Appendix

A Hyperparameters in Algorithm 1

Hyper-parameters are presented below in the order of four main components— updating the critic,
the density ratio, the emphatic weights, and the actor. o, € [0, 1] is the stepsize in the critic update;
vy € [0,1] is the stepsize in the density ratio update; A" € [0,1], A\®) € [0,1] and 4 € [0, 1) can
be found more details in Appendix B for the emphatic weights update; k, w, and 3 are inherited from
STORM for the actor update. By default, w is set as 10 and 5 = 100.

B Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

Figure 5 contains the updates for the emphatic weights in GeoffPAC. In this figure, (') and \(?)

are parameters that are used for bias-variance tradeoff, C(s) = Z”Ei; is the density ration function
1

(Gelada and Bellemare 2019 call it covariate shift), and i(s) is the intrinsic interest function that
is defined from the extrinsic interest function i(s) as i(s) = C(s)i(s). In practice, i(s) = 1. At
time-step ¢, Ft(l) and Ft(Q) are the follow-on traces, Mt(l) and Mt@) are the emphatic weights, I; is
the gradient of the intrinsic interest, J; is the temporal-difference (TD) error, and finally Z; is an

unbiased sample of V.J;. For more details about these parameters and their update formulas, we
refer the reader to the GeoffPAC paper [Zhang et al., 2019].

HYPER-PARAMETER: \()) \(2),

INPUT:Ft(i)l, Ft(z)l, Pi—1, Py C(se300), V(s 1), 0p, 1 (5¢).

oUTPUT:-FM, MM 1, F® M2 Z,(ay, s4:6,).

Compute Ft(l) = ’ypt_lFt(i)l +1(5¢)C(54; ;).

Compute Mt(l) = (1 = X)i(s)C(s4;9) + A(l)Ft(l).

Compute I} = C(si—1;¢1—1)pi—1 Vg logm(ai—_1]8t—1;01—1).

Compute Ft(z) = ’ypt_lFt(E)l + I;.

Compute Mt(Q) =1 -2, +)\(Q)Ft(g).

Compute Zy(ay, s¢;60;) = #i(s,)V (54 I/t)Mt(Q) + ptMt(l)étVQ log m(at|st; 6:).

Figure 5: Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

C ACE-STORM Algorithm

The pseudo-code of ACE-STORM is shown in Algorithm 2.

D Comparison of Stochastic Variance Reduction Methods

This table is adapted from [Cutkosky and Orabona, 2019].

E Proof of Theorem 1

Before conducting the proof, we first denote €;: e, = g — VJ5(0:).

Lemma 1. Suppose n, < ﬁfor all't. Then

E[J5(0:) — J5(0:41)] < E[= ne/4IV I3 (00117 + 3ne/4] €]

12

Algorithms Sample Complexity = Reference Sets Needed?
[Reddi et al., 2016a]

SVRG | Allen-Zhu and Hazan, 2016] O(n*?/e) O(1/e)
SARAH [Nguyen et al., 2017a,b] O(n+1/é) v
SPIDER [Fang et al., 2018] O(1/€¥/?) v
STORM [Cutkosky and Orabona, 2019] O(1/€¥?) X

Table 2: Comparison of convergence rates to achieve ||V.J(x)||?

functions.

< ¢ for nonconvex objective

Proof of Lemma 1. According to the smoothness of J5,

L 2
[J3(00)) < BI=T5(0) = VI5(60.) - mige + =5 lou]”]

Ln2
= E[—J5(0:) — nel| VI35 (00) 1> — eV T5(0:) - € + 7; lgel1?]
U U L
< E[-J5(0:) — iHVJ&(Qt)HQ + %HQH2 + 2t rals:
n n
< E[-J5(0:) - éHVJ&(Qt)HZ + §t||€tH2 + L} |lell” + Lng ||V J5(6,) ||°]

7 3n 7
< E[-J5(0:) - éIIVJ&(Qt)IIQ + 7; lleel® + Z’sHJ&(@t)II2
O

The following technical observation is key to our analysis: it provides a recurrence that enables us to
bound the variance of the estimates g;.

Algorithm 2 ACE-STORM

V': value function parameterized by v
m: policy function parameterized by 6

Input: Initial parameters vy and 6. Initialize Fﬁll) =0, p—1 = 1,4(-) = 1, and hyper-parameters
MYk w, Band a,,.
for timestep ¢ = 0to 1" do
Sample a transition Sy, A¢, Ry, St+1 according to behavior policy .
Compute (515 = Rt + ’}/V(St+1; I/t) — V(St, l/t)
Update the parameter for value function: v;11 = vy + @, 0:V, V (St; v¢)
Compute Ft(l) = 'ypt_lFt(i)l +(Sy)
Compute MM = (1 — AM)i(S,) + \OFD
Compute Zt(l) (At7 St, Ht) = ptMt(l)(Sth IOg 7T(At|st; Ht)
Compute G = || 2\ (Ay, Si: 0,)]-
Compute oy = 317,
Compute Zt(l) (At, St; 9t71) = ptMt(l)(StVQ log W(At‘St; Gt,l).
Compute g; = Zt(l)(At, St 04) + (1 — at)(gt—l - Zt(l)(Au St; 9t—1))~
k

Compute 7, = = b
Update the parameter for the actor: 6;1 = 60; + 1:9;

end for

Output I: Parameters vy, 074 1.

Output II:Parameters v 1, 0, where 7 is sampled with a probability of p(7 = t) x 77—12

13

Lemma 2. With the notation in Algorithm, we have

E[[leel?/me—1]
<E[28°n}_10° + (1 —) (L + AL n7_) lle—1[1?/me—1 + 4(1 —) L1 [V 5 (6,-1) %]

The proof of Lemma 2 is motivated by the proof of Lemma 2 in [Cutkosky and Orabona, 2019].

Proof of Theorem 1. We first construct a Lyapunov function of ®, = J;(6;) + 32L2m - llec||?. We

will upper bound @, — ®; for each ¢, which will allow us to bound ®7 in terms of ®; by summing
over t. First, observe that since w > (4Lk) we have m ﬁ. Further, since a1 = /577?, we have

g1 < Lﬁ "5 < 1forall t. Then, we first consider 1, *[|e;41/|* — 1,_"; ||| Using Lemma 2, we
obtain

E[ny Mewsl® — nyllel]

—1)? (1 +4L%02) e ||? Ak
[20 7’]3G2 (t-‘rl) (nt)” t” + 4(1 _ at+1)2L277t||VJ’y(9t)”2 _ || 75”]
Mt Nt—1
<E |20} G + (n; (1 — apyr) (U4 4L207) — 0,4) e + 4L%0] [V T5.(0:) |12
A C
t By t

Let start with upper bounding the second term B; we have

By < (it =y + 07 AL — cg)) el = (07t — nly + (AL = B)) [le)?

Let us focus on L+ —
Ui 77t 1

x/3 4 yx=2/3 /3. Therefore:

1 1 -1 1/3 G?
mo nTl (ZG2> %(“’ i ;Gf) = Sh(w t Zﬁt;i G})2/3

for a minute. Using the concavity of z 1/3 we have (z + y)l/ 3 <

G2 G2
Bk(w —G? + 30 G2)2/3 3k(w/2+ X0, G
22/3Gt2 - 22/3G? 2 _ 22/3G2 G2

<
Sk(w+ >, G225 3k T 2Lk M S 7L

where we have used that that w > (4Lk)? to have n; < ﬁ.
Further, since 3 = 28L2 + G?/(7Lk?), we have

n(4L% — B) < —24L%n, — G?n, /(TLE?).
Thus, we obtain
By < —24L%n|e|?

Now, we are ready to analyze the potential ®;. Since 7, < we can use Lemma 1 to obtain

4L’

1

1
E[®; — 1] <E —*||VJ (0:)17 + || elI” + mHGtHHQ e

leel|?

Summing over ¢, we obtain Rearranging terms we get,

n ,@2773G2
B2 95 001] < Bl —] + B2]
1 [.3202
2
— E[STEHVJ@(&)II] < E[ST?[@H —a)+

14

Summing over 1, --- | ¢, we have

T T
1 8 G*T
E[|[VJ50)%] <Y E[—=[®rr1 — O] + =
> LIV (00I) < Y Blplen - @+ 5
T T
1 8 B2G?T
— ZE[?HVJ&(@)HZ] < ZE[ﬁ[‘I’tH =@l + 7
1 t t=1 t

4

B2G2T

T
= > WRE[[V 5071 <> 8WuE @y — &) + 513

t=1 t=1
As G2, < G?, therefore n; ~ Q((-5=)"/?). Asaresult, Wy, = 5 = (H G O(t*/3),

w+tG? n k2
1 w+tG?
Woy = g = (witG) o3)~ O(t).

T

T T
S E@y —) =D E[(t+ 1)Ppy — ()P4] = > Piga
t=1 t=1 t=1

T T+1

=T+ 1)1 =1 — Y Py =D (P — ®) < (T+1)Ag

t=1 t=1

where Ag < Ay, + 3‘;00"; Ay, = J5(0%) — J5(0),V0 € R%, and 6* is the maximizer of .J5.

) T T 3 9
Wy = t2/3>/ £2/3dt = Z(T°/3 — 1) > ZT75/3,
2 Wu=3 0Pz S 1) 2

t=1 t=1

Then we have

T T
SWLE[[VI (07 Y 8SWuE[®y — ®pi] 22
t=1 t=1 B°G*T

IN

T T + T
> Wiy > Wiy 202 % Wy

t=1 t=1 t=1
8(T +1)As n n*G*T
- %(T5/3) QLQ(%T5/3)
40Ap = 2B%G?
- T2/3 L272/3

where 3 = 28L2 + 0% /(TLk?).

F Details of Experiments

For VOMPS and ACE-STORM, the policy function 7 is parameterized as a diagonal Gaussian
distribution where the mean is the output of a two-hidden-layer network (64 hidden units with ReLU)
and the standard deviation is fixed. For GeoffPAC, ACE, SVRPG, SRVR-PG, DDPG and TD3, we
use the same parameterization as Zhang et al. [2019], Papini et al. [2018], Xu et al. [2019b], Lillicrap
et al. [2015] and Fujimoto et al. [2018] respectively.

Cartpole CartPoleContinuous-v0 has 4 dimensions for a state and 1 dimension for an action.
The only difference between CartPoleContinuous-v0 and CartPole-vO0 (provided by OpenAl
Gym) is that CartPoleContinuous-vO has a continuous value range of [—1, 1] for action space. The
episodic return for the comparison with on-policy and off-policy methods is shown in Fig. 6(a), 6(b).
The relative performance matches with that of the Monte Carlo return.

Hopper Hopper-v2 attempts to make a 2D robot hop that has 11 dimensions for a state and 3

dimensions for an action. The episodic return for the comparison with on-policy and off-policy
methods is shown in Fig. 7(a), 8(a).

15

HalfCheetah HalfCheetah-v2 attempts to make a 2D cheetah robot run that has 17 dimensions
for a state and 6 dimensions for an action. The episodic return for the comparison with on-policy and
off-policy methods is shown in Fig. 7(b), 8(b).

CartPoleContinuous-vO CartPoleContinuous-v0
200

g

Episodic Return
Episodic Return

— VOMPS CE
ACE-STORM — DDPG

— GeoffPAC —TD3

o 56K 100K 150K 200K 250K 300K 350K 400K oK 56K 100K 150K 200K 250K 300K 350K 400K
samples Samples

(a) Comparison with on-policy methods (b) Comparison with off-policy methods

Figure 6: Episodic Return on CartPoleContinuous-v0

Besides, the episodic return for the 20% action noise comparison on Mujoco (including Hopper-v2
and HalfCheetah-v2) is shown in Fig. 7(c), 8(c), 7(d), 8(d) respectively.

The parameter settings for GeoffPAC and ACE are insensitive on CartPoleContinuous-vO0. There-
fore, we keep the setting of A() = 0.7, \(?) = 0.6, 4 = 0.2 for GeoffPAC, and \(") = 0 for ACE in
all of the experiments. For DDPG and TD3, we use the same parameter settings as Lillicrap et al.
[2015] and Fujimoto et al. [2018] respectively.

(a) Hopper (b) HalfCheetah (c) Hopper (action noise) (d) HC (action noise)

Figure 7: Comparison with on-policy PG methods (Mujoco), “HC” is short for HalfCheetah.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(a) Hopper (b) HalfCheetah (c) Hopper (action noise) (d) HC (action noise)

Figure 8: Comparison with off-policy PG methods (Mujoco), “HC” is short for HalfCheetah.

16

