algorithms. The dataset module also provide a class to generate synthetic bandit datasets.

D.2. Offline Bandit Simulation

After preparing our data, we now run offline bandit simulation on the logged bandit feedback as follows.
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# define a counterfacutal policy (Bernoulli TS)

>>> new_policy = BernoulliTS(n_actions=data.n_actions, len_list=data.len_list)

# ‘action_dist‘ is an array representing the distribution over action by the evaluation

policy

>>> action_dist = run_bandit_simulation(bandit_feedback, policy=new_policy)

Code Snippet 3: Offline Bandit Simulation

run bandit simulation takes a bandit policy and bandit feedback (a dictionary storing logged bandit feedback)
as inputs and runs offline bandit simulation of a given evaluation bandit policy. selected actions is an array of selected
actions during the offline bandit simulation by the evaluation policy. Users can implement their own bandit algorithms by
following the interface of obp.policy.BanditPolicy.

D.3. Off-Policy Evaluation

Our final step is OPE, which attempts to estimate the performance of bandit algorithms using log data generated by offline
bandit simulations. Our pipeline also provides an easy procedure for doing OPE as follows.

# estimate the policy value of BernoulliTS based on actions

# selected by that policy in offline bandit simulation

# it is possible to set multiple OPE estimators to the ‘ope_estimators‘ argument

>>> ope = OffPolicyEvaluation(bandit_feedback, ope_estimators=[ReplayMethod()])

>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

>>> print(estimated_policy_value)

{’rm’: 0.005155..}

# compare the estimated performance of BernoulliTS (evaluation policy)

# with the ground-truth performance of Random (on-policy estimation of behavior policy)

>>> ground_truth_random = bandit_feedback[’reward’].mean()

>>> relative_policy_value = estimated_policy_value[’rm’] / ground_truth_random

# our OPE procedure suggests that BernoulliTS improves Random by 12.05%

>>> print(relative_policy_value)

1.120574...

Code Snippet 3: Off-Policy Evaluation

Users can implement their own OPE estimator by following the interface of BaseOffPolicyEstimator class.
OffPolicyEvaluation class summarizes and compares the estimated policy values by several off-policy estima-
tors. bandit feedback[’reward’].mean() is the empirical mean of factual rewards (on-policy estimate of the
policy value) in the log and thus is the ground-truth performance of the behavior policy (the Random policy).


