Appendix

A Hyperparameters in Algorithm 1

Hyper-parameters are presented below in the order of four main components- updating the critic, the density ratio, the emphatic weights, and the actor. $\alpha_{\nu} \in[0,1]$ is the stepsize in the critic update; $\alpha_{\psi} \in[0,1]$ is the stepsize in the density ratio update; $\lambda^{(1)} \in[0,1], \lambda^{(2)} \in[0,1]$ and $\hat{\gamma} \in[0,1)$ can be found more details in Appendix B for the emphatic weights update; k, w, and β are inherited from STORM for the actor update. By default, w is set as 10 and $\beta=100$.

B Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

Figure 5 contains the updates for the emphatic weights in GeoffPAC. In this figure, $\lambda^{(1)}$ and $\lambda^{(2)}$ are parameters that are used for bias-variance tradeoff, $C(s)=\frac{d_{\hat{\gamma}}(s)}{d_{\mu}(s)}$ is the density ration function (Gelada and Bellemare 2019 call it covariate shift), and $i(s)$ is the intrinsic interest function that is defined from the extrinsic interest function $\hat{i}(s)$ as $i(s)=C(s) \hat{i}(s)$. In practice, $\hat{i}(s)=1$. At time-step $t, F_{t}^{(1)}$ and $F_{t}^{(2)}$ are the follow-on traces, $M_{t}^{(1)}$ and $M_{t}^{(2)}$ are the emphatic weights, I_{t} is the gradient of the intrinsic interest, δ_{t} is the temporal-difference (TD) error, and finally Z_{t} is an unbiased sample of $\nabla J_{\hat{\gamma}}$. For more details about these parameters and their update formulas, we refer the reader to the GeoffPAC paper [Zhang et al., 2019].

```
HYPER-PARAMETER: \(\lambda^{(1)}, \lambda^{(2)}\).
INPUT: \(F_{t-1}^{(1)}, F_{t-1}^{(2)}, \rho_{t-1}, \rho_{t}, C\left(s_{t} ; \psi_{t}\right), V\left(s_{t} ; \nu_{t}\right), \delta_{t}, \hat{i}\left(s_{t}\right)\).
OUTPUT: \(F_{t}^{(1)}, M_{t}^{(1)}, I_{t}, F_{t}^{(2)}, M_{t}^{(2)}, Z_{t}\left(a_{t}, s_{t} ; \theta_{t}\right)\).
Compute \(F_{t}^{(1)}=\gamma \rho_{t-1} F_{t-1}^{(1)}+\hat{i}\left(s_{t}\right) C\left(s_{t} ; \psi_{t}\right)\).
Compute \(M_{t}^{(1)}=\left(1-\lambda^{(1)}\right) \hat{i}\left(s_{t}\right) C\left(s_{t} ; \psi_{t}\right)+\lambda^{(1)} F_{t}^{(1)}\).
Compute \(I_{t}=C\left(s_{t-1} ; \psi_{t-1}\right) \rho_{t-1} \nabla_{\theta} \log \pi\left(a_{t-1} \mid s_{t-1} ; \theta_{t-1}\right)\).
Compute \(F_{t}^{(2)}=\hat{\gamma} \rho_{t-1} F_{t-1}^{(2)}+I_{t}\).
Compute \(M_{t}^{(2)}=\left(1-\lambda^{(2)}\right) I_{t}+\lambda^{(2)} F_{t}^{(2)}\).
Compute \(Z_{t}\left(a_{t}, s_{t} ; \theta_{t}\right)=\hat{\gamma} \hat{i}\left(s_{t}\right) V\left(s_{t} ; \nu_{t}\right) M_{t}^{(2)}+\rho_{t} M_{t}^{(1)} \delta_{t} \nabla_{\theta} \log \pi\left(a_{t} \mid s_{t} ; \theta_{t}\right)\).
```

Figure 5: Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

C ACE-STORM Algorithm

The pseudo-code of ACE-STORM is shown in Algorithm 2.

D Comparison of Stochastic Variance Reduction Methods

This table is adapted from [Cutkosky and Orabona, 2019].

E Proof of Theorem 1

Before conducting the proof, we first denote $\epsilon_{t}: \epsilon_{t}=g_{t}-\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)$.
Lemma 1. Suppose $\eta_{t} \leq \frac{1}{4 L}$ for all t. Then

$$
\mathbb{E}\left[J_{\hat{\gamma}}\left(\theta_{t}\right)-J_{\hat{\gamma}}\left(\theta_{t+1}\right)\right] \leq \mathbb{E}\left[-\eta_{t} / 4\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}+3 \eta_{t} / 4\left\|\epsilon_{t}\right\|^{2}\right]
$$

Algorithms		Sample Complexity	Reference Sets Needed?
SVRG	[Reddi et al., 2016a] [Allen-Zhu and Hazan, 2016]	$O\left(n^{2 / 3} / \epsilon\right)$	$O(1 / \epsilon)$
SARAH	[Nguyen et al., 2017a,b]	$O\left(n+1 / \epsilon^{2}\right)$	\checkmark
SPIDER	[Fang et al., 2018]	$O\left(1 / \epsilon^{3 / 2}\right)$	\checkmark
STORM	[Cutkosky and Orabona, 2019]	$O\left(1 / \epsilon^{3 / 2}\right)$	\times

Table 2: Comparison of convergence rates to achieve $\|\nabla J(x)\|^{2} \leq \epsilon$ for nonconvex objective functions.

Proof of Lemma 1. According to the smoothness of $J_{\hat{\gamma}}$,

$$
\begin{aligned}
{\left[-J_{\hat{\gamma}}\left(\theta_{t+1}\right)\right] } & \leq \mathbb{E}\left[-J_{\hat{\gamma}}\left(\theta_{t}\right)-\nabla J_{\hat{\gamma}}\left(\theta_{t}\right) \cdot \eta_{t} g_{t}+\frac{L \eta_{t}^{2}}{2}\left\|g_{t}\right\|^{2}\right] \\
& =\mathbb{E}\left[-J_{\hat{\gamma}}\left(\theta_{t}\right)-\eta_{t}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}-\eta_{t} \nabla J_{\hat{\gamma}}\left(\theta_{t}\right) \cdot \epsilon_{t}+\frac{L \eta_{t}^{2}}{2}\left\|g_{t}\right\|^{2}\right] \\
& \leq \mathbb{E}\left[-J_{\hat{\gamma}}\left(\theta_{t}\right)-\frac{\eta_{t}}{2}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}+\frac{\eta_{t}}{2}\left\|\epsilon_{t}\right\|^{2}+\frac{L \eta_{t}^{2}}{2}\left\|g_{t}\right\|^{2}\right] \\
& \leq \mathbb{E}\left[-J_{\hat{\gamma}}\left(\theta_{t}\right)-\frac{\eta_{t}}{2}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}+\frac{\eta_{t}}{2}\left\|\epsilon_{t}\right\|^{2}+L \eta_{t}^{2}\left\|\epsilon_{t}\right\|^{2}+L \eta_{t}^{2}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \\
& \leq \mathbb{E}\left[-J_{\hat{\gamma}}\left(\theta_{t}\right)-\frac{\eta_{t}}{2}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}+\frac{3 \eta_{t}}{4}\left\|\epsilon_{t}\right\|^{2}+\frac{\eta_{t}}{4}\left\|J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right.
\end{aligned}
$$

The following technical observation is key to our analysis: it provides a recurrence that enables us to bound the variance of the estimates g_{t}.

```
Algorithm 2 ACE-STORM
    \(V\) : value function parameterized by \(\nu\)
    \(\pi\) : policy function parameterized by \(\theta\)
    Input: Initial parameters \(\nu_{0}\) and \(\theta_{0}\). Initialize \(F_{-1}^{(1)}=0, \rho_{-1}=1, i(\cdot)=1\), and hyper-parameters
    \(\lambda^{(1)}, k, w, \beta\) and \(\alpha_{\nu}\).
    for timestep \(t=0\) to \(T\) do
        Sample a transition \(S_{t}, A_{t}, R_{t}, S_{t+1}\) according to behavior policy \(\mu\).
        Compute \(\delta_{t}=R_{t}+\gamma V\left(S_{t+1} ; \nu_{t}\right)-V\left(S_{t} ; \nu_{t}\right)\)
        Update the parameter for value function: \(\nu_{t+1}=\nu_{t}+\alpha_{\nu} \delta_{t} \nabla_{\nu} V\left(S_{t} ; \nu_{t}\right)\)
        Compute \(F_{t}^{(1)}=\gamma \rho_{t-1} F_{t-1}^{(1)}+i\left(S_{t}\right)\)
        Compute \(M_{t}^{(1)}=\left(1-\lambda^{(1)}\right) i\left(S_{t}\right)+\lambda^{(1)} F_{t}^{(1)}\)
        Compute \(Z_{t}^{(1)}\left(A_{t}, S_{t} ; \theta_{t}\right)=\rho_{t} M_{t}^{(1)} \delta_{t} \nabla_{\theta} \log \pi\left(A_{t} \mid S_{t} ; \theta_{t}\right)\).
        Compute \(G_{t}=\left\|Z_{t}^{(1)}\left(A_{t}, S_{t} ; \theta_{t}\right)\right\|\).
        Compute \(\alpha_{t}=\beta \eta_{t-1}^{2}\)
        Compute \(Z_{t}^{(1)}\left(A_{t}, S_{t} ; \theta_{t-1}\right)=\rho_{t} M_{t}^{(1)} \delta_{t} \nabla_{\theta} \log \pi\left(A_{t} \mid S_{t} ; \theta_{t-1}\right)\).
        Compute \(g_{t}=Z_{t}^{(1)}\left(A_{t}, S_{t} ; \theta_{t}\right)+\left(1-\alpha_{t}\right)\left(g_{t-1}-Z_{t}^{(1)}\left(A_{t}, S_{t} ; \theta_{t-1}\right)\right)\).
        Compute \(\eta_{t}=\frac{k}{\left(w+\sum_{i=1}^{t} G_{t}^{2}\right)^{\frac{1}{3}}}\).
        Update the parameter for the actor: \(\theta_{t+1}=\theta_{t}+\eta_{t} g_{t}\)
    end for
    Output I: Parameters \(\nu_{T+1}, \theta_{T+1}\).
    Output II:Parameters \(\nu_{T+1}, \theta_{\tau}\), where \(\tau\) is sampled with a probability of \(p(\tau=t) \propto \frac{1}{\eta_{t}^{2}}\).
```

Lemma 2. With the notation in Algorithm, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\epsilon_{t}\right\|^{2} / \eta_{t-1}\right] \\
\leq & \mathbb{E}\left[2 \beta^{2} \eta_{t-1}^{3} \sigma^{2}+\left(1-\alpha_{t}\right)^{2}\left(1+4 L^{2} \eta_{t-1}^{2}\right)\left\|\epsilon_{t-1}\right\|^{2} / \eta_{t-1}+4\left(1-\alpha_{t}\right)^{2} L^{2} \eta_{t-1}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t-1}\right)\right\|^{2}\right] .
\end{aligned}
$$

The proof of Lemma 2 is motivated by the proof of Lemma 2 in [Cutkosky and Orabona, 2019].

Proof of Theorem 1. We first construct a Lyapunov function of $\Phi_{t}=J_{\hat{\gamma}}\left(\theta_{t}\right)+\frac{1}{32 L^{2} \eta_{t-1}}\left\|\epsilon_{t}\right\|^{2}$. We will upper bound $\Phi_{t+1}-\Phi_{t}$ for each t, which will allow us to bound Φ_{T} in terms of Φ_{1} by summing over t. First, observe that since $w \geq(4 L k)^{3}$, we have $\eta_{t} \leq \frac{1}{4 L}$. Further, since $\alpha_{t+1}=\beta \eta_{t}^{2}$, we have $\alpha_{t+1} \leq \frac{\beta k}{4 L w^{1 / 3}} \leq 1$ for all t. Then, we first consider $\eta_{t}^{-1}\left\|\epsilon_{t+1}\right\|^{2}-\eta_{t-1}^{-1}\left\|\epsilon_{t}\right\|^{2}$. Using Lemma 2, we obtain

$$
\begin{aligned}
& \mathbb{E}\left[\eta_{t}^{-1}\left\|\epsilon_{t+1}\right\|^{2}-\eta_{t-1}^{-1}\left\|\epsilon_{t}\right\|^{2}\right] \\
\leq & \mathbb{E}\left[2 c^{2} \eta_{t}^{3} G^{2}+\frac{\left(1-\alpha_{t+1}\right)^{2}\left(1+4 L^{2} \eta_{t}^{2}\right)\left\|\epsilon_{t}\right\|^{2}}{\eta_{t}}+4\left(1-\alpha_{t+1}\right)^{2} L^{2} \eta_{t}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}-\frac{\left\|\epsilon_{t}\right\|^{2}}{\eta_{t-1}}\right] \\
\leq & \mathbb{E}[\underbrace{2 c^{2} \eta_{t}^{3} G^{2}}_{A_{t}}+\underbrace{\left(\eta_{t}^{-1}\left(1-\alpha_{t+1}\right)\left(1+4 L^{2} \eta_{t}^{2}\right)-\eta_{t-1}^{-1}\right)\left\|\epsilon_{t}\right\|^{2}}_{B_{t}}+\underbrace{4 L^{2} \eta_{t}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}}_{C_{t}}] .
\end{aligned}
$$

Let start with upper bounding the second term B_{t} we have

$$
B_{t} \leq\left(\eta_{t}^{-1}-\eta_{t-1}^{-1}+\eta_{t}^{-1}\left(4 L^{2} \eta_{t}^{2}-\alpha_{t+1}\right)\right)\left\|\epsilon_{t}\right\|^{2}=\left(\eta_{t}^{-1}-\eta_{t-1}^{-1}+\eta_{t}\left(4 L^{2}-\beta\right)\right)\left\|\epsilon_{t}\right\|^{2}
$$

Let us focus on $\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}$ for a minute. Using the concavity of $x^{1 / 3}$, we have $(x+y)^{1 / 3} \leq$ $x^{1 / 3}+y x^{-2 / 3} / 3$. Therefore:

$$
\begin{aligned}
\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}} & =\frac{1}{k}\left(w+\sum_{i=1}^{t} G_{i}^{2}\right)^{1 / 3}-\frac{1}{k}\left(w+\sum_{i=1}^{t-1} G_{i}^{2}\right)^{1 / 3} \leq \frac{G_{t}^{2}}{3 k\left(w+\sum_{i=1}^{t-1} G_{i}^{2}\right)^{2 / 3}} \\
& \leq \frac{G_{t}^{2}}{3 k\left(w-G^{2}+\sum_{i=1}^{t} G_{i}^{2}\right)^{2 / 3}} \leq \frac{G_{t}^{2}}{3 k\left(w / 2+\sum_{i=1}^{t} G_{i}^{2}\right)^{2 / 3}} \\
& \leq \frac{2^{2 / 3} G_{t}^{2}}{3 k\left(w+\sum_{i=1}^{t} G_{i}^{2}\right)^{2 / 3}} \leq \frac{2^{2 / 3} G_{t}^{2}}{3 k^{3}} \eta_{t}^{2} \leq \frac{2^{2 / 3} G^{2}}{12 L k^{3}} \eta_{t} \leq \frac{G^{2}}{7 L k^{3}} \eta_{t}
\end{aligned}
$$

where we have used that that $w \geq(4 L k)^{3}$ to have $\eta_{t} \leq \frac{1}{4 L}$.
Further, since $\beta=28 L^{2}+G^{2} /\left(7 L k^{3}\right)$, we have

$$
\eta_{t}\left(4 L^{2}-\beta\right) \leq-24 L^{2} \eta_{t}-G^{2} \eta_{t} /\left(7 L k^{3}\right)
$$

Thus, we obtain

$$
B_{t} \leq-24 L^{2} \eta_{t}\left\|\epsilon_{t}\right\|^{2}
$$

Now, we are ready to analyze the potential Φ_{t}. Since $\eta_{t} \leq \frac{1}{4 L}$, we can use Lemma 1 to obtain

$$
\mathbb{E}\left[\Phi_{t}-\Phi_{t+1}\right] \leq \mathbb{E}\left[-\frac{\eta_{t}}{4}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}+\frac{3 \eta_{t}}{4}\left\|\epsilon_{t}\right\|^{2}+\frac{1}{32 L^{2} \eta_{t}}\left\|\epsilon_{t+1}\right\|^{2}-\frac{1}{32 L^{2} \eta_{t-1}}\left\|\epsilon_{t}\right\|^{2}\right]
$$

Summing over t, we obtain Rearranging terms we get,

$$
\begin{array}{r}
\mathbb{E}\left[\frac{\eta_{t}}{8}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\Phi_{t+1}-\Phi_{t}\right]+\mathbb{E}\left[\frac{\beta^{2} \eta_{t}^{3} G^{2}}{16 L^{2}}\right] \\
\Longleftrightarrow \\
\mathbb{E}\left[\frac{1}{8 \eta_{t}^{2}}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\frac{1}{8 \eta_{t}^{3}}\left[\Phi_{t+1}-\Phi_{t}\right]\right]+\frac{\beta^{2} G^{2}}{16 L^{2}}
\end{array}
$$

Summing over $1, \cdots, t$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\frac{1}{\eta_{t}^{2}}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\frac{8}{\eta_{t}^{3}}\left[\Phi_{t+1}-\Phi_{t}\right]\right]+\frac{G^{2} T}{2 L^{2}} \\
\Longleftrightarrow & \sum_{t=1}^{T} \mathbb{E}\left[\frac{1}{\eta_{t}^{2}}\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\frac{8}{\eta_{t}^{3}}\left[\Phi_{t+1}-\Phi_{t}\right]\right]+\frac{\beta^{2} G^{2} T}{2 L^{2}} \\
\Longleftrightarrow & \sum_{t=1}^{T} \mathcal{W}_{1 t} \mathbb{E}\left[\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right] \leq \sum_{t=1}^{T} 8 \mathcal{W}_{2 t} \mathbb{E}\left[\Phi_{t+1}-\Phi_{t}\right]+\frac{\beta^{2} G^{2} T}{2 L^{2}}
\end{aligned}
$$

As $G_{t+1}^{2} \leq G^{2}$, therefore $\eta_{t} \sim \Omega\left(\left(\frac{k}{w+t G^{2}}\right)^{1 / 3}\right)$. As a result, $\mathcal{W}_{1 t}=\frac{1}{\eta_{t}^{2}}=\frac{\left(w+t G^{2}\right)^{2 / 3}}{k^{2}} \sim O\left(t^{2 / 3}\right)$, $\mathcal{W}_{2 t}=\frac{1}{\eta_{t}^{3}}=\frac{\left(w+t G^{2}\right)}{k^{3}} \sim O(t)$.

$$
\begin{aligned}
\sum_{t=1}^{T} t \mathbb{E}\left[\Phi_{t+1}-\Phi_{t}\right] & =\sum_{t=1}^{T} \mathbb{E}\left[(t+1) \Phi_{t+1}-(t) \Phi_{t}\right]-\sum_{t=1}^{T} \Phi_{t+1} \\
& =(T+1) \Phi_{T+1}-\Phi_{1}-\sum_{t=1}^{T} \Phi_{t+1}=\sum_{t=1}^{T+1}\left(\Phi_{T+1}-\Phi_{t}\right) \leq(T+1) \Delta_{\Phi}
\end{aligned}
$$

where $\Delta_{\Phi} \leq \Delta_{J_{\hat{\gamma}}}+\frac{\left\|\epsilon_{0}\right\|^{2}}{32 \eta_{0} L^{2}}, \Delta_{J_{\hat{\gamma}}}=J_{\hat{\gamma}}\left(\theta^{*}\right)-J_{\hat{\gamma}}(\theta), \forall \theta \in R^{d}$, and θ^{\star} is the maximizer of $J_{\hat{\gamma}}$.

$$
\sum_{t=1}^{T} \mathcal{W}_{1 t}=\sum_{t=1}^{T} t^{2 / 3} \geq \int_{t=1}^{T} t^{2 / 3} d t=\frac{3}{5}\left(T^{5 / 3}-1\right) \geq \frac{2}{5} T^{5 / 3}
$$

Then we have

$$
\begin{aligned}
\frac{\sum_{t=1}^{T} \mathcal{W}_{1 t} \mathbb{E}\left[\left\|\nabla J_{\hat{\gamma}}\left(\theta_{t}\right)\right\|^{2}\right.}{\sum_{t=1}^{T} \mathcal{W}_{1 t}} & \leq \frac{\sum_{t=1}^{T} 8 \mathcal{W}_{2 t} \mathbb{E}\left[\Phi_{t}-\Phi_{t+1}\right]}{\sum_{t=1}^{T} \mathcal{W}_{1 t}}+\frac{\beta^{2} G^{2} T}{2 L^{2} \sum_{t=1}^{T} \mathcal{W}_{1 t}} \\
& \leq \frac{8(T+1) \Delta_{\Phi}}{\frac{2}{5}\left(T^{5 / 3}\right)}+\frac{\eta^{2} G^{2} T}{2 L^{2}\left(\frac{2}{5} T^{5 / 3}\right)} \\
& \leq \frac{40 \Delta_{\Phi}}{T^{2 / 3}}+\frac{2 \beta^{2} G^{2}}{L^{2} T^{2 / 3}}
\end{aligned}
$$

where $\beta=28 L^{2}+\sigma^{2} /\left(7 L k^{3}\right)$.

F Details of Experiments

For VOMPS and ACE-STORM, the policy function π is parameterized as a diagonal Gaussian distribution where the mean is the output of a two-hidden-layer network (64 hidden units with ReLU) and the standard deviation is fixed. For GeoffPAC, ACE, SVRPG, SRVR-PG, DDPG and TD3, we use the same parameterization as Zhang et al. [2019], Papini et al. [2018], Xu et al. [2019b], Lillicrap et al. [2015] and Fujimoto et al. [2018] respectively.

Cartpole CartPoleContinuous-v0 has 4 dimensions for a state and 1 dimension for an action. The only difference between CartPoleContinuous-v0 and CartPole-v0 (provided by OpenAI Gym) is that CartPoleContinuous -v 0 has a continuous value range of $[-1,1]$ for action space. The episodic return for the comparison with on-policy and off-policy methods is shown in Fig. 6(a), 6(b). The relative performance matches with that of the Monte Carlo return.

Hopper Hopper-v2 attempts to make a 2D robot hop that has 11 dimensions for a state and 3 dimensions for an action. The episodic return for the comparison with on-policy and off-policy methods is shown in Fig. 7(a), 8(a).

HalfCheetah HalfCheetah-v2 attempts to make a 2D cheetah robot run that has 17 dimensions for a state and 6 dimensions for an action. The episodic return for the comparison with on-policy and off-policy methods is shown in Fig. 7(b), 8(b).

Figure 6: Episodic Return on CartPoleContinuous-v0
Besides, the episodic return for the 20% action noise comparison on Mujoco (including Hopper-v2 and HalfCheetah-v2) is shown in Fig. 7(c), 8(c), 7(d), 8(d) respectively.
The parameter settings for GeoffPAC and ACE are insensitive on CartPoleContinuous-v0. Therefore, we keep the setting of $\lambda^{(1)}=0.7, \lambda^{(2)}=0.6, \hat{\gamma}=0.2$ for GeoffPAC, and $\lambda^{(1)}=0$ for ACE in all of the experiments. For DDPG and TD3, we use the same parameter settings as Lillicrap et al. [2015] and Fujimoto et al. [2018] respectively.

Figure 7: Comparison with on-policy PG methods (Mujoco), "HC" is short for HalfCheetah.

Figure 8: Comparison with off-policy PG methods (Mujoco), "HC" is short for HalfCheetah.

