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APPENDIX: BRIDGING THE IMITATION GAP BY ADAPTIVE INSUBORDINATION

The appendix includes theoretical extensions of ideas presented in the main paper and details of
empirical analysis. We structure the appendix into the following subsections:

A.1 A formal treatment of Ex. 2 on 1D-Lighthouse.
A.2 Proof of Proposition 1.
A.3 Distance measures beyond d

0
⇡(⇡f )(s) = d(⇡(s),⇡f (s))4 utilized in ADVISOR.

A.4 Future strategies for improving statistical efficiency of d0⇡exp(⇡IL
f )(s) estimator and a prospec-

tive approach towards it.
A.5 Descriptions of all the tasks that we evaluate baselines on, including values for grid size,

obstacles, corruption distance etc. We also include details about observation space for each
of these tasks.

A.6 Additional details about nature of learning, expert supervision and hyperparameters searched
for each baseline introduced in Sec. 4.2.

A.7 Details about the underlying model architecture for all baselines across different tasks.
A.8 Methodologies adopted for ensuring fair hyperparameter tuning of previous baselines when

comparing ADVISOR to them.
A.9 Training implementation including maximum steps per episode, reward structure and com-

puting infrastructure adopted for this work. We clearly summarize all structural and training
hyperparameters for better reproducibility.

A.10 Additional plots for all tasks to supplement Fig. 4.

A ADDITIONAL INFORMATION

A.1 FORMAL TREATMENT OF EXAMPLE 2

Let N � 1 and consider a 1-dimensional grid-world with states S = {�N,N} ⇥ {0, . . . , T} ⇥

{�N, . . . , N}
T . Here g 2 {�N,N} are possible goal positions, elements t 2 {0, . . . , T} corre-

spond to the episode’s current timestep, and (pi)Ti=1 2 {�N, . . . , N}
T correspond to possible agent

trajectories of length T . Taking action a 2 A = {left, right} = {�1, 1} in state (g, t, (pi)Ti=1) 2 S

results in the deterministic transition to state (g, t+ 1, (p1, . . . , pt, clip(pt + a,�N,N), 0, . . . , 0)).
An episode start state is chosen uniformly at random from the set {(±N, 0, (0, . . . , 0))} and the goal
of the agent is to reach some state (g, t, (pi)Ti=1) with pt = g in the fewest steps possible. We now
consider a collection of filtration functions f i, that allow the agent to see spaces up to i steps left/right
of its current position but otherwise has perfect memory of its actions. See Figs. 2c, 2d for examples
of f1- and f

2-partial observations. For 0  i  N we define f
i so that

f
i(g, t, (pi)

T
i=1) = ((`0, . . . , `t), (p1 � p0, . . . , pt � pt�1)) and (5)
`j = (1[pj+k=N ] � 1[pj+k=�N ] | k 2 {�i, . . . , i}) for 0  j  t. (6)

Here `j is a tuple of length 2 · i+1 and corresponds to the agent’s view at timestep j while pk+1� pk

uniquely identifies the action taken by the agent at timestep k. Let ⇡exp be the optimal policy
given full state information so that ⇡exp(g, t, (pi)Ti=1) = (1[g=�N ], 1[g=N ]) and let µ be a uniform
distribution over states in S. It is straightforward to show that an agent following policy ⇡IL

fi will
take random actions until it is within a distance of i from one of the corners {�N,N} after which
it will head directly to the goal, see the policies highlighted in Figs. 2c, 2d. The intuition for this
result is straightforward: until the agent observes one of the corners it cannot know if the goal is
to the right or left and, conditional on its observations, each of these events is equally likely under
µ. Hence in half of these events the expert will instruct the agent to go right and in the other half
to go left. The cross entropy loss will thus force ⇡IL

fi to be uniform in all such states. Formally,
we will have, for s = (g, t, (pi)Ti=1), ⇡IL

fi(s) = ⇡
exp(s) if and only if min0qt(pq) � i  �N or

max0qt(pq) + i � N and, for all other s, we have ⇡IL
fi(s) = (1/2, 1/2). In Sec. 4, see also Fig. 5,

we train f
i-partial policies with f

j-optimal experts for a 2D variant of this example. ⌅
4We overload main paper’s notation d0(⇡,⇡f )(s) with d0⇡(⇡f )(s)
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A.2 PROOF OF PROPOSITION 1

We wish to show that the minimizer of Eµ[�⇡
exp
fe (S)� log ⇡f (S)] among all f -partial policies ⇡f is

the policy ⇡ = Eµ[⇡exp(S) | f(S)]. This is straightforward, by the law of iterated expectations and
as ⇡f (s) = ⇡f (f(s)) by definition. We obtain

Eµ[�⇡
exp
fe (S)� log ⇡f (S)] = �Eµ[Eµ[⇡

exp
fe (S)� log ⇡f (S) | f(S)]]

= �Eµ[Eµ[⇡
exp
fe (S)� log ⇡f (f(S)) | f(S)]]

= �Eµ[Eµ[⇡
exp
fe (S) | f(S)]� log ⇡f (f(S))]

= Eµ[�⇡(f(S))� log ⇡f (f(S))] . (7)

Now let s 2 S and let o = f(s). It is well known, by Gibbs’ inequality, that �⇡(o)� log ⇡f (o) is
minimized (in ⇡f (o)) by letting ⇡f (o) = ⇡(o) and this minimizer is feasible as we have assumed
that ⇧f contains all f -partial policies. Hence it follows immediately that Eq. (7) is minimized by
letting ⇡f = ⇡ which proves the claimed proposition.

A.3 OTHER DISTANCE MEASURES

As discussed in Section 3.2, there are several different choices one may make when choosing a
measure of distance between the expert policy ⇡exp and an f -partial policy ⇡f at a state s 2 S. The
measure of distance we use in our experiments, d0⇡exp(⇡f )(s) = d(⇡exp(s),⇡f (s)), has the (potentially)
undesirable property that f(s) = f(s0) does not imply that d0⇡exp(⇡f )(s) = d

0
⇡exp(⇡f )(s0). While

an in-depth evaluation of the merits of different distance measures is beyond this current work, we
suspect that a careful choice of such a distance measure may have a substantial impact on the speed of
training. The following proposition lists a collection of possible distance measures with a conceptual
illustration given in Fig. 6.
Proposition 2. Let s 2 S and o = f(s) and for any 0 < � < 1 define, for any policy ⇡ and

f -partial policy ⇡f ,

d
�
µ,⇡(⇡f )(s) = Eµ[

�
d
0
⇡(⇡f )(S)

��
| f(S) = f(s)]1/� , (8)

with d
1
µ,⇡(⇡f )(s) equalling the essential supremum of d

0
⇡(⇡f ) under the conditional distribution

Pµ(· | f(S) = f(s)). As a special case note that

d
1
µ,⇡(⇡f )(s) = Eµ[d

0
⇡(⇡f )(S) | f(S) = f(s)].

Then, for all � � 0 and s 2 S (almost surely µ), we have that ⇡(s) 6= ⇡f (f(s)) if and only if

d
�
⇡(⇡f )(s) > 0.

Proof. This statement follows trivially from the definition of ⇡IL and the fact that d(⇡,⇡0) � 0 with
d(⇡,⇡0) = 0 if and only if ⇡ = ⇡

0.

The above proposition shows that any d
� can be used to consistently detect differences between ⇡exp

and ⇡IL
f , i.e., it can be used to detect the imitation gap. Notice also that for any � > 0 we have that

d
�
µ,⇡exp(⇡IL

f )(s) = d
�
µ,⇡exp(⇡IL

f )(s0) whenever f(s) = f(s0).

As an alternative to using d
0, we now describe how d

1
µ,⇡exp(⇡IL

f )(s) can be estimated in practice during
training. Let ⇡aux

f be an estimator of ⇡IL
f as usual. To estimate d

1
µ,⇡exp(⇡IL

f )(s) we assume we have
access to a function approximator g : Of ! R parameterized by  2  , e.g., a neural network.
Then we estimate d

1
µ,⇡exp(⇡IL

f )(s) with g b where b is taken to be the minimizer of the loss

Lµ,⇡exp,⇡aux
f
( ) = Eµ

h⇣
d(⇡exp(S),⇡aux

f (f(S)))� g (f(S))
⌘2i

. (9)

The following proposition then shows that, assuming that d1µ,⇡exp(⇡aux
f ) 2 {g |  2  }, g b will

equal d1µ,⇡exp(⇡aux
f ) and thus g b may be interpreted as a plug-in estimator of d1µ,⇡exp(⇡IL

f ).
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Figure 6: Concept Illustration. Here we illustrate several of the concepts from our paper. Suppose
our action space A contains three elements. Then for any s 2 S and policy ⇡, the value ⇡(s) can
be represented as a single point in the 2-dimensional probability simplex {(x, y) 2 R2

| x � 0, y �

0, x + y  1} shown as the grey area in (a). Suppose that the fiber f�1(f) contains the three
unique states s1, s2, and s

3. In (a) we show the hypothetical values of ⇡exp when evaluated at these
points. Proposition 1 says that ⇡IL(s) lies in the convex hull of {⇡exp(si)}3i=1 visualized as a magenta
triangle in (a). Exactly where ⇡IL(s) lies depends on the probability measure µ, in (b) we show how
a particular instantiation of µ may result in a realization of ⇡IL(s) (not to scale). (c) shows how d

1
⇡exp

measures the distance between ⇡exp(s1) and ⇡IL(s1). Notice that it ignores s
2 and s

3. In (d), we
illustrate how d

0
⇡exp produces a “smoothed” measure of distance incorporating information about all

s
i.

Proposition 3. For any  2  ,

Lµ,⇡exp,⇡aux

f
( ) = Eµ[(d

1
µ,⇡exp(⇡aux

f )(S)� g (f(S)))
2] + c,

where c = Eµ[(d(⇡exp(S),⇡aux(f(S))) � d
1
µ,⇡exp,b⇡(S))

2] is constant in  and this implies that if

d
1
µ,⇡exp(⇡aux

f ) 2 {g |  2  } then g b = d
1
µ,⇡exp(⇡aux

f ).

Proof. In the following we let Of = f(S). We now have that

Eµ[
�
d(⇡exp(S),⇡aux

f (Of ))� g (Of )
�2
]

= Eµ[
�
(d(⇡exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S)) + (d1µ,⇡exp(⇡aux
f )(S)� g (Of ))

�2
]

= Eµ[(d(⇡
exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S))2] + Eµ[(d
1
µ,⇡exp(⇡aux

f )(S)� g (Of )))
2]

+ 2 · Eµ[((d(⇡
exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S)) · (d1µ,⇡exp(⇡aux
f )(S)� g (Of )))]

= c+ Eµ[(d
1
µ,⇡exp(⇡aux

f )(S)� g (Of )))
2]

+ 2 · Eµ[((d(⇡
exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S)) · (d1µ,⇡exp(⇡aux
f )(S)� g (Of )))].

Now as as d
1
µ,⇡exp(⇡aux

f )(s) = d
1
µ,⇡exp(⇡aux

f )(s0) for any s, s
0 with f(s) = f(s0) we have that

d
1
µ,⇡exp(⇡aux

f )(S)� g (Of ) is constant conditional on Of and thus

Eµ[(d(⇡
exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S)) · (d1µ,⇡exp(⇡aux
f )(S)� g (Of )) | Of ]

= Eµ[(d(⇡
exp(S),⇡aux

f (Of ))� d
1
µ,⇡exp(⇡aux

f )(S) | Of ] · Eµ[d
1
µ,⇡exp(⇡aux

f )(S)� g (Of ) | Of ]

= Eµ[d
1
µ,⇡exp(⇡aux

f )(S)� d
1
µ,⇡exp(⇡aux

f )(S) | Of ] · Eµ[d
1
µ,⇡exp(⇡aux

f )(S)� g (Of ) | Of ]

= 0.

Combining the above results and using the law of iterated expectations gives the desired result.

A.4 FUTURE DIRECTIONS IN IMPROVING DISTANCE ESTIMATORS

In this section we highlight possible directions towards improving the estimation of d0⇡exp(⇡IL
f )(s) for

s 2 S. As a comprehensive study of these directions is beyond the scope of this work, our aim in
this section is intuition over formality. We will focus on d

0 here but similar ideas can be extended to
other distance measures, e.g., those in Sec. A.3.
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As discussed in the main paper, we estimate d
0
⇡exp(⇡IL

f )(s) by first estimating ⇡IL
f with ⇡aux

f and
then forming the “plug-in” estimator d0⇡exp(⇡aux

f )(s). For brevity, we will write d
0
⇡exp(⇡aux

f )(s) as bd.
While such plug-in estimators are easy to estimate and conceptually compelling, they need not be
statistically efficient. Intuitively, the reason for this behavior is because we are spending too much
effort in trying to create a high quality estimate ⇡aux

f of ⇡IL
f when we should be willing to sacrifice

some of this quality in service of obtaining a better estimate of d0⇡exp(⇡IL
f )(s). Very general work in

this area has brought about the targeted maximum-likelihood estimation (TMLE) (van der Laan &
Gruber, 2016) framework. Similar ideas may be fruitful in improving our estimator bd.

Another weakness of bd discussed in the main paper is that is not prospective. In the main paper we
assume, for readability, that we have trained the estimator ⇡aux

f before we train our main policy. In
practice, we train ⇡aux

f alongside our main policy. Thus the quality of ⇡aux
f will improve throughout

training. To clarify, suppose that, for t 2 [0, 1], ⇡aux
f,t is our estimate of ⇡IL

f after (100 · t)% of training
has completed. Now suppose that (100 · t)% of training has completed and we wish to update
our main policy using the ADVISOR loss given in Eq. (2). In our current approach we estimate
d
0
⇡exp(⇡IL

f )(s) using d
0
⇡exp(⇡aux

f,t )(s) when, ideally, we would prefer to use d
0
⇡exp(⇡aux

f,1)(s) from the end
of training. Of course we will not know the value of d0⇡exp(⇡aux

f,1)(s) until the end of training but we
can, in principle, use time-series methods to estimate it. To this end, let q! be a time-series model
with parameters ! 2 ⌦ (e.g., q! might be a recurrent neural network) and suppose that we have stored
the model checkpoints (⇡aux

f,i/K | i/K  t). We can then train q! to perform forward prediction, for
instance to minimize

bt·KcX

j=1

⇣
d
0
⇡exp(⇡aux

f,j/K)(s)� q!(s, (⇡
aux
f,i/K(s))j�1

i=1 )
⌘2

,

and then use this trained q! to predict the value of d0⇡exp(⇡aux
f,1)(s). The advantage of this prospective

estimator q! is that it can detect that the auxiliary policy will eventually succeed in exactly imitating
the expert in a given state and thus allow for supervising the main policy with the expert cross entropy
loss earlier in training. The downside of such a method: it is significantly more complicated to
implement and requires running inference using saved model checkpoints.

A.5 ADDITIONAL TASK DETAILS

Goal Corner

AgentBoundary

A

A
Observ
-ations

Figure 7: 2D-LIGHTHOUSE

In Sec. 4.1, we introduced the different tasks where we compare
ADVISOR with various other IL and RL methods. Here, we provide
additional details for each of them along with information about
observation space associated with each task. For training details for
the tasks, please see Sec. A.9.

A.5.1 POISONEDDOORS (PD)

This environment is a reproduction of our example from Sec. 1. An
agent is presented with N = 4 doors d1, . . . , d4. Door d1 is locked,
requiring a fixed {0, 1, 2}10 code to open, but always results in a
reward of 1 when opened. For some randomly chosen j 2 {2, 3, 4},
opening door dj results in a reward of 2 and for i 62 {1, j}, opening
door di results in a reward of �2. The agent must first choose a door
after which, if it has chosen door 1, it must enter the combination
(receiving a reward of 0 if it enters the incorrect combination) and, otherwise, the agent immediately
receives its reward. See Fig. 1.

A.5.2 2D-LIGHTHOUSE (2D-LH)

2D variant of the exemplar grid-world task introduced in Ex. 2, aimed to empirically verify our
analysis of the imitation gap. A reward awaits at a randomly chosen corner of a square grid of size
2N + 1 and the agent can only see the local region, a square of size 2i+ 1 about itself (an f

i-partial
observation). Additionally, all f i allow the agent access to it’s previous action. As explained in Ex. 2,
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we experiment with optimizing f
i-policies when given supervision from f

j-optimal experts (i.e.,
experts that are optimal when restricted to f

j-partial observations). See Fig. 7 for an illustration.

A.5.3 WALLCROSSING (WC)

Initialized on the top-left corner the agent must navigate to the bottom-right goal location. There
exists at least one path from start to end, navigating through obstacles. Refer to Fig. 3a where, for
illustration, we show a simpler grid. Our environment is of size 25⇥ 25 with 10 walls (‘S25, N10’
as per the notation of (Chevalier-Boisvert et al., 2018b)), which are placed vertically or horizontally
across the grid. The expert is a shortest path agent with access to the entire environment’s connectivity
graph and is implemented via the networkx python library.

A.5.4 LAVACROSSING (LC)

Similar to WALLCROSSING in structure and expert, except that obstacles are lava instead of walls.
Unlike walls (into which the agent can bump without consequence) here the episode terminates if
the agent steps on lava. See Fig. 3b. This LC environment has size 25⇥ 25 with 10 lava rivers
(‘S25, N10’).

A.5.5 WC/LC SWITCH

In this task the agent faces a more challenging filtration function. In addition to navigational actions,
agents for this task have a ‘switch’ action. Using this switch action, the agents can switch-on the lights
of an otherwise darkened environment which is implemented as an observation tensor of all zeros. In
WC, even in the dark, an agent can reach the target by taking random actions with non-negligible
probability. Achieving this in LC is nearly impossible as random actions will, with high probability,
result in stepping into lava and thereby immediately end the episode.

We experiment with two variants of this ‘switch’ – ONCE and FAULTY. In the ONCE SWITCH variant,
once the the ‘switch’ action is taken, the lights remain on for the remainder of the episode. This is
implemented as the unaffected observation tensor being available to the agent. In contrast, in the
FAULTY SWITCH variant, taking the ‘switch’ action will only turn the lights on for a single timestep.
This is implemented as observations being available for one timestep followed by zero tensors (unless
the ‘switch’ action is executed again).

The expert for these tasks is the same as for WC and LC. Namely, the expert always takes actions
along the shortest path from the agents current position to the goal and is unaffected by whether the
light is on or off. For the expert-policy-based methods this translates to the learner agent getting
perfect (navigational) supervision while struggling in the dark, with no cue for trying the switch
action. For the expert-demonstrations-based methods this translates to the demonstrations being
populated with blacked-out observations paired with perfect actions: such actions are, of course,
difficult to imitate. As FAULTY is more difficult than ONCE (and LC more difficult than WC) we set
grid sizes to reduce the difference in difficulty between tasks. In particular, we choose to set WC
ONCE SWITCH on a (S25, N10) grid and the LC ONCE SWITCH on a (S15, N7) grid. Moreover,
WC FAULTY SWITCH is set with a (S15, N7) grid and LC FAULTY SWITCH with a (S9, N4) grid.

A.5.6 WC/LC CORRUPT

In the SWITCH task, we study agents with observations affected by a challenging filtration function.
In this task we experiment with corrupting the expert’s actions. The expert policy flips over to a
random policy when the expert is NC steps away from the goal. For the expert-policy-based method
this translates to the expert outputting uniformly random actions once it is within NC steps from the
target. For the expert-demonstrations-based methods this translates to the demonstrations consisting
of some valid (observation, expert action) tuples, while the tuples close to the target have the expert
action sampled from a uniform distribution over the action space. WC CORRUPT is a (S25, N10)
grid with NC = 15, while the LC CORRUPT is significantly harder, hence is a (S15, N7) grid with
NC = 10.
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Table 1: Baseline details. IL/RL: Nature of learning, Expert supervision: the type of expert
supervision leveraged by each method, Hps. searched: hps. that were randomly searched over, fairly
done with the same budget (see Sec. A.8 for details).

# Method IL/RL Expert supervision Hps. searched
1 BC IL Policy lr
2 † IL Policy lr, stage-split
3 BCtf=1 IL Policy7 lr
4 PPO RL Policy lr
5 BC ! PPO IL!RL Policy lr, stage-split
6 † ! PPO IL!RL Policy lr, stage-split
7 BCtf=1

! PPO IL!RL Policy lr, stage-split
8 BC + PPO IL+RL Policy lr
9 BCdemo IL Demonstrations lr
10 BCdemo + PPO IL+RL Demonstrations lr
11 ADV IL+RL Policy lr, ↵
12 † ! ADV IL+RL Policy lr, ↵, stage-split
13 BCtf=1

! ADV IL+RL Policy lr, ↵, stage-split
14 BCdemo + ADV IL+RL Demonstrations lr, ↵

A.5.7 OBSERVATION SPACE

Within our 2D-LH environment we wish to train our agent in the context of Proposition 1 so that
the agent may learn any f -partial policy. As the 2D-LH environment is quite simple, we are able to
uniquely encode the state observed by an agent using a 44 · 52 = 6400 dimensional {0, 1}-valued
vector such that any f -partial policy can be represented as a linear function applied to this observation
(followed by a soft-max).5 Within the PD environment the agent’s observed state is very simple:
at every timestep the agent observes an element of {0, 1, 2, 3} with 0 denoting that no door has yet
been chosen, 1 denoting that the agent has chosen door d1 but has not begun entering the code, 2
indicating that the agent has chosen door d1 and has started entering the code, and 3 representing the
final terminal state after a door has been opened or combination incorrectly entered. The MINIGRID
environments (Chevalier-Boisvert et al., 2018b) enable agents with an egocentric “visual” observation
which, in practice, is an integer tensor of shape 7⇥ 7⇥ 3, where the channels contain integer labels
corresponding to the cell’s type, color, and state. Kindly see (Chevalier-Boisvert et al., 2018b;a) for
details. For the above tasks, the cell types belong to the set of (empty, lava, wall, goal).

A.6 ADDITIONAL BASELINE DETAILS

In Tab. 1, we include details about the baselines considered in this work, including – purely IL
(1 � 3, 9), purely RL (4), a sequential combination of them (5 � 7), static combinations of them
(8, 10), and our dynamic combinations (11 � 14). Moreover, we study methods which learn from
both expert policy (expert action available for any state) and expert demonstrations (offline dataset
of pre-collected trajectories). The hyperparameters (hps) we consider for optimization in our study
have been chosen as those which, in preliminary experiments, had a substantial impact on model
performance. This includes the learning rate (lr), portion of the training steps devoted to the first
stage in methods with two stages (stage-split), and the temperature parameter in the weight function
(↵).6 Implicitly, the random environment seed can also be seen as a hyperparameter. We sample
hyperparameters uniformly at random. In particular, we sample lr from [10�4

, 0.5) on a log-scale,
stage-split from [0.1, 0.9), and ↵ from {5.0, 20.0}.

5As the softmax function prevents us from learning a truly deterministic policy we can only learn a policy
arbitrarily close to such policies. In our setting, this distinction is irrelevant.

6See Sec. 3.2 for definition of the weight function for ADVISOR.
7While implemented with supervision from expert policy, due to the teacher forcing being set to 1.0, this

method can never explore beyond states (and supervision) in expert demonstrations.
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A.7 ARCHITECTURE DETAILS

2D-LH model. As discussed in Sec. A.5.7, we have designed the observation given to our agent
so that a simple linear layer followed by a soft-max function is sufficient to capture any f -partial
policy. As such, our main and auxiliary actor models for this task are simply linear functions mapping
the input 6400-dimensional observation to a 4-dimensional output vector followed by a soft-max
non-linearity. The critic is computed similarly but with a 1-dimensional output and no non-linearity.

PD model. Our PD model has three sequential components. The first embedding layer maps a given
observation, a value in {0, 1, 2, 3}, to an 128-dimensional embedding. This 128-dimensional vector
is then fed into a 1-layer LSTM (with a 128-dimensional hidden state) to produce an 128-output
representation h. We then compute our main actor policy by applying a 128⇥ 7 linear layer followed
by a soft-max non-linearity. The auxiliary actor is produced similarly but with separate parameters in
its linear layer. Finally the critic’s value is generated by applying a 128⇥ 1 linear layer to h.

MINIGRID model. Here we detail each component of the model architecture illustrated in Fig. 3c.
The encoder (‘Enc.’) converts observation tensors (integer tensor of shape 7⇥7⇥3) to a corresponding
embedding tensor via three embedding sets (of length 8) corresponding to type, color, and state of the
object. The observation tensor, which represents the ‘lights-out’ condition, has a unique (i.e., different
from the ones listed by (Chevalier-Boisvert et al., 2018b)) type, color and state. This prevents any
type, color or state from having more than one connotation. The output of the encoder is of size
7⇥ 7⇥ 24. This tensor is flattened and fed into a (single-layered) LSTM with a 128-dimensional
hidden space. The output of the LSTM is fed to the main actor, auxiliary actor, and the critic. All
of these are single linear layers with output size of |A|, |A| and 1, respectively (main and auxiliary
actors are followed by soft-max non-linearities).

A.8 FAIR HYPERPARAMETER TUNING

As discussed in the main paper, we consider two approaches for ensuring that comparisons to
baselines are fair. In particular, we hope to avoid introducing misleading bias in our results by
extensively tuning the hyperparameters (hps) of our ADVISOR methodology while leaving other
methods relatively un-tuned.

2D-LH: Tune by Tuning a Competing Method. The goal of our experiments with the 2D-LH
environment are, principally, to highlight that increasing the imitation gap can have a substantial
detrimental impact on the quality of policies learned by training IL. Because of this, we wish to give
IL the greatest opportunity to succeed and thus we are not, as in our other experiments, attempting to
understand its expected performance when we must search for good hyperparameters. To this end,
we perform the following procedure for every i, j 2 {1, 3, 5 . . . , 15} with i < j.

For every learning rate � 2 {100 values evenly spaced in [10�4
, 1] on a log-scale} we train a f

i-
partial policy to imitate a f

j-optimal expert using BC. For each such trained policy, we roll out
trajectories from the policy across 200 randomly sampled episodes (in the 2D-LH there is no
distinction between training, validation, and test episodes as there are only four unique initial world
settings). For each rollout, we compute the average cross entropy between the learned policy and
the expert’s policy at every step. A “best” learning rate �i,j is then chosen by selecting the learning
rate resulting in the smallest cross entropy (after having smoothed the results with a locally-linear
regression model (Wasserman, 2006)).

A final learning rate is then chosen as the average of the �i,j and this learning rate is then used
when training all methods to produce the plots in Fig. 5. As some baselines require additional
hyperparameter choices, these other hyperparameters were chosen heuristically (post-hoc experiments
suggest that results for the other methods are fairly robust to these other hyperparameters).

All Other Tasks: Random Hyperparameter Evaluations. As described in the main paper, we
follow the best practices suggested by Dodge et al. (2019). In particular, for all tasks (except for
2D-LH) we train each of our baselines when sampling that method’s hyperparameters, see Table 1
and recall Sec. A.6, at random 50 times. Our plots, e.g., Fig. 4, then report an estimate of the expected
(validation set) performance of each of our methods when choosing the best performing model from
a fixed number of random hyperparameter evaluations. Unlike (Dodge et al., 2019), we compute this
estimate using a U-statistic (van der Vaart, 2000, Chapter 12) which is unbiased. Shaded regions
encapsulate the 25-to-75th quantiles of the bootstrap distribution of this statistic.
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Table 2: Structural and training hyperparameters.

Hyperparamter Value
Structural

Cell type embedding length 8
Cell color embedding length 8
Cell state embedding length 8
LSTM layers 1
LSTM hidden size 128
# Layers in critic 1
# Layers in actor 1

PPO

Clip parameter (✏) (Schulman et al., 2017) 0.1
Decay on ✏ Linear(1, 0)
# Processes to sample steps 20
Rollout timesteps 100
Minibatch size 1000
Epochs 4
Value loss coefficient 0.5
Discount factor (�) 0.99
GAE parameter (�) 1.0

Training

Optimizer Adam (Kingma & Ba, 2017)
(�1,�2) for Adam (0.9, 0.999)
Learning rate searched
Gradient clip norm 0.5
Training steps (WC/LC & variants) 1 · 106

Training steps (2D-LH & PD) 3 · 105

A.9 TRAINING IMPLEMENTATION

A summary of the training hyperparameters and their values is included in Tab. 2. Kindly see (Schul-
man et al., 2017) for details on PPO and (Schulman et al., 2015b) for details on generalized advantage
estimation (GAE).

Max. steps per episode. The maximum number of steps allowed in the 2D-LH task is 1000. Within
the PD task, an agent can never take more than 11 steps in a single episode (1 action to select the
door and then, at most, 10 more actions to input the combination if d1 was selected) and thus we do
not need to set a maximum number of allowed steps. The maximum steps allowed for an episode of
WC/LC is set by (Chevalier-Boisvert et al., 2018b;a) to 4S2, where S is the grid size. We share the
same limits for the challenging variants – SWITCH and CORRUPT. Details of task variants, their grid
size, and number of obstacles are included in Sec. A.5.

Reward structure. Within the 2D-LH task, the agent receives one of three possible rewards after
every step: when the agent finds the goal it receives a reward of 0.99, if it otherwise has reached the
maximum number of steps (1000) it receives a �1 reward, and otherwise, if neither of the prior cases
hold, it obtains a reward of �0.01. See Sec. A.5.1 for a description of rewards for the PD task. For
WC/LC, (Chevalier-Boisvert et al., 2018b;a) configure the environment to give a 0 reward unless
the goal is reached. If the goal is reached, the reward is 1� episode length

maximum steps . We adopt the same reward
structure for our SWITCH and CORRUPT variants as well.

Computing infrastructure. As mentioned in Sec. 4.3, for all tasks (except LH) we train 50 models
(with randomly sampled hps) for each baseline. This amounts to 650 models per task or 5850 models
in total. For each task, we utilize a g4dn.12xlarge instance on AWS consisting of 4 NVIDIA T4
GPUs and 48 CPUs. We run through a queue of 650 models using 48 processes. For tasks set in the
MINIGRID environments, models each require ⇡ 0.9 GB GPU memory and all training completes in
18 to 24 hours. For the PD task, model memory footprints are smaller and training all 650 models is
significantly faster (< 8 hours).
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Figure 8: E[Reward] for baselines on MINIGRID tasks. We include all variants of tasks considered
in this work. Similar to Fig. 4, we plot estimates of the expected maximum validation set reward of
all baselines (including our method), when allowing for increasingly many (random) hyperparameter
evaluations (larger E[Reward] with fewer evals. is better).

A.10 ADDITIONAL PLOTS

As mentioned in Sec. 4.3, we record three metrics for our tasks. Reward is the metric that best jointly
captures success and effective path planning (see Sec. A.9 for reward structure). In the main paper,
we included some reward plots in Fig. 4. Specifically, Fig. 8d, 8e, and 8g have already been included
in the main paper (as Fig. 4b, 4c, and 4d). The remaining variants for WC/LC, FAULTY/ONCE
SWITCH, and CORRUPT are presented in Fig. 8.

Success rate shows a similar trend, following from the definition of rewards, i.e., agents which reach
the target more often, mostly end up with higher rewards. In Fig. 9, we plot success rate for WC/LC,
FAULTY/ONCE SWITCH, and CORRUPT tasks.
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Figure 9: E[Success Rate] for baselines on MINIGRID tasks. We include all variants of tasks
considered in this work. This is the expected maximum validation set success rate of all baselines
(including our method), when allowing for increasingly many (random) hyperparameter evaluations
(larger E[Success Rate] with fewer evals. is better).
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