
Appendix

A Hyperparameters in Algorithm 1

Hyper-parameters are presented below in the order of four main components— updating the critic,
the density ratio, the emphatic weights, and the actor. αν ∈ [0, 1] is the stepsize in the critic update;
αψ ∈ [0, 1] is the stepsize in the density ratio update; λ(1) ∈ [0, 1], λ(2) ∈ [0, 1] and γ̂ ∈ [0, 1) can
be found more details in Appendix B for the emphatic weights update; k, w, and β are inherited from
STORM for the actor update. By default, w is set as 10 and β = 100.

B Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

Figure 5 contains the updates for the emphatic weights in GeoffPAC. In this figure, λ(1) and λ(2)

are parameters that are used for bias-variance tradeoff, C(s) =
dγ̂(s)
dµ(s) is the density ration function

(Gelada and Bellemare 2019 call it covariate shift), and i(s) is the intrinsic interest function that
is defined from the extrinsic interest function î(s) as i(s) = C(s)̂i(s). In practice, î(s) = 1. At
time-step t, F (1)

t and F (2)
t are the follow-on traces, M (1)

t and M (2)
t are the emphatic weights, It is

the gradient of the intrinsic interest, δt is the temporal-difference (TD) error, and finally Zt is an
unbiased sample of ∇Jγ̂ . For more details about these parameters and their update formulas, we
refer the reader to the GeoffPAC paper [Zhang et al., 2019].

HYPER-PARAMETER: λ(1), λ(2).
INPUT:F (1)

t−1, F
(2)
t−1, ρt−1, ρt, C(st;ψt), V (st; νt), δt, î(st).

OUTPUT:F (1)
t ,M

(1)
t , It, F

(2)
t ,M

(2)
t , Zt(at, st; θt).

Compute F (1)
t = γρt−1F

(1)
t−1 + î(st)C(st;ψt).

Compute M (1)
t = (1− λ(1))̂i(st)C(st;ψt) + λ(1)F

(1)
t .

Compute It = C(st−1;ψt−1)ρt−1∇θ log π(at−1|st−1; θt−1).
Compute F (2)

t = γ̂ρt−1F
(2)
t−1 + It.

Compute M (2)
t = (1− λ(2))It + λ(2)F

(2)
t .

Compute Zt(at, st; θt) = γ̂î(st)V (st; νt)M
(2)
t + ρtM

(1)
t δt∇θ log π(at|st; θt).

Figure 5: Emphatic weights update component of GeoffPAC [Zhang et al., 2019]

C ACE-STORM Algorithm

The pseudo-code of ACE-STORM is shown in Algorithm 2.

D Comparison of Stochastic Variance Reduction Methods

This table is adapted from [Cutkosky and Orabona, 2019].

E Proof of Theorem 1

Before conducting the proof, we first denote εt: εt = gt −∇Jγ̂(θt).

Lemma 1. Suppose ηt ≤ 1
4L for all t. Then

E
[
Jγ̂(θt)− Jγ̂(θt+1)

]
≤ E

[
− ηt/4‖∇Jγ̂(θt)‖2 + 3ηt/4‖εt‖2

]
12

Algorithms Sample Complexity Reference Sets Needed?

SVRG [Reddi et al., 2016a]
O(n2/3/ε) O(1/ε)[Allen-Zhu and Hazan, 2016]

SARAH [Nguyen et al., 2017a,b] O(n+ 1/ε2) X

SPIDER [Fang et al., 2018] O(1/ε3/2) X

STORM [Cutkosky and Orabona, 2019] O(1/ε3/2) ×

Table 2: Comparison of convergence rates to achieve ||∇J(x)||2 ≤ ε for nonconvex objective
functions.

Proof of Lemma 1. According to the smoothness of Jγ̂ ,

[
− Jγ̂(θt+1)] ≤ E[−Jγ̂(θt)−∇Jγ̂(θt) · ηtgt +

Lη2
t

2
‖gt‖2

]
= E[−Jγ̂(θt)− ηt‖∇Jγ̂(θt)‖2 − ηt∇Jγ̂(θt) · εt +

Lη2
t

2
‖gt‖2

]
≤ E[−Jγ̂(θt)−

ηt
2
‖∇Jγ̂(θt)‖2 +

ηt
2
‖εt‖2 +

Lη2
t

2
‖gt‖2

]
≤ E[−Jγ̂(θt)−

ηt
2
‖∇Jγ̂(θt)‖2 +

ηt
2
‖εt‖2 + Lη2

t ‖εt‖2 + Lη2
t ‖∇Jγ̂(θt)‖2

]
≤ E[−Jγ̂(θt)−

ηt
2
‖∇Jγ̂(θt)‖2 +

3ηt
4
‖εt‖2 +

ηt
4
‖Jγ̂(θt)‖2

The following technical observation is key to our analysis: it provides a recurrence that enables us to
bound the variance of the estimates gt.

Algorithm 2 ACE-STORM

V : value function parameterized by ν
π: policy function parameterized by θ
Input: Initial parameters ν0 and θ0. Initialize F (1)

−1 = 0, ρ−1 = 1, i(·) = 1, and hyper-parameters
λ(1), k, w, β and αν .
for timestep t = 0 to T do

Sample a transition St, At, Rt, St+1 according to behavior policy µ.
Compute δt = Rt + γV (St+1; νt)− V (St; νt)
Update the parameter for value function: νt+1 = νt + ανδt∇νV (St; νt)

Compute F (1)
t = γρt−1F

(1)
t−1 + i(St)

Compute M (1)
t = (1− λ(1))i(St) + λ(1)F

(1)
t

Compute Z(1)
t (At, St; θt) = ρtM

(1)
t δt∇θ log π(At|St; θt).

Compute Gt = ||Z(1)
t (At, St; θt)||.

Compute αt = βη2
t−1

Compute Z(1)
t (At, St; θt−1) = ρtM

(1)
t δt∇θ log π(At|St; θt−1).

Compute gt = Z
(1)
t (At, St; θt) + (1− αt)

(
gt−1 − Z(1)

t (At, St; θt−1)
)
.

Compute ηt = k

(w+
∑t
i=1G

2
t)

1
3

.

Update the parameter for the actor: θt+1 = θt + ηtgt
end for
Output I: Parameters νT+1, θT+1.
Output II:Parameters νT+1, θτ , where τ is sampled with a probability of p(τ = t) ∝ 1

η2t
.

13

Lemma 2. With the notation in Algorithm, we have

E
[
‖εt‖2/ηt−1

]
≤E
[
2β2η3

t−1σ
2 + (1− αt)2(1 + 4L2η2

t−1)‖εt−1‖2/ηt−1 + 4(1− αt)2L2ηt−1‖∇Jγ̂(θt−1)‖2
]
.

The proof of Lemma 2 is motivated by the proof of Lemma 2 in [Cutkosky and Orabona, 2019].

Proof of Theorem 1. We first construct a Lyapunov function of Φt = Jγ̂(θt) + 1
32L2ηt−1

‖εt‖2. We
will upper bound Φt+1 −Φt for each t, which will allow us to bound ΦT in terms of Φ1 by summing
over t. First, observe that since w ≥ (4Lk)3, we have ηt ≤ 1

4L . Further, since αt+1 = βη2
t , we have

αt+1 ≤ βk
4Lw1/3 ≤ 1 for all t. Then, we first consider η−1

t ‖εt+1‖2 − η−1
t−1‖εt‖2. Using Lemma 2, we

obtain

E
[
η−1
t ‖εt+1‖2 − η−1

t−1‖εt‖2
]

≤E
[
2c2η3

tG
2 +

(1− αt+1)2(1 + 4L2η2
t)‖εt‖2

ηt
+ 4(1− αt+1)2L2ηt‖∇Jγ̂(θt)‖2 −

‖εt‖2

ηt−1

]
≤E
[

2c2η3
tG

2︸ ︷︷ ︸
At

+
(
η−1
t (1− αt+1)(1 + 4L2η2

t)− η−1
t−1

)
‖εt‖2︸ ︷︷ ︸

Bt

+ 4L2ηt‖∇Jγ̂(θt)‖2︸ ︷︷ ︸
Ct

]
.

Let start with upper bounding the second term Bt we have

Bt ≤ (η−1
t − η−1

t−1 + η−1
t (4L2η2

t − αt+1))‖εt‖2 =
(
η−1
t − η−1

t−1 + ηt(4L
2 − β)

)
‖εt‖2 .

Let us focus on 1
ηt
− 1

ηt−1
for a minute. Using the concavity of x1/3, we have (x + y)1/3 ≤

x1/3 + yx−2/3/3. Therefore:

1

ηt
− 1

ηt−1
=

1

k

(
w +

t∑
i=1

G2
i

)1/3

− 1

k

(
w +

t−1∑
i=1

G2
i

)1/3

≤ G2
t

3k(w +
∑t−1
i=1 G

2
i)

2/3

≤ G2
t

3k(w −G2 +
∑t
i=1G

2
i)

2/3
≤ G2

t

3k(w/2 +
∑t
i=1G

2
i)

2/3

≤ 22/3G2
t

3k(w +
∑t
i=1G

2
i)

2/3
≤ 22/3G2

t

3k3
η2
t ≤

22/3G2

12Lk3
ηt ≤

G2

7Lk3
ηt

where we have used that that w ≥ (4Lk)3 to have ηt ≤ 1
4L .

Further, since β = 28L2 +G2/(7Lk3), we have

ηt(4L
2 − β) ≤ −24L2ηt −G2ηt/(7Lk

3).

Thus, we obtain
Bt ≤ −24L2ηt‖εt‖2

Now, we are ready to analyze the potential Φt. Since ηt ≤ 1
4L , we can use Lemma 1 to obtain

E[Φt − Φt+1] ≤ E
[
−ηt

4
‖∇Jγ̂(θt)‖2 +

3ηt
4
‖εt‖2 +

1

32L2ηt
‖εt+1‖2 −

1

32L2ηt−1
‖εt‖2

]
.

Summing over t, we obtain Rearranging terms we get,

E[
ηt
8
‖∇Jγ̂(θt)‖2] ≤ E[Φt+1 − Φt] + E[

β2η3
tG

2

16L2
]

⇐⇒ E[
1

8η2
t

‖∇Jγ̂(θt)‖2] ≤ E[
1

8η3
t

[Φt+1 − Φt]] +
β2G2

16L2

14

Summing over 1, · · · , t, we have
T∑
t=1

E[
1

η2
t

‖∇Jγ̂(θt)‖2] ≤
T∑
t=1

E[
8

η3
t

[Φt+1 − Φt]] +
G2T

2L2

⇐⇒
T∑
t=1

E[
1

η2
t

‖∇Jγ̂(θt)‖2] ≤
T∑
t=1

E[
8

η3
t

[Φt+1 − Φt]] +
β2G2T

2L2

⇐⇒
T∑
t=1

W1tE[‖∇Jγ̂(θt)‖2] ≤
T∑
t=1

8W2tE[Φt+1 − Φt] +
β2G2T

2L2

As G2
t+1 ≤ G2, therefore ηt ∼ Ω((k

w+tG2)1/3). As a result,W1t = 1
η2t

= (w+tG2)2/3

k2 ∼ O(t2/3),

W2t = 1
η3t

= (w+tG2)
k3 ∼ O(t).

T∑
t=1

tE[Φt+1 − Φt] =

T∑
t=1

E[(t+ 1)Φt+1 − (t)Φt]−
T∑
t=1

Φt+1

= (T + 1)ΦT+1 − Φ1 −
T∑
t=1

Φt+1 =

T+1∑
t=1

(ΦT+1 − Φt) ≤ (T + 1)∆Φ

where ∆Φ ≤ ∆Jγ̂ + ‖ε0‖2
32η0L2 ,∆Jγ̂ = Jγ̂(θ∗)− Jγ̂(θ),∀θ ∈ Rd, and θ? is the maximizer of Jγ̂ .

T∑
t=1

W1t =

T∑
t=1

t2/3 ≥
∫ T

t=1

t2/3dt =
3

5
(T 5/3 − 1) ≥ 2

5
T 5/3.

Then we have
T∑
t=1
W1tE[‖∇Jγ̂(θt)‖2

T∑
t=1
W1t

≤

T∑
t=1

8W2tE[Φt − Φt+1]

T∑
t=1
W1t

+
β2G2T

2L2
T∑
t=1
W1t

≤ 8(T + 1)∆Φ
2
5 (T 5/3)

+
η2G2T

2L2(2
5T

5/3)

≤ 40∆Φ

T 2/3
+

2β2G2

L2T 2/3

where β = 28L2 + σ2/(7Lk3).

F Details of Experiments

For VOMPS and ACE-STORM, the policy function π is parameterized as a diagonal Gaussian
distribution where the mean is the output of a two-hidden-layer network (64 hidden units with ReLU)
and the standard deviation is fixed. For GeoffPAC, ACE, SVRPG, SRVR-PG, DDPG and TD3, we
use the same parameterization as Zhang et al. [2019], Papini et al. [2018], Xu et al. [2019b], Lillicrap
et al. [2015] and Fujimoto et al. [2018] respectively.

Cartpole CartPoleContinuous-v0 has 4 dimensions for a state and 1 dimension for an action.
The only difference between CartPoleContinuous-v0 and CartPole-v0 (provided by OpenAI
Gym) is that CartPoleContinuous-v0 has a continuous value range of [−1, 1] for action space. The
episodic return for the comparison with on-policy and off-policy methods is shown in Fig. 6(a), 6(b).
The relative performance matches with that of the Monte Carlo return.

Hopper Hopper-v2 attempts to make a 2D robot hop that has 11 dimensions for a state and 3
dimensions for an action. The episodic return for the comparison with on-policy and off-policy
methods is shown in Fig. 7(a), 8(a).

15

HalfCheetah HalfCheetah-v2 attempts to make a 2D cheetah robot run that has 17 dimensions
for a state and 6 dimensions for an action. The episodic return for the comparison with on-policy and
off-policy methods is shown in Fig. 7(b), 8(b).

(a) Comparison with on-policy methods (b) Comparison with off-policy methods

Figure 6: Episodic Return on CartPoleContinuous-v0

Besides, the episodic return for the 20% action noise comparison on Mujoco (including Hopper-v2
and HalfCheetah-v2) is shown in Fig. 7(c), 8(c), 7(d), 8(d) respectively.

The parameter settings for GeoffPAC and ACE are insensitive on CartPoleContinuous-v0. There-
fore, we keep the setting of λ(1) = 0.7, λ(2) = 0.6, γ̂ = 0.2 for GeoffPAC, and λ(1) = 0 for ACE in
all of the experiments. For DDPG and TD3, we use the same parameter settings as Lillicrap et al.
[2015] and Fujimoto et al. [2018] respectively.

(a) Hopper (b) HalfCheetah (c) Hopper (action noise) (d) HC (action noise)

Figure 7: Comparison with on-policy PG methods (Mujoco), “HC” is short for HalfCheetah.

(a) Hopper (b) HalfCheetah (c) Hopper (action noise) (d) HC (action noise)

Figure 8: Comparison with off-policy PG methods (Mujoco), “HC” is short for HalfCheetah.

16

