
Appendices347

A Imitation Learning348

Imitation learning (IL) algorithms [6] study how to learn a policy by mimicking expert experience349

demonstrations. Imitation learning has been combined with reinforcement learning, either by learning350

from demonstrations [43] [9] [44], or using deep reinforcement learning extensions [7] [45], or using351

variants policy gradient methods [46] [8]. Although this family of methods has proven its efficiency,352

it is still insufficient in the face of fully offline data sets. They either require interaction with the353

environment or need high-quality data, and these requirements are difficult to meet under offline354

settings, which makes the use of imitation learning from offline data impractical [17]. How to deal355

with the impact of noise is also an urgent area in imitation learning [47] [48]. Existing methods356

always have additional requirements on the quality of expert data. Gao et al. introduced an algorithm357

that learns from imperfect data, but it is not suitable for continuous control tasks. We borrow from the358

idea of imitation learning and introduce a generative model into our model, which gives our model359

the potential of rapid learning.360

B Missing Proofs361

Definition 1. We define estimation gap for policy ⇡ in state s as �MDP(s) = V ⇡(s)� V ⇡
D (s).362

Theorem 1. Given any policy ⇡ and state s, the error term �MDP(s) satisfies the following Bellman-363

like equation:364

�MDP(s) =
X

a

⇡(a|s)
X

s0,r

[p(s0, r|s, a)� pD(s
0, r|s, a)] (r(s, a, s0) + �V ⇡

D (s0))

+ �
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)�MDP(s
0)

(11)

Proof. Through the definition of the V function, it can be proved by expanding this equation.365

�MDP(s) =V ⇡(s)� V ⇡
D (s)

=E[r(s, a, s0) + V ⇡(s0)]� V ⇡
D (s)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)[r(s, a, s0) + �V ⇡(s0)]

�
X

a

⇡(a|s)
X

s0,r

pD(s
0, r|s, a)[r(s, a, s0) + �V ⇡

D (s0)]

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)[r(s, a, s0) + �(V ⇡
D (s0) + �MDP(s

0))]

�
X

a

⇡(a|s)
X

s0,r

pD(s
0, r|s, a)[r(s, a, s0) + �V ⇡

D (s0)]

=
X

a

⇡(a|s)
X

s0,r

[p(s0, r|s, a)� pD(s
0, r|s, a)] r(s, a, s0)

+
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)��MDP(s
0)

+
X

a

⇡(a|s)
X

s0,r

[p(s0, r|s, a)� pD(s
0, r|s, a)]V ⇡

D (s0)

=
X

a

⇡(a|s)
X

s0,r

[p(s0, r|s, a)� pD(s
0, r|s, a)] (r(s, a, s0) + �V ⇡

D (s0))

+ �
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)�MDP(s
0)

(12)

366

10

C Visualization of data distribution367

Figure 2 shows the visualization of data generated by the halfcheetah-v2 environment, where the368

state space is 17-dim and action space is 6-dim. We concat the trajectory as a vector, and we reduce369

the trajectory with a dimension of 23k to a two-dimensional plane.

Figure 2: Visualization of data generated by the halfcheetah-v2 environment. Left: expert data. Right:
random data.

370

D Algorithm371

Algorithm 1 Pessimistic Offline Policy Optimization (POPO)
Require

• Data set D, the size of mini-batch N , target network update rate ⌘, motion correction
coefficient

• distortion risk measure �, random initialized networks and corresponding target networks,
parameterized by ✓01 ✓1, ✓02 ✓2,�0 �, VAE G = {E(·, ·;!1), D(·, ·;!2)}.

for iteration = 1, 2, ... do

Sample mini-batch data (s, a, r, s0) from data set D.
Update VAE
µ,� = E(s, a;!1), â = D(s, z, ;!2), z ⇠ N (µ,�)
! argmin!

P
(â� a)2 +DKL(N (µ,�)||N (0, 1)).

Update Z.
Set Z loss L(· · · ; ✓) (Equation 7).
✓ argmin✓ L(· · · ; ✓).
Update actor
� argmax� Q�(s, â+ ⌫(s, â;�); ✓)
Update target networks
✓0i ⌘✓i + (1� ⌘)✓0i, �0 ⌘�+ (1� ⌘)�0

end for

11

E Experiments372

Figure 3: Performance curves for OpenAI gym continuous control tasks in MuJoCo suite. The shaded
region represent a standard deviation of the average evaluation over five seeds.

12

