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Abstract

We study the convergence properties of two optimization algorithms for off-policy
policy gradient based on density-ratio learning. We establish general conditions that
enable convergence and near-optimality guarantees, and show that these conditions
can be satisfied in the linear case under standard assumptions. The keys to our
analyses are the successful integration and application of stochastic first-order
methods on solving saddle-point and non-convex optimization problems.

1 Introduction

Policy gradient (PG) is a very popular class of methods in empirical reinforcement-learning (RL)
research, and has also attracted significant attention from the theoretical community recently [1].
Despite its appealing properties, classical PG typically requires on-policy roll-outs, making them not
directly applicable to offline (or batch) RL. Recent development in marginalized importance sampling
(MIS) methods [2, 3, 4, 5], however, has yielded promising off-policy policy-gradient estimators. For
example, Nachum et al. [6] reformulated off-policy policy-optimization to a max-max-min problem,
which faithfully optimizes the policy with sufficiently expressive function approximators [7]. A more
general form of the problem considered by Yang et al. [5] is:
max
π∈Π

max
w∈W

min
Q∈Q
L(π,w,Q) := max

θ∈Θ
max
ζ∈Z

min
ξ∈Ξ
L(πθ, wζ , Qξ)

:=(1− γ)Es0∼ν0
[Qξ(s0, πθ)] + Edµ [wζ(s, a)

(
r + γQξ(s

′, πθ)−Qξ(s, a)
)

]

+ λQEdµ [f(Qξ(s, a))]− λwEdµ [g(wζ(s, a))] (1)
where π,w,Q are respectively parameterized by (θ, ζ, ξ) ∈ Θ× Z × Ξ (Θ, Z and Ξ are all convex
sets), and we use Π,W,Q to denote their function classes; ν0 is the initial state distribution, dµ
denotes the normalized discounted state-action occupancy induced by behavior policy µ (see Sec. 2.1
for a formal definition); Qξ(s, πθ) is short for Ea∼πθ(·|s)[Qξ(s, a)]; f, g are regularizers.

Despite the promising formulation, the problem takes a complex max-max-min form, which makes
the optimization challenging. In this paper, we study the convergence guarantees of two natural
optimization strategies for (the empirical version of) Eq.(2), and establish the conditions under which
we can prove convergence rate and characterize the quality of the solutions. The actual objective,
based on a sample D from dµ, is

max
π∈Π

max
w∈W

min
Q∈Q
LD(π,w,Q) := max

θ∈Θ
max
ζ∈Z

min
ξ∈Ξ
LD(πθ, wζ , Qξ)

:=(1− γ)Es0∼νD [Qξ(s0, πθ)] + EdD [wζ(s, a)
(
r + γQξ(s

′, πθ)−Qξ(s, a)
)

]

+
λQ
2

EdD [Q2
ξ(s, a)]− λw

2
EdD [w2

ζ(s, a)]. (2)
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Here we replace ν0 with νD to denote the empirical initial distribution, and use dD to denote the
empirical state-action distribution in dataset. We also choose the regularizers to be quadratic functions.

In our analyses, we focus on the case when LD is strongly-concave w.r.t. ζ and strongly-convex
w.r.t. ξ, but do not require the concavity related to θ. The strong concavity/convexity, among other
assumptions we will introduce in Section 2.2, can be shown to be satisfied in the linear case under
very standard assumptions (Appendix F).

Due to regularization, generalization error, and mis-specification error, there is inevitable bias between
the stationary points of LD(πθ, wζ , Qξ) and J(πθ), respectively, where J(πθ) is the expected return
of πθ. Therefore, we focus on the convergence to the biased stationary point defined below.
Definition 1.1 (Biased stationary point).

E[‖∇θJ(πθ)‖] ≤ ε+ εdata + εfunc + εreg (3)

where εreg, εfunc, εdata are biases caused by regularization, mis-specified function class, and finite-
sample effects, respectively, as we will explain in Section 2. All norms in this paper is `2 norm unless
specified otherwise. The expectation is over the randomness of the algorithm (e.g., the randomness in
SGD) and not that of the data.

Paper Outline Our first algorithm, converts the original max-max-min problem to a max-min
problem max(θ,ζ)∈Θ×Z minξ∈Ξ L(πθ, wζ , Qξ), by simultaneously optimizing θ and ζ. Under the
assumptions identified in Section 2.2, we prove that the stationary point returned by any stochastic
optimization algorithm for non-convex-strongly-concave problems is also a biased stationary point in
Definition 1.1. As a result, the O(ε−3) convergence rate can be established based on a recent result
on non-convex-strongly-concave optimization [8].

We then study another algorithm, where we iteratively solve the inner strongly-concave-strongly-
convex max-min problem maxζ∈Z minξ∈Ξ L(πθ, wζ , Qξ) for fixed θ and the outer non-convex
optimization problem maxθ∈Θ L(πθ, wζ , Qξ) for fixed ζ and ξ. For the inner loop, we assume an
oracle that solves the saddle-point problem, and provide a concrete example in Appendix E. For
the outer loop, the main technique difficulty is that, the loss function L(πθ, wζt , Qξt) varies across
iterations because we update ζt, ξt in the inner loop, which prevents us from adapting existing
non-convex optimization algorithms directly. We resolve this difficulty by coordinating the inner and
the outer loops so that we can relate the variation ‖ζt+1− ζt‖ and ‖ξt+1− ξt‖ with ‖θt+1− θt‖. The
convergence rate to a biased stationary point of our second strategy is O(ε−4).

1.1 Related works

Recently, there has been a lot of interest in turning MIS methods for off-policy evaluation [3, 9, 2]
into off-policy policy-optimization algorithms. Liu et al. [10] presented OPPOSD with convergence
guarantees, but the convergence relies on accurately estimating the density ratio and the value
function via MIS, which were treated as a black box without further analysis. [6, 7] discussed policy
optimization given arbitrary off-policy dataset, but no convergence analysis was performed. Another
style of off-policy policy-improvement algorithms is off-policy actor-critic [11, 12, 13]. Although
[13] presented a provably convergent algorithm, where only asymptotic convergence was proved and
no finite convergence rate was given.

Meanwhile, along with the progress of the variance reduction techniques for non-convex optimization,
there are several emerging works analyzing convergence rates in RL settings [14, 15, 16, 17, 18].
However, all of them require on-policy interaction with the environment, whereas our focus is the
off-policy setting.

2 Preliminary

2.1 Markov Decision Process

We consider an infinite-horizon discounted MDP (S,A, R, P, γ, ν0), where S andA are the state and
action spaces, respectively, which we assume to be finite but can be arbitrarily large. R : S ×A →
∆([0, 1]) is the reward function. P : S × A → ∆(S) is the transition function, γ is the discount
factor and ν0 denotes the initial state distribution.
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For arbitrary policy π, we use dπ(s, a) = (1 − γ)Eτ∼π,s0∼ν0
[
∑∞
t=0 γ

tp(st = s, at = a)] to
denote the normalized discounted state-action occupancy, where τ ∼ π, s0 ∼ ν0 means a trajec-
tory τ = {s0, a0, s1, a1, ...} is sampled according to the rule that s0 ∼ ν0, a0 ∼ π(·|s0), s1 ∼
P (·|s0, a0), a1 ∼ π(·|s1), ..., and p(st = s, at = a) denotes the probability that the t-th state-action
pair are exactly (s, a). We also use Qπ(s, a) = Eτ∼π,s0=s,a0=a[

∑∞
t=0 γ

tr(st, at)] to denote the
Q-function of π. It is well-known that Qπ satisfies the Bellman Equation:

Qπ(s, a) = T πQπ(s, a) := Er∼R(s,a),s′∼P (·|s,a),a′∼π(·|s′)[r + γQπ(s′, a′)].

Define J(π) = Es∼ν0,a∼π(·|s0)[Q
π(s, a)] = 1

1−γEs,a∼dπ [r(s, a)] as the expected return of policy π.
If π is parameterized by θ and differentiable, the policy-gradient theorem [19] states that

∇θJ(πθ) =
1

1− γ
Es,a∼dπ [Qπ(s, a)∇θ log π(a|s)].

In the off-policy setting, we can only get access to dµ, the discounted state-action occupancy w.r.t.
another policy µ. Then we can rewrite ∇θJ(π) by introducing the importance ratio wπ(s, a) :=
dπ(s,a)
dµ(s,a) .

∇θJ(πθ) =
1

1− γ
Es,a∼dµ [wπ(s, a)Qπ(s, a)∇θ log π(a|s)].

In the rest of the paper, we will refer µ as the behavior policy, and refer π as the target policy whose
performance we are interested in.

In practice, usually, we are only provided with an off-line dataset instead of the exact distribution
dµ, which we denote as D = {(si, ai, ri, s′i)}

|D|
i=1. Each tuple is sampled by si, ai ∼ dµ, ri ∼

R(si, ai), s
′
i ∼ P (·|si, ai), and we use dD to denote the empirical state-action distribution.

2.2 Assumptions and Definitions

We now introduce the assumptions and definitions that will later enable us to establish the convergence
guarantees and characterize the solution quality. We will also introduce some algorithm-specific
assumptions later. While some of the assumptions (e.g., Assumption C) are quite strong, in Appendix
F we show they are automatically satisfied in the linear setting under more standard assumptions.
Assumption A (Smoothness).

(a) For any s, a ∈ S ×A and θ ∈ Θ, πθ(s, a) is second-order differentiable w.r.t. θ, and there exist
constants G and H , s.t.

‖∇θ log πθ(a|s)‖ ≤ G, ‖∇2
θ log πθ(a|s)‖op ≤ H (4)

where ‖ · ‖op is the matrix operator norm.

(b) For any ξ, ξ1, ξ2 ∈ Ξ, ζ, ζ1, ζ2 ∈ Z, (s, a) ∈ S ×A, there are constants CQ, CW , LQ, Lw, s.t.
|Qξ(s, a)| ≤ CQ; |Qξ1(s, a)−Qξ2(s, a)| ≤ LQ‖ξ1 − ξ2‖;
|wζ(s, a)| ≤ CW ; |wζ1(s, a)− wζ2(s, a)| ≤ Lw‖ζ1 − ζ2‖;

Usually, in practice, we normalize the expectation of wζ to 1, so CW > 1 in general.

(c) Let v ∈ V = Θ×Z×Ξ denote a vector formed by concatenating θ, ζ, ξ. For any v, v1, v2 ∈ V ,
LD defined in Eq.(2) is differentiable w.r.t. v, and there exists constant L s.t.

‖∇vLD(v1)−∇vLD(v2)‖ :

=‖∇θLD(v1)−∇θLD(v2)‖+ ‖∇ζLD(v1)−∇ζLD(v2)‖+ ‖∇ξLD(v1)−∇ξLD(v2)‖
≤L‖θ1 − θ2‖+ L‖ζ1 − ζ2‖+ L‖ξ1 − ξ2‖

Assumption B (Exploratory Data). Recall the behavior policy is denoted as µ. We assume there
exists a constant C > 0, for arbitrary π ∈ Π and any (s, a) ∈ S ×A, we have

wπ(s, a) :=
dπ(s, a)

dµ(s, a)
≤ C, wπdµ(s, a) :=

dπdµ(s, a)

dµ(s, a)
≤ C

where dπdµ(s, a) := (1 − γ)Eτ∼π,s0,a0∼dπ(·,·)[
∑∞
t=0 γ

tp(st = s, at = a)] is the normalized dis-
counted state-action occupancy by treating dµ as initial distribution.
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Assumption C (Strongly-Convex-Strongly-Concave). We use uZ and uΞ to denote the dimension of
vector parameters ζ and ξ. Given arbitrary θ ∈ Θ, ζ ∈ RuZ , LD(θ, ζ, ·) is µξ-strongly convex w.r.t.
ξ ∈ Ξ. Given arbitrary θ ∈ Θ, ξ ∈ RuΞ , LD(θ, ·, ξ) is µζ-strongly concave w.r.t. ζ ∈ Z.

Remark 2.1. In fact, the regularization terms is necessary if we want Assumption C to hold when
one of wπ and Qπ is realizable. We defer the discussion to Appendix B.

Assumption D. Denote (ζ∗θ , ξ
∗
θ ) as the saddle point of LD(θ, ζ, ξ) without constraint on ζ and ξ.

For arbitrary πθ parameterized by θ ∈ Θ, (ζ∗θ , ξ
∗
θ ) ∈ Z × Ξ.

Remark 2.2. Based on Assumption A, C, since both Z and Ξ are convex sets, Assumption D implies
that

‖∇ζLD(θ, ζ∗θ , ξ
∗
θ )‖ = ‖∇ξLD(θ, ζ∗θ , ξ

∗
θ )‖ = 0

Definition 2.3 (Generalization Error). Suppose there exists a constant ε′data, for arbitrary
πθ, wζ , Qξ ∈ Π×W ×Q, we have:

|L(πθ, wζ , Qξ)− LD(πθ, wζ , Qξ)| ≤ ε′data

‖∇θL(πθ, w
∗
µ, Q

∗
µ)−∇θLD(πθ, w

∗
µ, Q

∗
µ)‖2 ≤ ε′data

where (w∗µ, Q
∗
µ) := arg maxw∈W minQ∈Q L(π,w,Q).

Proposition 2.4. Denote εdata := (2κζκξ + 2κζ + 2κξ +
√

2/2)
√

2ε′data, where ε′data is defined
in Definition 2.3, κζ = L/µζ , κξ = L/µξ. Under Assumption A and C, we have:

‖∇θ max
w∈W

min
Q∈Q
L(πθ, w,Q)−∇θ max

w∈W
min
Q∈Q
LD(πθ, w,Q)‖ ≤ εdata

We defer the proof to Appendix A.

Definition 2.5 (Mis-specification Error).

(1) For arbitrary π ∈ Π, denote wζπ := arg minw∈W ‖w−wπL‖2Λ parameterized by ζπ ∈ Z, where
wπL = arg maxw∈R|S||A| minQ∈R|S||A| L(π,w,Q). We define

ε1 := max
π∈Π
‖wζπ − wπL‖2Λ

(2) For arbitrary policy π ∈ Π and w ∈ W , denote Qξπw := arg minQ∈Q L(π,w,Q) parameterized
by ξπw ∈ Ξ. We define

ε2 := max
w∈W,π∈Π

‖Qξπw − arg min
Q∈R|S||A|

L(π,w,Q)‖2Λ

A consequence of Assumptions A and C is Proposition 2.6, that we can use ε1 and ε2 defined in
Definition 2.5 to bound the weighted difference between the saddle points of LD(π,w,Q) with and
without constraining w and Q onW×Q, respectively, which is crucial to analyzing the bias resulting
from the mis-specified function classes. We defer its proof to Appendix A.

Proposition 2.6. Under Assumption A and C, for arbitrary π ∈ Π, we have:

Edµ [|w∗µ(s, a)− wπL(s, a)|2] ≤εW := 4
λ2

max

λQλw
ε1 + 2

L2
wλmax

µζ
ε2

Edµ [|Q∗µ(s, a)−QπL(s, a)|2] ≤εQ := 8
λ3

max

λ2
Qλw

ε1 + (2 + 4
L2
wλ

2
max

λQµζ
)ε2

where (w∗µ, Q
∗
µ) denotes the saddle point of L(π,w,Q) constrained by w,Q ∈ W ×Q, (wπL, Q

π
L)

denotes the saddle point of L(π,w,Q) without any constraint on w and Q, λmax = max{λQ, λw},
Lw is defined in Assumption A, µζ is defined in Assumption C.
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2.3 Main goal of the analyses

First, by applying the triangle inequality, we have:

‖∇θJ(πθ)‖ ≤‖∇θ max
w∈W

min
Q∈Q
LD(πθ, w,Q)‖+ ‖∇θJ(πθ)−∇θ max

w∈W
min
Q∈Q
LD(πθ, w,Q)‖

where w∗, Q∗ denotes the saddle point of LD(πθ, w,Q) constrained by w,Q ∈ W ×Q. Optimizing
the loss function LD(π,w,Q) may offer us a better θ to decrease the first term, while based on above
Assumptions, we can bound the second term in the following Theorem.
Theorem 2.7. [Bias] Under Assumption A, B, C, given arbitrary θ ∈ Θ, we have

‖∇θ max
w∈W

min
Q∈Q
LD(πθ, w,Q)−∇θJ(πθ)‖ ≤ εreg + εfunc + εdata

where εdata is defined in Proposition 2.4, and

εfunc =
G

1− γ

(√
CεQ + CW

√
γεQC

1− γ
+

√
γεQεWC

1− γ
+ γCQ

√
εW

)
(εW and εQ defined in Prop. 2.6)

εreg =
G

1− γ

( C2

(1− γ)
(
λwλQ
1− γ

+ λw) +
γC(λQ + λQλwC)

(1− γ)3
+
C2(λQ + λQλwC)

(1− γ)3
(
λwλQ
1− γ

+ λw)

√
γC

1− γ

)
We defer its proof to Appendix B.

As we can see, ‖∇θ maxw∈W minQ∈Q LD(πθ, w,Q)−∇θJ(πθ)‖ can be controlled by three terms.
εdata reflects the generalization error, and should be small if we have plenty of data. εreg depends on
the magnitude of regularization, and will decrease as λw and λQ. As for εfunc, it depends on the
approximation error εW and εQ, which are propotional to ε1 and ε2. Besides, because µζ should be
proportional to λw and Lw does not depend on regularization, the coefficients before ε1 and ε2 should
not vary a lot as we change λw and λQ while keeping λw ≈ λQ (but ε1 and ε2 may change with λw
and λQ). In general, a larger dataset, better function classes and smaller λw and λQ may result in
smaller bias, while smaller regularization can lead to weaker strong-concavity or strong-convexity of
the loss function and make the convergence slower.

Based on the discussion above, our goal is to find stochastic optimization algorithms, which can
return us πθ after consuming Poly(ε−1) samples from dataset (we omit the dependence on others
such as µζ , µξ and etc.), satisfying the following biased stationary condition in Definition 1.1:

E[‖∇θJ(πθ)‖] ≤ ε+ εdata + εfunc + εreg (5)

where εdata is defined in 2.3 and εfunc and εreg are defined in Theorem 2.7.

Since D can be extremely large, we consider stochastic optimization, and introduce another crucial
assumption about the stochastic gradient:
Assumption E (Variance of Estimated Gradient). We use Es,a,r,s′,a0,a′ [·] as a short note of

E(s,a,r,s′)∼dD,a0∼π(·|s),a′∼π(·|s′)[·]

and use L(s,a,r,s′,a0,a
′)(θ, ζ, ξ) to denote the gradient estimation with only one sample defined by:

(1− γ)Qξ(s, a0)πθ(a0|s)I[s ∈ S0] + wζ(s, a)
(
r + γQξ(s

′, a′)πθ(a
′|s′)−Qξ(s, a)

)
+
λQ
2
Q2
ξ(s, a)− λw

2
w2
ζ(s, a)

where I[s ∈ S0] equals 1 only if s is generated at the first step in a trajectory and equals 0 otherwise
(note that we allow the case when a state in the initial state sets can be visited at step t ≥ 1.). We
assume that, there exists a positive constant σ, for arbitrary θ, ζ, ξ ∈ Θ× Z × Ξ, we have:

Es,a,r,s′,a0,a′ [‖∇θL(s,a,r,s′,a0,a
′)(θ, ζ, ξ)−∇θLD(θ, ζ, ξ)‖2] ≤ σ2

Es,a,r,s′,a0,a′ [‖∇ζL(s,a,r,s′,a0,a
′)(θ, ζ, ξ)−∇ζLD(θ, ζ, ξ)‖2] ≤ σ2

Es,a,r,s′,a0,a′ [‖∇ξL(s,a,r,s′,a0,a
′)(θ, ζ, ξ)−∇ξLD(θ, ζ, ξ)‖2] ≤ σ2

Remark 2.8. The upper bound on the variance of the gradients w.r.t. θ, ζ and ξ are usually assumed
to be different. Here we use σ to refer to the maximum of these upper bounds to simplify notations.
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3 Strategy 1: Converting Max-Max-Min to Max-min problem

A heuristic optimization strategy for (2) is to rewrite the original max-max-min problem
maxθ maxζ minξ LD(θ, ζ, ξ) to a max-min problem maxθ,ζ minξ LD(θ, ζ, ξ). Given Assumption A
and C, we know maxθ,ζ minξ LD(θ, ζ, ξ) is a standard non-concave-strongly-convex problem, which
can be solved efficiently based on the recent progress on non-convex-strongly-concave optimization
[20, 8].

In this section, we prove the equivalence between the stationary point of the non-convex-strongly-
concave saddle-point problem and the stationary point of our policy gradient objective:

Theorem 3.1. [Equivalence Between Stationary Points] Under Assumption A, C and D, suppose there
exists a θ ∈ Θ s.t. ‖∇θ maxζ∈Z minξ∈Ξ LD(θ, ζ, ξ)‖ = 0 and there is an Algorithm provides us one
stationary point (θT , ζT , ξT ) of the non-concave-strongly-convex problem maxθ,ζ minξ LD(θ, ζ, ξ)
after running T iterations, which statisfying the following conditions in expectation over the random-
ness of algorithm.

E[‖∇θ,ζLD(θT , ζT , φθT (ζT ))‖]

:=E[‖∇θLD(θT , ζT , φθT (ζT ))‖+ ‖∇ζLD(θT , ζT , φθT (ζT ))‖] ≤ ε

(κξ + 1)(κζ + 1)
(6)

where φθ(ζ) = arg minξ∈Ξ LD(θ, ζ, ξ). Then, we have

E[‖∇θJ(πθT )‖] ≤ ε+ εdata + εfunc + εreg

In Appendix C, we will give the detailed proof. Besides, we also list algorithm examples which can
return us stationary points satisfying Eq.(6).

4 Strategy 2: Stochastic Recursive Momentum with Saddle-Point Oracle

In this section, we propose a new algorithm, based on stochastic recursive momentum and a saddle-
point oracle. We will provide a concrete example of the oracle algorithm in the Appendix E.

Definition 4.1 (Oracle Algorithm). Suppose we have an oracle algorithm Oracle. For arbitrary
strongly-concave-strongly-convex problem f(ζ, ξ) with saddle point (ζ∗, ξ∗) ∈ Z × Ξ, and arbitrary
0 < β ≤ 1 and c > 0, starting from a random initializer (ζ0, ξ0) ∈ Z × Ξ and executing finite steps,
Oracle returns a solution (ζK , ξK) satisfying

E[‖ζK − ζ∗‖2 + ‖ξK − ξ∗‖2] ≤ β

2
E[‖ζ0 − ζ∗‖2 + ‖ξ0 − ξ∗‖2] + c (7)

Next, we present our oracle based stochastic recursive momentum algorithm (O-SRM), inspired by
the on-policy SRM [17]. In our algorithm, we choose Θ = RuΘ where uΘ is the dimension of Θ. As
a result, we will not do projection after update θ and there must exist stationary points of J(πθ) and
maxζ∈Z minξ∈Ξ LD(θ, ζ, ξ). We will use ∇θLB(θ, ζ, ξ) as a short note of the empirical version of
the gradient estimator, i.e.

∇θLB(θ, ζ, ξ) =
1

|B|
∑
B

(1− γ)Q(si, ai0)∇θ log π(ai0|si)I[si ∈ S0] + γw(si, ai)Q(s′i, a′i)∇θ log π(a′i|s′i)
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where (si, ai, ri, s′i) for i = 1, 2, ..., |B| are elements inB sampled from dD, and ai0 ∼ π(·|si), a′i ∼
π(·|s′i).

Algorithm 1: O-SRM

1 Input: Total number of iteration T ; Learning rate ηθ, ηζ , ηξ; Dataset distribution dD; Oracle
parameter β.

2 Initialize θ0, ζ−1, ξ−1

3 ζ0, ξ0 ← Oracle(T1, ηζ , ηξ, θ0, ζ−1, ξ−1, d
D)

4 Sample B0 ∼ dD with batch size |B0| and estimate g0
θ = ∇θLB0(θ0, ζ0, ξ0)

5 for t = 0, 1, 2, ...T − 1 do
6 θt+1 ← θt + ηθg

t
θ

7 ζt+1, ξt+1 ← Oracle(β, θt+1, ζt, ξt, d
D, β)

8 Sample B ∼ dD;

9 gt+1
θ = (1− α)

(
gtθ −∇θLB(θt, ζt, ξt)

)
+∇θLB(θt+1, ζt+1, ξt+1)

10 end
11 Output: Sample θout ∼ Unif{θ0, θ1, ..., θT } and output πθ.

4.1 Additional Assumptions for Algorithm 1

Assumption F (Diameter). We use Z and Ξ to denote the sets of parameters ζ and ξ, respectively,
we assume Z and Ξ are both convex and bounded set, and there exists a constant d, such that the
diameters of Z and Ξ are bounded by d.

4.2 Algorithm Analysis

We first derive the smoothness of J(πθ):

Proposition 4.2. Under Assumption A, J(πθ) = Eτ∼πθ,s0∼ν0 [
∑∞
t=0 γ

tr(st, at)] is LJ smooth with

LJ :=
H

(1− γ)2
+

(1 + γ)G2

(1− γ)3

Theorem 4.3. Under Assumption A-F and H, given arbitrary ε, by choosing Algorithm 3 as the
Oracle, Algorithm 1 will return us a policy πθout , satisfying

E[‖∇θJ(πθT )‖] ≤ ε+
√

3(εreg + εdata + εfunc)

if the hyper-parameters in Alg. 1 and 3 satisfy the following constraints:

T =[max{96,
16LJ
ε2

,
16

(1− γ)ε2

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
,

864Cw,Qd
2

ε2
}] = O(ε−2);

|B| =[max{1, 12σ2

ε2
}]; |N | = [

96(L2 + 20Cw,Q)σ2

min{µζηζ4 ,
µξηξ

4 }ε2
(
ηζ
µζ

+
ηξ
µξ

)]; K = coracle log(
1

β
);

α =0.9; β = min{ ε
2

L2
,

(1− γ)2ε4

Cζ,µL2
,
α

2
(1− α)2}; B0 = [

8σ2

ε2
]

ηθ = min{ 1

2LJ
,
([Cζ,µL2β

6(1− β)
+ 120

(
2Cζ,µCw,Q +H2C2

WC
2
Q

)])−1/2

}

where [·] is the upper rounding function, Cw,Q = G2L2
wC

2
Q + G2C2

WL
2
Q, Cζ,µ = κ2

µ(κξ + 1)2 +

κ2
ξ(κµ + 1)2, LJ is defined in Prop. 4.2, ηζ and ηξ satisfy the constraints in Theorem E.1 and coracle

is an independent constant.

Besides, the total gradient computation to obtain θout should be |B0|+ |B| ·T+ |N | ·K ·T = O(ε−4).

We defer the proofs to Appendix D.
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5 Conclusion

In this paper, we study two natural optimization strategies for density-ratio based off-policy policy
gradients, establish their convergence rates, and characterize the quality of the results. In the future,
it will be interesting to extend the results to other settings with milder assumptions, or improve the
dependence on ε−1 on the convergence rate of our second strategy.
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A Useful Lemma

Lemma A.1 (Lemma B.2 in [21]). Define

Φθ(ζ) = min
ξ∈Ξ
LD(θ, ζ, ξ) φθ(ζ) = arg min

ξ∈Ξ
LD(θ, ζ, ξ), for ζ ∈ Rdim(Z)

Ψθ(ξ) = max
ζ∈Z
LD(θ, ζ, ξ) ψθ(ξ) = arg max

ζ∈Z
LD(θ, ζ, ξ), for ξ ∈ Rdim(Ξ)

Under Assumption A and C, for fixed θ, we have:

(1) The function φθ(·) is κξ = L
µξ

-Lipschitz.

(2) The function Φθ(·) is 2κξL = 2L
2

µξ
-smooth and µζ-strongly concave with ∇Φθ(·) :=

∇ζLD(θ, ζ, φθ(ζ)).

(3) The function ψθ(·) is κζ = L
µζ

-Lipschitz.

(4) The function Ψθ(·) is 2κζL = 2L
2

µζ
-smooth and µξ-strongly convex with ∇Ψθ(·) :=

∇ξLD(θ, ψθ(ξ), ξ).

Remark A.2 (For clarification). According to Danskin’s Theorem, in∇Φθ(·) := ∇ζLD(θ, ζ, φθ(ζ)),
when we compute ∇ζLD(θ, ζ, φθ(ζ)), we treat φθ(ζ) as a constant, instead of a function w.r.t. ζ.
Therefore, for arbitrary ζ ′, ξ′, based on Assumption A, we always have:

‖∇Φθ(·)−∇ζLD(θ, ζ ′, ξ′)‖ ≤ L‖ζ − ζ ′‖+ L‖φθ(ζ)− ξ′‖
We have a similar clarification w.r.t. ∇ξΨ(ξ).
Lemma A.3. For α-strongly-convex function f(x) and β-strongly-concave function g(x) w.r.t. x ∈
X , where X ⊆ Rn is a convex set. Then, we have

‖x− x∗f‖ ≤
1

α
‖∇xf(x)‖ (8)

α

2
‖x− x∗f‖2 ≤ f(x)− f(x∗f ) (9)

‖x− x∗g‖ ≤
1

β
‖∇xg(x)‖ (10)

β

2
‖x− x∗f‖2 ≤ g(x∗g)− g(x) (11)

where x∗f and x∗g the minimum and maximum of f(x) and g(x), respectively.

Proof. Since f(x) is α-strongly-convex, we have

(∇xf(x)−∇xf(x∗f ))>(x− x∗f ) ≥ α‖x− x∗f‖2

f(x) ≥ f(x∗f ) +∇xf(x∗f )>(x− x∗f ) +
α

2
‖x− x∗f‖2

Since x∗f is the minimizer of f(x), we know that

∇xf(x∗f )>(x− x∗f ) ≥ 0

Combining all the above inequalities together and we obtain

‖x− x∗f‖2 ≤
1

α
∇xf(x)>(x− x∗f ) ≤ 1

α
‖∇xf(x)‖‖x− x∗f‖

f(x) ≥f(x∗f ) +
α

2
‖x− x∗f‖2

which implies

‖x− x∗f‖ ≤
1

α
‖∇xf(x)‖

α

2
‖x− x∗f‖2 ≤f(x)− f(x∗f )

11



By applying the above results for −g(x) which is a β-strongly-convex function and we can complete
the proof. �
Lemma A.4. For positive definite matrix A, and arbitrary α > 0, we have:

(A>A)−1 �
(

(αI + A)>(αI + A)
)−1

Proof. Suppose for symmetric matrix A and B, we have the relationship A � B � 0. According to
the inverse matrix lemma, we have

B−1 −A−1 = B−1 − (B + (A−B))−1 = (B + B(A−B)−1B)−1

Because A � B � 0, we have (B + B(A−B)−1B)−1 � 0, therefore B−1 � A−1.

Then, we only need to prove

(αI + A)>(αI + A) �A>A

We have

(αI + A)>(αI + A) = α2I + α(A + A>) + A>A

Combining A = A> � 0 and α > 0, we can finish the proof. �

Lemma A.5 (Non-negative Elements). We use Pπ
∗ = (Pπ)> ∈ R|S||A|×|S||A| to denote the trans-

pose of the transition kernel. All the elements in (I − γPπ
∗ )
−1 are non-negative. Moreover, the

element indexed by (si, aj) in row and (sp, aq) in column equals to the unnormalized discounted
state-action occupancy of (si, aj) starting from (sp, aq) and executing π.

Proof. For arbitrary initial state-action distribution vector µ0 ∈ R|S||A|×1, (I−γPπ
∗ )
−1µ0 is a vector

whose elements are unnormalized state-action occupancy with µ0 as initial distribution, which is
larger or equal to 0. As a result, by choosing standard basis vector as µ0, we can finish the proof. �

Proposition 2.4. Denote εdata := (2κζκξ + 2κζ + 2κξ +
√

2/2)
√

2ε′data, where ε′data is defined
in Definition 2.3, κζ = L/µζ , κξ = L/µξ. Under Assumption A and C, we have:

‖∇θ max
w∈W

min
Q∈Q
L(πθ, w,Q)−∇θ max

w∈W
min
Q∈Q
LD(πθ, w,Q)‖ ≤ εdata

Proof. For the simplicity of notation, we give the proof for a fixed π.

Denote (w∗µ, Q
∗
µ) parameterized by (ζ∗µ, ξ

∗
µ) as arg maxw∈W arg minQ∈Q L(π,w,Q) and denote

(w∗, Q∗) parameterized by (ζ∗, ξ∗) as arg maxw∈W arg minQ∈Q LD(π,w,Q). First, we try to
bound ζ∗ − ζ∗µ. We use Qw and QDw (parameterized by ξw and ξDw ) as the short notes of
arg minQ∈Q L(π,w,Q) and arg minQ∈Q LD(π,w,Q), respectively. Then,

|L(π,w,Qw)− LD(π,w,QDw )|
≤max{L(π,w,QDw )− L(π,w,Qw),LD(π,w,Qw)− LD(π,w,QDw )} ≤ ε′data

As a result,

LD(π,w∗, Q∗)− min
Q∈Q
LD(π,w∗µ, Q)

≤LD(π,w∗, Q∗)− min
Q∈Q
L(π,w∗, Q) + L(π,w∗µ, Q

∗
µ)− min

Q∈Q
LD(π,w∗µ, Q)

≤2ε′data

According to Lemma A.1, minQ∈Q LD(π,w,Q) is µζ-strongly concave. Therefore,

‖ζ∗ − ζ∗µ‖ ≤
2

µζ

√
LD(π,w∗, Q∗)− min

Q∈Q
LD(π,w∗µ, Q) ≤ 2

µζ

√
2ε′data
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Next, we bound ‖ξ∗ − ξ∗µ‖. For arbitrary π ∈ Π and w ∈ W , we have:

LD(π,w,Qw)− LD(π,w,QDw ) ≤ LD(π,w,Qw)− L(π,w,Qw) + L(π,w,QDw )− LD(π,w,QDw ) ≤ 2ε′data

Since LD is µξ strongly-convexity, as a result of Lemma A.3,

‖ξw − ξDw ‖ ≤
2

µξ

√
2ε′data (12)

Then, we have

‖ξ∗ − ξ∗µ‖ ≤‖ξ∗ − arg min
ξ∈Ξ
LD(π,w∗µ, Qξ)‖+ ‖ arg min

ξ∈Ξ
LD(π,w∗µ, Qξ)− ξ∗µ‖

=‖ξ∗ − arg min
ξ∈Ξ
LD(π,w∗µ, Qξ)‖+ ‖ arg min

ξ∈Ξ
LD(π,w∗µ, Qξ)− arg min

ξ∈Ξ
L(π,w∗µ, Qξ)‖

≤ L

µξ
‖ζ∗ − ζ∗µ‖+

2

µξ

√
2ε′data

≤(
2L

µξµζ
+

2

µξ
)
√

2ε′data

where in the last but two step, we use Lemma A.1-(1).

As a directly application of Assumption A, we have:

‖∇θ max
w∈W

min
Q∈Q
L(πθ, w,Q)−∇θ max

w∈W
min
Q∈Q
LD(πθ, w,Q)‖

=‖∇θL(πθ, w
∗
µ, Q

∗
µ)−∇θLD(πθ, w

∗
µ, Q

∗
µ)‖+ ‖∇θLD(πθ, w

∗
µ, Q

∗
µ)−∇θLD(πθ, w

∗, Q∗)‖

≤
√
ε′data + L‖ζ∗ − ζ∗µ‖+ L‖ξ∗ − ξ∗µ‖

≤(2κζκξ + 2κζ + 2κξ +
√

2/2)
√

2ε′data

�
Proposition 2.6. Under Assumption A and C, for arbitrary π ∈ Π, we have:

Edµ [|w∗µ(s, a)− wπL(s, a)|2] ≤εW := 4
λ2

max

λQλw
ε1 + 2

L2
wλmax

µζ
ε2

Edµ [|Q∗µ(s, a)−QπL(s, a)|2] ≤εQ := 8
λ3

max

λ2
Qλw

ε1 + (2 + 4
L2
wλ

2
max

λQµζ
)ε2

where (w∗µ, Q
∗
µ) denotes the saddle point of L(π,w,Q) constrained by w,Q ∈ W ×Q, (wπL, Q

π
L)

denotes the saddle point of L(π,w,Q) without any constraint on w and Q, λmax = max{λQ, λw},
Lw is defined in Assumption A, µζ is defined in Assumption C.

Proof. In the following, we will frequently consider two loss functions. The first one is L(π,w,Q)
defined in Eq.(1), where w and Q are parameterized by ζ and ξ, respectively, and we will write
(w,Q) ∈ W ×Q. The second one is F(π, x, y) defined by:

F(π, x, y) =(1− γ)(νπ0 )>Λ−1/2y + x>
(
Λ1/2R− (I− γΛ1/2PπΛ−1/2)y

)
+
λQ
2
y>y − λw

2
x>x

where (x, y) ∈ R|S||A| × R|S||A|. For simplification, in the following, we will use maxx miny as a
short note of maxx∈R|S||A| miny∈R|S||A| .

As we can see, the difference between L(π,w,Q) and F(π, x, y) is not only that we don’t have any
constraint on x and y, but also that we absorb one Λ1/2 into vector x and y. In another word, for
arbitrary π,w,Q, we have

L(π,w,Q) = F(π,Λ1/2w,Λ1/2Q).

Obviously, F(π, x, y) is λw-strongly-concave-λQ-strongly-convex and λmax-smooth w.r.t. x, y ∈
R|S||A|.
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In the following, we use w∗R parameterized by ζ∗R to denote arg maxw∈W miny F(π,Λ1/2w, y).

According to Lemma A.1, miny F(π, x, y) is a 2
λ2

max

λQ
-smooth and λw-strongly-concave function

with gradient∇x miny F(π, x, y). Since∇xF(π,Λ1/2wπL,Λ
1/2QπL) = 0, we have,

λw
2
‖Λ1/2w∗R −Λ1/2wπL‖2

≤F(π,Λ1/2wπL,Λ
1/2QπL)−min

y
F(π,Λ1/2w∗R, y) (Strong concavity of miny F(π, x, y))

=F(π,Λ1/2wπL,Λ
1/2QπL)− max

w∈W
min
y
F(π,Λ1/2w, y)

≤F(π,Λ1/2wπL,Λ
1/2QπL)−min

y
F(π,Λ1/2wζπ , y) (wζπ is defined in Def. 2.5)

≤λ
2
max

λQ
‖Λ1/2wζπ −Λ1/2wπL‖2 (Smoothness of miny F(π, x, y))

=
λ2

max

λQ
‖wζπ − wπL‖2Λ =

λ2
max

λQ
ε1 (see definition of ε1 in Def.2.5)

which implies

‖Λ1/2w∗R −Λ1/2wπL‖2 ≤ 2
λ2

max

λQλw
ε1 (13)

Applying Lemma A.1 for (w,Q) ∈ W ×Q, we know minξ∈Ξ L(π,wζ , Qξ) is µζ-strongly-concave
w.r.t. ζ. Since ζ∗ is the minimizer of minξ∈Ξ L(π,wζ , Qξ) and Z is a convex set, we have

µζ
2
‖ζ∗ − ζ∗R‖2 ≤L(π,w∗µ, Q

∗
µ)− min

Q∈Q
L(π,w∗R, Q)

(Stong concavity of minQ∈Q L(π,w,Q); Lemma A.3)

=F(π,Λ1/2w∗µ,Λ
1/2Q∗µ)− min

Q∈Q
F(π,Λ1/2w∗R,Λ

1/2Q)

≤F(π,Λ1/2w∗µ,Λ
1/2Q∗µ)−min

y
F(π,Λ1/2w∗R, y)

≤F(π,Λ1/2w∗µ,Λ
1/2Q∗µ)−min

y
F(π,Λ1/2w∗µ, y)

(Because w∗R = arg maxw∈W miny F(π,Λ1/2w, y))

≤λmax

2
‖Λ1/2Q∗µ − arg min

y
F(π,Λ1/2w∗µ, y)‖2

(Smoothness of F(π, x, y) for fixed x and ∇y miny F = 0)

≤λmax

2
ε2

In the last but two inequality, we use the fact that F(π,Λ1/2w∗µ, ·) is λmax-smooth and
∇y miny F(π,Λ1/2w∗µ, Q) = 0; in the last equality, we use the definition of ε2 in Def. 2.5-(2).
Combing (2) in Assumption A, for arbitrary s, a ∈ S ×A, we have:

|w∗µ(s, a)− w∗R(s, a)|2 ≤ L2
w‖ζ∗ − ζ∗R‖2 ≤

L2
wλmax

µζ
ε2 (14)

Therefore, as a result of Eq.(13) and Eq.(14):

Edµ [|w∗µ − wπL|2] ≤2Edµ [|w∗R − wπL|2] + 2Edµ [|w∗R − w∗µ|2]

=2‖Λ1/2w∗R −Λ1/2wπL‖2 + 2Edµ [|w∗R − w∗µ|2]

≤4
λ2

max

λQλw
ε1 + 2

L2
wλmax

µζ
ε2

14



According to Lemma A.1 again, arg miny F(π, x, y) is λmax

λQ
-Lipschitz w.r.t. x, we have

Edµ [|Q∗µ −QπL|2] = ‖Λ1/2Q∗µ −Λ1/2QπL‖2

≤2 ‖Λ1/2Q∗µ − arg min
y
F(π,Λ1/2w∗µ, Q)‖2︸ ︷︷ ︸

bounded by ε2

+2‖ arg min
y
F(π,Λ1/2w∗µ, y)−Λ1/2QπL‖2

≤2ε2 + 2
λmax

λQ
‖Λ1/2w∗µ −Λ1/2wπL‖2

≤8
λ3

max

λ2
Qλw

ε1 + (2 + 4
L2
wλ

2
max

λQµζ
)ε2

As a result,

εW = 4
λ2

max

λQλw
ε1 + 2

L2
wλmax

µζ
ε2; εQ = 8

λ3
max

λ2
Qλw

ε1 + (2 + 4
L2
wλ

2
max

λQµζ
)ε2

�

B The analysis of Bias

Theorem B.1 (Bias resulting from regularization). Let’s rewrite Eq.(1) in a vector-matrix form:

max
w∈W

min
Q∈Q
L(π,w,Q) := (1− γ)(νπ0 )>Q+ w>Λ

(
R− (I − γPπ)Q

)
+
λQ
2
Q>ΛQ− λw

2
w>Λw

where νπ0 and Pπ denotes the initial state-action distribution and the transition matrix w.r.t. policy
π, respectively; Λ ∈ R|S||A|×|S||A| denotes the diagonal matrix whose diagonal elements are
dµ(·, ·). Denote (wπL, Q

π
L) as the saddle point of L(π,w,Q) without any constraint on w and Q (i.e.

w,Q ∈ R|S||A|), then we have:

wπL =wπ +
(
λwλQI + (I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

λQR− λQλwwπ
)

QπL =Qπ −
(
λwλQI + Λ−1(I − γPπ

∗ )Λ(I − γPπ)
)−1(

λwλQQ
π + λw(1− γ)Λ−1νπ0 )

)
where wπ = dπ

dµ is the density ratio and Qπ is the Q function of π. we use Pπ
∗ = (Pπ)> to denote

the transpose of the transition matrix.

Proof. Recall the loss function

L(π,w,Q) = (1− γ)(νπ0 )>Q+ w>ΛR− w>Λ(I − γPπ)Q+
λQ
2
Q>ΛQ− λw

2
w>Λw

By taking the derivatives w.r.t. Q, since Λ is invertible, the optimal choice of Q should be:

Q =
1

λQ
Λ−1((I − γPπ

∗ )Λw − (1− γ)νπ0 )

Plug this result in, and we have

L(π,w,Q) =− 1

2λQ

(
(1− γ)νπ0 − (I − γPπ

∗ )Λw
)>

Λ−1
(

(1− γ)(νπ0 )− (I − γPπ
∗ )Λw

)
+ w>ΛR− λw

2
w>Λw

Taking the derivative w.r.t. w, and set it to 0:

0 =
1

λQ
Λ(I − γPπ)Λ−1

(
(1− γ)(νπ0 )− (I − γPπ

∗ )Λw
)

+ ΛR− λwΛw

15



As a result,

wπL =
(
λwI +

1

λQ
(I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1( 1

λQ
(I − γPπ)Λ−1(1− γ)νπ0 +R

)
=
(
λwλQI + (I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

(I − γPπ)Λ−1(I − γPπ
∗ )ΛΛ−1(I − γPπ

∗ )
−1(1− γ)νπ0 + λQR

)
=wπ +

(
λwλQI + (I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

λQR− λQλwwπ
)

and

QπL =
1

λQ
Λ−1

(
(I − γPπ

∗ )Λw
π
L − (1− γ)νπ0

)
=

1

λQ
Λ−1

(
(I − γPπ

∗ )Λw
π
L − (I − γPπ

∗ )Λw
π
)

=
1

λQ
Λ−1(I − γPπ

∗ )Λ
(
λQλwΛ + Λ(I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

λQΛR− λQλwΛwπ
)

=
(
λwλQ(I − γPπ

∗ )
−1Λ + Λ(I − γPπ)

)−1(
ΛR− λwΛwπ

)
=
(
λwλQ(I − γPπ

∗ )
−1Λ + Λ(I − γPπ)

)−1(
Λ(I − γPπ)Qπ − λwΛwπ

)
=Qπ −

(
λwλQ(I − γPπ

∗ )
−1Λ + Λ(I − γPπ)

)−1(
λwλQ(I − γPπ

∗ )
−1ΛQπ + λwΛwπ

)
=Qπ −

(
λwλQI + Λ−1(I − γPπ

∗ )Λ(I − γPπ)
)−1(

λwλQQ
π + λw(1− γ)Λ−1νπ0 )

)
�

Lemma B.2. Under Assumption B:

‖wπ − wπL‖2Λ ≤
C2(λQ + λQλwC)2

(1− γ)4

‖Qπ −QπL‖2Λ ≤
C2

(1− γ)2
(
λwλQ
1− γ

+ λw)2

where (wπ, Qπ) and (wπL, Q
π
L) are defined in Theorem B.1. ‖x‖Λ = x>Λx denotes the norm of

column vector x weighted by Λ.

Proof. From Theorem B.1, we have

wπL =wπ +
(
λwλQI + (I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

λQR− λQλwwπ
)

QπL =Qπ −
(
λwλQI + Λ−1(I − γPπ

∗ )Λ(I − γPπ)
)−1(

λwλQQ
π + λw(1− γ)Λ−1νπ0 )

)
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We use 1 ∈ R|S||A|×1 to denote a vector whose all elements are 1. Then, we have

‖wπ − wπL‖2Λ =‖
(
λwλQI + (I − γPπ)Λ−1(I − γPπ

∗ )Λ
)−1(

λQR− λQλwwπ
)
‖2Λ

=‖
(
λwλQI + Λ1/2(I − γPπ)Λ−1(I − γPπ

∗ )Λ
1/2
)−1

Λ1/2
(
λQR− λQλwwπ

)
‖2

≤‖Λ−1/2(I − γPπ
∗ )
−1Λ(I − γPπ)−1

(
λQR− λQλwwπ

)
‖2

=‖Λ−1/2(I − γPπ
∗ )
−1ΛQ̃π‖2

≤ (λQ + λQλwC)2

(1− γ)2
‖Λ−1(I − γPπ

∗ )
−1Λ1‖2Λ

=
(λQ + λQλwC)2

(1− γ)2
‖Λ−1(I − γPπ

∗ )
−1dµ‖2Λ

=
(λQ + λQλwC)2

(1− γ)4
‖wπdµ‖2Λ ≤

C2(λQ + λQλwC)2

(1− γ)4

where in the first inequality, we use Lemma A.4; in the third equality, we use Q̃π to denote the Q
function after replacing true rewards with λQR− λQλwwπ; in the second inequality, we use Lemma
A.5 and the result that |λQR−λQλwwπ| ≤ λQ+λQλwC given Assumption B; in the last inequality,
we use Assumption B again. Similarly,

‖Qπ −QπL‖2Λ ≤‖
(
λwλQI + Λ−1(I − γPπ

∗ )Λ(I − γPπ)
)−1(

λwλQQ
π + λw(1− γ)Λ−1νπ0 )

)
‖2Λ

=‖
(
λQλwI + Λ−1/2(I − γPπ

∗ )Λ(I − γPπ)Λ−1/2
)−1

Λ1/2
(
λQλwQ

π + λw(1− γ)Λ−1νπ0 )
)
‖2

≤‖Λ1/2(I − γPπ)−1Λ−1(I − γPπ
∗ )
−1
(
λwλQΛQπ + λw(1− γ)νπ0 )

)
‖2

=‖λwλQΛ1/2(I − γPπ)−1Λ−1(I − γPπ
∗ )
−1ΛQπ + λwΛ1/2(I − γPπ)−1wπ)‖2

≤‖λwλQ
1− γ

Λ1/2(I − γPπ)−1Λ−1(I − γPπ
∗ )
−1Λ1 + λwΛ1/2(I − γPπ)−1wπ)‖2

≤‖(I − γPπ)−1
(λwλQ

1− γ
wπdµ + λww

π
)
‖2Λ

≤ C2

(1− γ)2
(
λwλQ
1− γ

+ λw)2

where in the last but third inequality, we use Lemma A.5 and the fact thatwπ is also non-negative. �
Lemma B.3. Under Assumption B, for arbitrary function f(s, a),

(1− γ)Es0∼ν0,a0∼π[f(s0, a0)] + γEs,a,s′∼dµ,a′∼π[wπ(s, a)f(s′, a′)] = Edµ [wπ(s, a)f(s, a)]

(15)

γEs,a,s′∼dµ,a′∼π[f2(s′, a′)] ≤ 1

1− γ
Es,a∼dπ

dµ
[f2(s, a)] ≤ C

1− γ
Es,a∼dµ [f2(s, a)] (16)

where dπdµ := (1 − γ)Eτ∼π,s0,a0∼dµ(·,·)[
∑∞
t=0 γ

tp(st = s, at = a)] is the normalized discounted
state-action occupancy by treating dµ(·, ·) as initial distribution; s, a, s′ ∼ dµ, a′ ∼ π is a short note
of s, a ∼ dµ, s′ ∼ P (s′|s, a), a′ ∼ π(·|s′).

Proof. Eq.(15) can be proved by the equation:

dπ(s, a) = (1− γ)ν0(s)π(a|s) + γ
∑
s′,a′

p(s|s′, a′)dπ(s′, a′)π(a|s)

For Eq.(16), the first step is because γ
∑
s′,a′ d

µ(s′, a′)p(s|s′, a′)π(a|s) ≤ 1
1−γ d

π
dµ(s, a), and the

second step is the result of Assumption B. �
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Theorem 2.7. [Bias] Under Assumption A, B, C, given arbitrary θ ∈ Θ, we have

‖∇θ max
w∈W

min
Q∈Q
LD(πθ, w,Q)−∇θJ(πθ)‖ ≤ εreg + εfunc + εdata

where εdata is defined in Proposition 2.4, and

εfunc =
G

1− γ

(√
CεQ + CW

√
γεQC

1− γ
+

√
γεQεWC

1− γ
+ γCQ

√
εW

)
(εW and εQ defined in Prop. 2.6)

εreg =
G

1− γ

( C2

(1− γ)
(
λwλQ
1− γ

+ λw) +
γC(λQ + λQλwC)

(1− γ)3
+
C2(λQ + λQλwC)

(1− γ)3
(
λwλQ
1− γ

+ λw)

√
γC

1− γ

)
Proof. Firstly, by applying the triangle inequality:

‖∇θ max
w∈W

min
Q∈Q
LD(πθ, w,Q)−∇θJ(πθ)‖ ≤‖∇θ max

w∈W
min
Q∈Q
LD(πθ, w,Q)−∇θ max

w∈W
min
Q∈Q
L(πθ, w,Q)‖︸ ︷︷ ︸

Bounded in Assumption 2.3

+ ‖∇θ max
w

min
Q
L(πθ, w,Q)−∇θ max

w∈W
min
Q∈Q
L(πθ, w,Q)‖︸ ︷︷ ︸

t1

+ ‖∇θJ(πθ)−∇θ max
w

min
Q
L(πθ, w,Q)‖︸ ︷︷ ︸

t2

where we use maxw minQ as a short note of maxw∈R|S||A| minQ∈R|S||A| .

In the following, we again use (wπθL , Q
πθ
L ) to denote the saddle point of L(πθ, w,Q) without any

constraint on w and Q, and use (w∗µ, Q
∗
µ) to denote the saddle point of L(πθ, w,Q). Next, we

upper bound t1 and t2 one by one. For simplicity, we use s, a, s′ ∼ dµ, a′ ∼ πθ as a short note of
s, a ∼ dµ, s′ ∼ P (s′|s, a), a′ ∼ πθ(·|s′).

Upper bound t1 With misspecification Definition 2.5, we can easily bound t1:

t1 =‖∇θL(πθ, w
∗
µ, Q

∗
µ)−∇θL(πθ, w

πθ
L , Q

πθ
L )‖

≤ 1

1− γ
‖(1− γ)Eνπθ0

[
(
Q∗µ(s0, a0)−QπθL (s0, a0)

)
∇θ log πθ(a0|s0)]‖

+
γ

1− γ
‖Es,a,s′∼dµ,a′∼π[w∗µ(s, a)

(
Q∗µ(s′, a′)−QπθL (s′, a′)

)
∇θ log π(a′|s′)]‖

+
γ

1− γ
‖Es,a,s′∼dµ,a′∼π[(w∗µ(s, a)− wπθL (s, a))

(
Q∗µ(s′, a′)−QπθL (s′, a′)

)
∇θ log π(a′|s′)]‖

+
γ

1− γ
‖Es,a,s′∼dµ,a′∼πθ [(w∗µ(s, a)− wπθL (s, a))Q∗µ(s′, a′)∇θ log π(a′|s′)]‖

≤ G

1− γ
Eνπθ0

[|Q∗µ(s, a)−QπθL (s, a)|] +
γCWG

1− γ
Es,a,s′∼dµ,a′∼πθ [|Q∗µ(s′, a′)−QπθL (s′, a′)|]

((1− γ)νπ0 (s, a) ≤ dπ(s, a) ≤ Cdµ(s, a))

+
γG

1− γ
Es,a,s′∼dµ,a′∼πθ [|(w∗µ(s, a)− wπθL (s, a))

(
Q∗µ(s′, a′)−QπθL (s′, a′)

)
|]

+
γCQG

1− γ
Es,a,s′∼dµ,a′∼πθ [|w∗µ(s, a)− wπθL (s, a)|]

≤ G

1− γ

√
Eνπθ0

[|Q∗µ(s, a)−QπθL (s, a)|2] +
γCWG

1− γ

√
Es,a,s′∼dµ,a′∼πθ [|Q∗µ(s′, a′)−QπθL (s′, a′)|2]

+
γG

1− γ

√
Edµ [|wπθL (s, a)− w∗µ(s, a)|2]Es,a,s′∼dµ,a′∼πθ [|Qπθ (s′, a′)−Q

πθ
L (s′, a′)|2|]

+
γCQG

1− γ

√
Edµ [|w∗µ(s, a)− wπθL (s, a))|2]
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≤ G

1− γ

√
CEdµ [|Q∗µ(s, a)−QπθL (s, a)|2] +

CWG

1− γ

√
γC

1− γ
Edµ [|Q∗µ(s, a)−QπθL (s, a)|2]

+
G

1− γ

√
γC

1− γ
Edµ [|wπθL (s, a)− w∗µ(s, a)|2]Edµ [|Qπθ (s, a)−QπθL (s, a)|2|]

+
γCQG

1− γ

√
Edµ [|w∗µ(s, a)− wπθL (s, a))|2]

≤ G

1− γ

(√
CεQ + CW

√
γεQC

1− γ
+

√
γεQεWC

1− γ
+ γCQ

√
εW

)
In the last equation, we first use Eq.(16) in Lemma B.3, and then apply Proposition 2.6.

Upper bound t2 Similarly, we can give a bound for t2:

t2 =‖∇θJ(πθ)−∇θL(πθ, w
πθ
L , Q

πθ
L ))‖

≤ 1

1− γ
‖(1− γ)Eνπθ0

[
(
Qπθ (s0, a0)−QπθL (s0, a0)

)
∇θ log πθ(a0|s0)]

+ γEdµ [wπθ (s, a)
(
Qπθ (s′, a′)−QπθL (s′, a′)

)
∇θ log π(a′|s′)]‖

+
γ

1− γ
‖Edµ [(wπθ (s, a)− wπθL (s, a))

(
Qπθ (s′, a′)−QπθL (s′, a′)

)
∇θ log π(a′|s′)]‖

+
γ

1− γ
‖Edµ [(wπθ (s, a)− wπθL (s, a))Qπθ (s′, a′)∇θ log π(a′|s′)]‖

=
1

1− γ
‖Edµ [wπθ (s, a)

(
Qπθ (s, a)−QπθL (s, a)

)
∇θ log π(a|s)]‖ (Eq.(15) in Lemma B.3)

+
γ

1− γ
‖Es,a,s′∼dµ,a′∼πθ [(wπθ (s, a)− wπθL (s, a))

(
Qπθ (s′, a′)−QπθL (s′, a′)

)
∇θ log π(a′|s′)]‖

+
γ

1− γ
‖Es,a,s′∼dµ,a′∼πθ [(wπθ (s, a)− wπθL (s, a))Qπθ (s′, a′)∇θ log π(a′|s′)]‖

≤ CG

1− γ
Edµ [|Qπθ (s, a)−QπθL (s, a)|]

+
γG

1− γ
Es,a,s′∼dµ,a′∼πθ [|(wπθ (s, a)− wπθL (s, a))

(
Qπθ (s′, a′)−QπθL (s′, a′)

)
|]

+
γG

(1− γ)2
Es,a,s′∼dµ,a′∼πθ [|wπθ (s, a)− wπθL (s, a)|]

≤ CG

1− γ

√
Edµ [|Qπθ −QπθL |2] +

γG

(1− γ)2

√
Edµ [|(wπθ (s, a)− wπθL (s, a)|2]

+
γG

1− γ

√
Edµ [|wπθL (s, a)− wπθ (s, a)|2]Es,a,s′∼dµ,a′∼πθ [|Qπθ (s′, a′)−Q

πθ
L (s′, a′)|2|]

≤ CG

1− γ

√
Edµ [|Qπθ −QπθL |2] +

γG

(1− γ)2

√
Edµ [|(wπθ (s, a)− wπθL (s, a)|2]

+
G

1− γ

√
γC

1− γ
Edµ [|wπθL (s, a)− wπθ (s, a)|2]Edµ [|Qπθ (s, a)−QπθL (s, a)|2|]

(Eq.16 in Lemma B.3)

≤ G

1− γ

( C2

(1− γ)
(
λwλQ
1− γ

+ λw) +
γC(λQ + λQλwC)

(1− γ)3
+
C2(λQ + λQλwC)

(1− γ)3
(
λwλQ
1− γ

+ λw)

√
γC

1− γ

)

�
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B.1 Importance of the Regularization

Here we want to highlight that the additional regularization terms on Q and w are crucial. For
example, suppose Qπ ∈ Q and wπ ∈ W for some policy π, if λw = λQ = 0, we have

∀ζ ∈ Z, ∇ζLD(πθ, wζ , Q
π) = ∇ζ(1− γ)Es0∼νD0 [Qπ(s0, π)] = 0

∀ξ ∈ Ξ, ∇ξLD(πθ, w
π, Qξ) = ∇ξEwπ/µ [r] = 0

which means Q = Qπ (or w = wπ/µ) can result in that the gradient w.r.t. ζ (or ξ) vanishes to 0, and
it’s impossible that LD is a strongly-concave-strongly-convex function.

C Missing Examples and Proofs in Section 3

C.1 Missing proofs

Theorem 3.1. [Equivalence Between Stationary Points] Under Assumption A, C and D, suppose there
exists a θ ∈ Θ s.t. ‖∇θ maxζ∈Z minξ∈Ξ LD(θ, ζ, ξ)‖ = 0 and there is an Algorithm provides us one
stationary point (θT , ζT , ξT ) of the non-concave-strongly-convex problem maxθ,ζ minξ LD(θ, ζ, ξ)
after running T iterations, which statisfying the following conditions in expectation over the random-
ness of algorithm.

E[‖∇θ,ζLD(θT , ζT , φθT (ζT ))‖]

:=E[‖∇θLD(θT , ζT , φθT (ζT ))‖+ ‖∇ζLD(θT , ζT , φθT (ζT ))‖] ≤ ε

(κξ + 1)(κζ + 1)
(6)

where φθ(ζ) = arg minξ∈Ξ LD(θ, ζ, ξ). Then, we have

E[‖∇θJ(πθT )‖] ≤ ε+ εdata + εfunc + εreg

Proof. First of all, as a results of Assumption A, C and D and the condition that
‖∇θ maxζ∈Z minξ∈Ξ LD(θ, ζ, ξ)‖ = 0 for some θ ∈ Θ, we know there must exists θT ∈ Θ
and ζT ∈ Z which can satisfy Eq.(6). Therefore, it’s possible for an algorithm to return us a (θT , ζT )
satisfy Eq.(6).

Next, suppose we already have Eq.(6), it implies that

max{E[‖∇θLD(θT , ζT , φθT (ζT ))‖],E[‖∇ζLD(θT , ζT , φθT (ζT ))‖]} ≤ ε

(κξ + 1)(κζ + 1)
(17)

We can upper bounded E[‖∇θJ(πθT )‖] with the triangle inequality:

E[‖∇θJ(πθT )‖] ≤E[‖∇θLD(θT , ζT , φθT (ζT ))‖]︸ ︷︷ ︸
Bounded in Eq.(17)

+E[‖∇θLD(θT , ζ
∗, ξ∗)−∇θLD(θT , ζT , φθT (ζT )))‖]

+ E[‖∇θLD(θT , ζ
∗, ξ∗)−∇θJ(πθT )‖]︸ ︷︷ ︸

Bounded in Theorem2.7

≤ ε

(κξ + 1)(κζ + 1)
+ εfunc + εreg + εdata

+ E[‖∇θLD(θT , ζ
∗, ξ∗)−∇θLD(θT , ζT , φθT (ζT )))‖]

where we use ζ∗, ξ∗ to denote the saddle-point of maxζ∈Z minξ∈Ξ LD(θT , ζ, ξ); in the last inequality
we use Eq.17 and Theorem 2.7.

Next, we try to bound the last term. According to the definition, ζ∗ is also the maximum of function
ΦθT (·) = minξ∈Ξ LD(θT , ·, ξ) defined in Lemma A.1. Applying Property (2) in Lemma A.1, (10) in
Lemma A.3 and inequality (17), we obtain that

‖ζT − ζ∗‖ ≤
1

µζ
‖ΦθT (ζT )‖ =

1

µζ
‖∇ζLD(θT , ζT , φθT (ζT ))‖ ≤ ε

µζ(κξ + 1)(κζ + 1)
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Then we can bound:

‖∇θLD(θT , ζ
∗, ξ∗)−∇θLD(θT , ζT , φθT (ζT ))‖

≤L‖ζT − ζ∗‖+ L‖ξ∗ − φθT (ζT ))‖ = L‖ζT − ζ∗‖+ L‖φθT (ζ∗)− φθT (ζT ))‖

≤(L+ Lκξ)‖ζT − ζ∗‖ ≤
εκζ

1 + κζ

where in the first inequality we use the smoothness Assumption A, and in the second inequality we
use (1) in Lemma A.1. As a result,

E[‖∇θJ(πθT )‖] ≤ ε

(κξ + 1)(κζ + 1)
+

εκζ
1 + κζ

+ εfunc + εreg + εdata

≤ε+ εfunc + εreg + εdata

�

C.2 Algorithm Examples

We first introduce a useful assumption:

Assumption G (Diameter). We use Ξ to denote the set of parameters ξ, we assume Ξ is a convex
and bounded set with a diameter d > 0.

C.2.1 Example 1: Stochastic Gradient Descent Ascent [20]

Algorithm 2: Direct SGDA
1 Initialize θ0, ζ0, ξ0
2 for t = 0, 1, 2, ...T do
3 Sample N (s, a, r, s′) ∼ dD, a′ ∼ πθt+1

(s′) tuples and computing:
4 θt+1 ← θt + ηθ∇̂θLD(θt, ζt, ξt)

5 ζt+1 ← ζt + ηζ∇̂ζLD(θt, ζt, ξt)

6 ξt+1 ← Pξ(ξt − ηξ∇̂ξLD(θt, ζt, ξt)) // Pξ is the projection operator.
7 end

Adapting from Theorem 4.5 and Proposition 4.11 in [20], we have the following theorem

Theorem C.1. Define ∆ = maxθ,ζ minξ∈Ξ LD(θ, ζ, ξ) − minξ∈Ξ LD(θ0, ζ0, ξ). Under Assump-
tion A, C, E and G, with step sizes ηξ = Θ(1/L), ηζ = ηθ = Θ(1/κ2

ξL) and batch size

N = Θ(max{1, κξ(κξ + 1)2(κζ + 1)2σ2ε−2}), if T = O(
(κξ+1)2(κζ+1)2(κ2

ξL∆+κ2
ξL

2D2)

ε2 , Algo-
rithm 1 will return us (θT , ζT , ξT ) satisfying the ε-stationary condition in Eq.(6). In another word,
πθT satisfies

E[‖J(πθT )‖] ≤ ε+ εdata + εfunc + εreg (18)

where εdata is defined in Assumption 2.3, and εfunc and εreg are defined in Theorem 2.7.

C.3 Example 2: Stochastic Recursive Gradient Descent Ascent [8]

In [8], the author presented another algorithm has better dependence on ε. Similarly, we can adapt
their algorithm and we ignore the details here.

D Missing details for Algorithm 1

In the following, we will use LDt , LBt and LD∗t as shortnotes of LD(θt, ζt, ξt), LB(θt, ζt, ξt) and
LD(θt, ζ

∗
t , ξ
∗
t ), where ζ∗t , ξ

∗
t is the only one saddle point of LD(θt, ζ, ξ). Besides, we use ∇θLDt

and ∇θLBt as a shortnote of the gradient averaged over dD and the gradient averaged over batch,
respectively.
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Lemma D.1. Suppose we have two empirical gradient estimator∇θLBt+1 and∇θLBt built with the
same batch data B, under Assumption A, we have:

E[‖∇θLBt+1 −∇θLBt ‖2]

≤3
(
G2L2

wC
2
QE[‖ζt+1 − ζt‖2] +G2L2

QC
2
WE[‖ξt+1 − ξt‖2] +H2C2

QC
2
WE[‖θt+1 − θt‖2]

)
Proof.

E[‖∇θLBt+1 −∇θLBt ‖2]

≤ 3

|B|2
E
[
B ·
∑
B

‖(1− γ)I[s ∈ S0]
(
Qt+1(s, a0)−Qt(s, a0)

)
∇θ log πt(a0|s)

+ γwt(s, a)
(
Qt+1(s′, a′)−Qt(s′, a′)

)
∇θ log πt(a

′|s′)‖2

+ ‖(1− γ)I[s ∈ S0]Qt+1(s, a0)
(
∇θ log πt+1(a0|s)−∇θ log πt(a0|s)

)
+ γwt(s, a)Qt+1(s′, a′)

(
∇θ log πt+1(a′|s′)−∇θ log πt(a

′|s′)
)
‖2

+ ‖γ(wt+1(s, a)− wt(s, a))Qt+1(s′, a′)∇θ log πt+1(a′|s′)‖2
)]

≤3
(
γ2G2L2

wC
2
QE[‖ζt+1 − ζt‖2] +G2L2

Q

(
(1− γ) + γCW

)2

E[‖ξt+1 − ξt‖2]

+H2C2
Q

(
(1− γ) + γCW

)2

E[‖θt+1 − θt‖2]
)

≤3
(
G2L2

wC
2
QE[‖ζt+1 − ζt‖2] +G2L2

QC
2
WE[‖ξt+1 − ξt‖2] +H2C2

QC
2
WE[‖θt+1 − θt‖2]

)
where in the first inequality, we use Young’s inequality; in the second one we use Assumption A; in
the last one, we use 1 ≤ CW . �
Lemma D.2. Under Assumption A, C and D, consider πθ1 , πθ2 parameterized by θ1, θ2 ∈
Θ. Denote (ζ∗1 , ξ

∗
1) and (ζ∗2 , ξ

∗
2) as the saddle-point of maxζ∈Z minξ∈Ξ LD(θ1, ζ, ξ) and

maxζ∈Z minξ∈Ξ LD(θ2, ζ, ξ) respectively, then we have

‖ζ∗1 − ζ∗2‖ ≤ κµ(κξ + 1)‖θ1 − θ2‖
‖ξ∗1 − ξ∗2‖ ≤ κξ(κµ + 1)‖θ1 − θ2‖

Proof. With Assumption A and Assumption D, we have

‖∇ζLD(θ2, ζ
∗
1 , ξ
∗
1)‖ = ‖∇ζLD(θ1, ζ

∗
1 , ξ
∗
1)−∇ζLD(θ2, ζ

∗
1 , ξ
∗
1)‖ ≤ L‖θ1 − θ2‖ (19)

‖∇ξLD(θ2, ζ
∗
1 , ξ
∗
1)‖ = ‖∇ξLD(θ1, ζ

∗
1 , ξ
∗
1)−∇ξLD(θ2, ζ

∗
1 , ξ
∗
1)‖ ≤ L‖θ1 − θ2‖ (20)

Recall in Lemma A.1, we know Φθ2(ζ) should be a µζ-strongly-concave function. Then, we have

‖ζ∗1 − ζ∗2‖ ≤
1

µζ
‖∇ζΦθ2(ζ∗1 )‖ =

1

µζ
‖∇ζLD(θ2, ζ

∗
1 , φθ2(ζ∗1 ))‖

≤ 1

µζ
‖∇ζLD(θ2, ζ

∗
1 , φθ2(ζ∗1 ))−∇ζLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

1

µζ
‖∇ζLD(θ2, ζ

∗
1 , ξ
∗
1))‖

≤ 1

µζ
‖∇ζLD(θ2, ζ

∗
1 , φθ2(ζ∗1 ))−∇ζLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

L

µζ
‖θ1 − θ2‖

≤ L

µζ
‖φθ2(ζ∗1 )− ξ∗1‖+

L

µζ
‖θ1 − θ2‖

≤ L

µζµξ
‖∇ξLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

L

µζ
‖θ1 − θ2‖

≤κµ(κξ + 1)‖θ1 − θ2‖
where in the first step, we use Lemma A.3; in the fourth inequality, we use Assumption A; in the fifth
inequality, we use the Assumption C that, given θ2, ζ

∗
1 , LD(θ2, ζ

∗
1 , ξ) is µξ-strongly-convex w.r.t. ξ

and φθ2(ζ∗1 ) is the optimum of it; in the last inequality, we use Eq.(19) again.
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We can give a similarly discussion for ‖ξ∗1 − ξ∗2‖:

‖ξ∗1 − ξ∗2‖ ≤
1

µξ
‖∇ξΨθ2(ξ∗1)‖ =

1

µξ
‖∇ξLD(θ2, ψθ2(ξ∗1), ξ∗1)‖

≤ 1

µξ
‖∇ξLD(θ2, ψθ2(ξ∗1), ξ∗1)−∇ξLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

1

µξ
‖∇ξLD(θ2, ζ

∗
1 , ξ
∗
1))‖

≤ 1

µξ
‖∇ξLD(θ2, ψθ2(ξ∗1), ξ∗1)−∇ξLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

L

µξ
‖θ1 − θ2‖

≤ L

µξ
‖ζ∗1 − ψθ2(ξ∗1)‖+

L

µξ
‖θ1 − θ2‖

≤ L

µξµζ
‖∇ζLD(θ2, ζ

∗
1 , ξ
∗
1)‖+

L

µξ
‖θ1 − θ2‖

≤κξ(κµ + 1)‖θ1 − θ2‖

�
Lemma D.3 (Relate the shift of ζt and ξt with θt). We consider the Assumptions A, C, F and D.
Denote (θt, ζt, ξt) as the parameter value at the beginning at the step t in Algorithm 1, and denote
(ζ∗t , ξ

∗
t ) ∈ Z × Ξ as the only saddle point for LD(θt, ζ, ξ) given θt. Recall the Oracle in Definition

4.1 that, for arbitrary t iteration, it will return us ζt+1, ξt+1 satisfying

E[‖ζt+1 − ζ∗t+1‖2 + ‖ξt+1 − ξ∗t+1‖2] ≤ β

2
E[‖ζt − ζ∗t+1‖2 + ‖ξt − ξ∗t+1‖2] + c

where 0 < β/2 ≤ 1. Then, we have:

E[‖ζt+1 − ζt‖2 + ‖ξt+1 − ξt‖2] ≤6βt+1d2 + 6η2
θCζ,µ

t∑
τ=0

βt−τE[‖gτθ ‖2] +
6c

1− β

where d is the diameter defined in Assumption F, andCζ,µ is a short note of κ2
µ(κξ+1)2+κ2

ξ(κµ+1)2.

Proof. We will use ∆t(ζ, ξ) to denote E[‖ζ−ζ∗t ‖2+‖ξ−ξ∗t ‖2]. We first study some useful properties
of ∆t(ζ, ξ).

Property 1 For t ≥ 1

∆t(ζ
∗
t−1, ξ

∗
t−1) =E[‖ζ∗t − ζ∗t−1‖2 + ‖ξ∗t − ξ∗t−1‖2]

≤Cζ,µE[‖θt − θt−1‖2]

=η2
θCζ,µE[‖gt−1

θ ‖2]

where in the inequality, we use Lemma D.2; and the last equality results from the update rule
θt = θt−1 + ηθg

t−1
θ

Property 2 For t ≥ 0,

∆t(ζt, ξt) ≤
β

2
∆t(ζt−1, ξt−1) + c =

β

2
E[‖ζt−1 − ζ∗t ‖2 + ‖ξt−1 − ξ∗t ‖2] + c

≤βE[‖ζt−1 − ζ∗t−1‖2 + ‖ξt−1 − ξ∗t−1‖2 + ‖ζ∗t − ζ∗t−1‖2 + ‖ξ∗t − ξ∗t−1‖2] + c

=β∆t−1(ζt−1, ξt−1) + β∆t(ζ
∗
t−1, ξ

∗
t−1) + c

≤βt∆0(ζ0, ξ0) +

t∑
τ=1

βt−τ+1∆τ (ζ∗τ−1, ξ
∗
τ−1) +

t−1∑
τ=0

βτ c

≤βt+1d2 + η2
θCζ,µ

t−1∑
τ=0

βt−τE[‖gτθ ‖2] +

t∑
τ=0

βτ c

≤βt+1d2 + η2
θCζ,µ

t−1∑
τ=0

βt−τE[‖gτθ ‖2] +
c

1− β
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where the first inequality is because of the property of the Oracle; for the second inequality we use
Young’s inequality; In the last step, we use

∆0(ζ0, ξ0) = E[‖ζ0 − ζ∗0‖2 + ‖ξ0 − ξ∗0‖2] ≤ β

2
E[‖ζ−1 − ζ∗0‖2 + ‖ξ−1 − ξ∗0‖2] + c ≤ βd2 + c

With the two properties above, we can bound:

E[‖ζt+1 − ζt‖2 + ‖ξt+1 − ξt‖2]

≤3E[‖ζt+1 − ζ∗t+1‖2 + ‖ξt+1 − ξ∗t+1‖2 + ‖ζ∗t+1 − ζ∗t ‖2 + ‖ξ∗t+1 − ξ∗t ‖2 + ‖ζ∗t − ζt‖2 + ‖ξ∗t − ξt‖2]

=3∆t+1(ζt+1, ξt+1) + 3∆t+1(ζ∗t , ξ
∗
t ) + 3∆t(ζt, ξt)

≤3βt+2d2 + 3η2
θCζ,µ

t∑
τ=0

βt−τ+1E[‖gτθ ‖2] + 3η2
θCζ,µE[‖gtθ‖2] + 3βt+1d2 + 3η2

θCζ,µ

t−1∑
τ=0

βt−τE[‖gτθ ‖2]

+
6c

1− β

=3(1 + β)βt+1d2 + 3η2
θCζ,µ

t∑
τ=0

(1 + β)βt−τE[‖gτθ ‖2] +
6c

1− β

≤6βt+1d2 + 6η2
θCζ,µ

t∑
τ=0

βt−τE[‖gτθ ‖2] +
6c

1− β

where for the first one we use an extended version of Young’s inequality ‖
∑k
i=1 xi‖2 ≤

k
∑k
i=1 ‖xi‖2; in the second inequality, we use the Property 1 and 2 to give the upper bound;

in the third inequality, we use the fact that 0 < β ≤ 1. �
Lemma D.4. Under the same condition of Lemma D.3 above, with an additional constraint β ≤
(1− α)2/2 and an additional Assumption E, for t ≥ 0, we have:

E[‖gt+1
θ −∇θJ(θt+1)‖2]

≤3(εdata + εfunc + εreg)
2 + 3(1− α)2t+2E[‖g0

θ −∇θLD0 ‖2] +
6ασ2

|B|

+
(

6L2(βt+2d2 +
c

1− β
) + 108Cw,Q

(β(1− α)2(t+2)

(1− α)2 − β
d2 +

c

α(2− α)(1− β)

)
+

t∑
i=0

(
108η2

θ(1− α)2(t−i+1)
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
+ 6L2η2

θCζ,µβ
t−i+1

)
E[‖giθ‖2]

where εdata, εfunc, εreg are the same as those in Theorem 2.7, and

Cw,Q := G2L2
wC

2
Q +G2L2

QC
2
W

Proof. Recall that we will use ∇θLBt , ∇θLDt and ∇θLD∗t as a shortnote of ∇θLB(θt, ζt, ξt),
∇θLD(θt, ζt, ξt), ∇θLD(θt, ζ

∗
t , ξ
∗
t ) respectively. First we can use the Young’s inequality to ob-

tain

E[‖gt+1
θ −∇θJ(θt+1)‖2]

≤3E[‖∇θLD∗t+1 −∇θJ(θt+1)‖2]︸ ︷︷ ︸
Bias (Bounded in Theorem 2.7)

+3E[‖gt+1
θ −∇θLDt+1‖2]︸ ︷︷ ︸

p1

+3E[‖∇θLDt+1 −∇θLD∗t+1‖2]︸ ︷︷ ︸
p2

Since the first term has already been bounded in Theorem 2.7. Next, we bound p1 and p2:

Upper bound p1 We again use Cζ,ξ as a short note of κ2
µ(κξ + 1)2 + κ2

ξ(κµ + 1)2. From Lemma
D.3, we know that,

E[‖ζt+1 − ζt‖2 + ‖ξt+1 − ξt‖2] ≤6βt+1d2 + 6η2
θCζ,µ

t∑
τ=0

βt−τE[‖gτθ ‖2] +
6c

1− β
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Then, we have

p1 =E[‖gt+1
θ −∇θLDt+1‖2]

=E
[∥∥∥(1− α)(gtθ −∇θLBt ) +∇θLBt+1 −∇θLDt+1 ± (1− α)∇θLDt

∥∥∥2]
=E
[∥∥∥(1− α)(gtθ −∇θLDt ) + α(∇θLBt+1 −∇θLDt+1) + (1− α)(∇θLBt+1 −∇θLBt )

− (1− α)(∇θLDt+1 −∇θLDt )
∥∥∥2]

=(1− α)2E[‖gtθ −∇θLDt ‖2]

+ E[‖α(∇θLBt+1 −∇θLDt+1) + (1− α)(∇θLBt+1 −∇θLBt )− (1− α)(∇θLDt+1 −∇θLDt )‖2
]

(Drop 0 expectation)

≤(1− α)2E[‖gtθ −∇θLDt ‖2] + 2α2E[‖(∇θLBt+1 −∇θLDt+1)‖2
]

+ 2(1− α)2E
[∥∥∥(∇θLBt+1 −∇θLBt )− (∇θLDt+1 −∇θLDt )

∥∥∥2]
(Young’s Ineq.)

≤(1− α)2E[‖gtθ −∇θLDt ‖2] +
2α2σ2

|B|
+ 2(1− α)2E

[∥∥∥(∇θLBt+1 −∇θLBt )
∥∥∥2]

(Assumption E)

≤(1− α)2E[‖gtθ −∇θLDt ‖2] +
2α2σ2

|B|

+ 6(1− α)2
(
G2L2

wC
2
QE[‖ζt+1 − ζt‖2] +G2L2

QC
2
WE[‖ξt+1 − ξt‖2] +H2C2

QC
2
WE[‖θt+1 − θt‖2]

)
≤(1− α)2t+2E[‖g0

θ −∇θLD0 ‖2] +
2α2σ2

|B|
1− (1− α)2t+2

1− (1− α)2

+ 6E
[ t∑
i=0

(1− α)2(t−i+1)
(
G2L2

wC
2
Q‖ζi+1 − ζi‖2 +G2L2

QC
2
W‖ξi+1 − ξi‖2 +H2C2

QC
2
W‖θi+1 − θi‖2

)]
≤(1− α)2t+2E[‖g0

θ −∇θLD0 ‖2] +
2ασ2

|B|
+ 36

t∑
i=0

(1− α)2(t−i+1)Cw,Q(βi+1d2 +
c

1− β
)

(α < 1)

+ 36η2
θ

t∑
i=0

(
Cζ,µCw,Q

t∑
τ=i

(1− α)2(t−τ+1)βτ−i + (1− α)2(t−i+1)H2C2
QC

2
W

)
E[‖giθ‖2]

(Lemma D.3 and ab+ cd ≤ (a+ b)(c+ d) for a, b, c, d ≥ 0)

≤(1− α)2t+2E[‖g0
θ −∇θLD0 ‖2] +

2ασ2

|B|
+ 36Cw,Q

(β(1− α)2(t+2)

(1− α)2 − β
d2 +

(1− α)2c

(1− (1− α)2)(1− β)

)
+ 36η2

θ

t∑
i=0

(1− α)2(t−i+1)
(
Cζ,µCw,Q

(1− α)2

(1− α)2 − β
+H2C2

QC
2
W

)
E[‖giθ‖2]

≤(1− α)2t+2E[‖g0
θ −∇θLD0 ‖2] +

2ασ2

|B|
+ 36Cw,Q

(β(1− α)2(t+2)

(1− α)2 − β
d2 +

(1− α)2c

(1− (1− α)2)(1− β)

)
+ 36η2

θ

t∑
i=0

(1− α)2(t−i+1)
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
E[‖giθ‖2] (21)

where the fourth equality because E[∇θLBt ] = ∇θLDt holds for all t and so the cross terms has 0
expectation; the first inequality is because variance is less than the second momentum; the second
inequality we apply Lemma D.1 and Assumption A; in the last but two inequality, we apply the
summation formula of equal ratio sequence and use the fact that 0 < α ≤ 1, β ≤ 1; in the last step,
we use our condition β ≤ (1− α)2/2
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Upper bound p2 Next, we give an upper bound for p2. From the Property 2 in Lemma D.3, we
know that

∆t+1(ζt+1, ξt+1) =E[‖ζt+1 − ζ∗t+1‖2] + E[‖ξt+1 − ξ∗t+1‖2]

≤βt+2d2 + η2
θCζ,µ

t∑
τ=0

βt−τ+1E[‖gτθ ‖2] +
c

1− β

As a result

p2 =E[‖∇θLDt+1 −∇θLD∗t+1‖2] ≤ 2L2E[‖ζt+1 − ζ∗t+1‖2 + ‖ξt+1 − ξ∗t+1‖2]

≤2L2
(
βt+2d2 + η2

θCζ,µ

t∑
τ=0

βt−τ+1E[‖gτθ ‖2] +
c

1− β
)

Combine these two results we can finish the proof:

E[‖gt+1
θ −∇θJ(θt+1)‖2] ≤ 3E[‖∇θLD∗t+1 −∇θJ(θt+1)‖2] + 3p1 + 3p2

≤3(εdata + εfunc + εreg)
2 + 3(1− α)2t+2E[‖g0

θ −∇θLD0 ‖2] +
6ασ2

|B|

+ 108Cw,Q =
(β(1− α)2(t+2)

(1− α)2 − β
d2 +

(1− α)2c

(1− (1− α)2)(1− β)

)
+ 108η2

θ

t∑
i=0

(1− α)2(t−i+1)
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
E[‖giθ‖2]

+ 6L2
(
βt+2d2 + η2

θCζ,µ

t∑
τ=0

βt−τ+1E[‖gτθ ‖2] +
c

1− β
)

≤3(εdata + εfunc + εreg)
2 + 3(1− α)2t+2E[‖g0

θ −∇θLD0 ‖2] +
6ασ2

|B|

+
(

6L2(βt+2d2 +
c

1− β
) + 108Cw,Q

(β(1− α)2(t+2)

(1− α)2 − β
d2 +

c

α(2− α)(1− β)

)
+

t∑
i=0

(
108η2

θ(1− α)2(t−i+1)
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
+ 6L2η2

θCζ,µβ
t−i+1

)
E[‖giθ‖2]

�

Proposition 4.2. Under Assumption A, J(πθ) = Eτ∼πθ,s0∼ν0
[
∑∞
t=0 γ

tr(st, at)] is LJ smooth with

LJ :=
H

(1− γ)2
+

(1 + γ)G2

(1− γ)3

Proof. Recall that,

∇θJ(π) =

∫
τ

p(τ |θ)
∞∑
i=0

γiri

i∑
j=0

∇θ log πθ(aj |sj)dτ
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Therefore,

∇2
θJ(π) =

∫
τ

p(τ |θ)
∞∑
i=0

γiri

i∑
j=0

∇2
θ log πθ(aj |sj)dτ

+

∫
τ

p(τ |θ)∇θ log p(τ |θ)
∞∑
i=0

γiri

i∑
j=0

∇θ log πθ(aj |sj)dτ

=

∫
τ

p(τ |θ)
∞∑
i=0

γiri

i∑
j=0

∇2
θ log πθ(aj |sj)dτ

+

∫
τ

p(τ |θ)
∞∑
i=0

γiri
( i∑
j=0

∇θ log π(at|st)
)( i∑

j=0

∇θ log π(at|st)
)>
dτ

Therefore,

‖∇2
θJ(π)‖op ≤

∫
τ

p(τ |θ)
∞∑
i=0

γi
i∑

j=0

‖∇2
θ log πθ(aj |sj)‖opdτ

+

∫
τ

p(τ |θ)
∞∑
i=0

γi‖
( i∑
j=0

∇θ log π(at|st)
)( i∑

j=0

∇θ log π(at|st)
)>‖opdτ

≤
∞∑
i=0

γi(i+ 1)H +

∞∑
i=0

γi(i+ 1)2G2

=
H

(1− γ)2
+

(1 + γ)G2

(1− γ)3

�

Theorem 4.3. Under Assumption A-F and H, given arbitrary ε, by choosing Algorithm 3 as the
Oracle, Algorithm 1 will return us a policy πθout , satisfying

E[‖∇θJ(πθT )‖] ≤ ε+
√

3(εreg + εdata + εfunc)

if the hyper-parameters in Alg. 1 and 3 satisfy the following constraints:

T =[max{96,
16LJ
ε2

,
16

(1− γ)ε2

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
,

864Cw,Qd
2

ε2
}] = O(ε−2);

|B| =[max{1, 12σ2

ε2
}]; |N | = [

96(L2 + 20Cw,Q)σ2

min{µζηζ4 ,
µξηξ

4 }ε2
(
ηζ
µζ

+
ηξ
µξ

)]; K = coracle log(
1

β
);

α =0.9; β = min{ ε
2

L2
,

(1− γ)2ε4

Cζ,µL2
,
α

2
(1− α)2}; B0 = [

8σ2

ε2
]

ηθ = min{ 1

2LJ
,
([Cζ,µL2β

6(1− β)
+ 120

(
2Cζ,µCw,Q +H2C2

WC
2
Q

)])−1/2

}

where [·] is the upper rounding function, Cw,Q = G2L2
wC

2
Q + G2C2

WL
2
Q, Cζ,µ = κ2

µ(κξ + 1)2 +

κ2
ξ(κµ + 1)2, LJ is defined in Prop. 4.2, ηζ and ηξ satisfy the constraints in Theorem E.1 and coracle

is an independent constant.

Besides, the total gradient computation to obtain θout should be |B0|+ |B| ·T+ |N | ·K ·T = O(ε−4).
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Proof.

J(θT+1) =J(θT + ηθg
T
θ )

≥J(θT ) + ηθ(g
T
θ )>∇θJ(θT )− η2

θLJ
2
‖gTθ ‖2

=J(θT ) +
ηθ
2
‖∇θJ(θT )‖2 − ηθ

2
‖gTθ −∇θJ(θT )‖2 + (

ηθ
2
− η2

θLJ
2

)‖gTθ ‖2

≥J(θT ) +
ηθ
2
‖∇θJ(θT )‖2 − ηθ

2
‖gTθ −∇θJ(θT )‖2 +

ηθ
4
‖gTθ ‖2

≥J(θ0) +
ηθ
2

T∑
t=0

‖∇θJ(θt)‖2 −
ηθ
2

( T∑
t=0

‖gtθ −∇θJ(θt)‖2 −
1

2
‖gtθ‖2

)
︸ ︷︷ ︸

p

where in the second equation, we use the fact that (gTθ )>∇θJ(θT ) = 1
2‖∇θJ(θT )‖2 + 1

2‖g
T
θ ‖2 −

1
2‖g

T
θ −∇θJ(θT )‖2; in the second inequality, we add a constraint for ηθ that ηθ ≤ 1

2LJ
;

Next, we give a upper bound for p with Lemma D.4:

p =

T∑
t=0

‖gτθ −∇θJ(θt)‖2 −
1

2
‖gtθ‖2

≤
T∑
t=0

{
3(εdata + εfunc + εreg)

2 + 3(1− α)2t+2E[‖g0
θ −∇θLD0 ‖2] +

6ασ2

|B|

+
(

6L2(βt+2d2 +
c

1− β
) + 108Cw,Q

(β(1− α)2(t+2)

(1− α)2 − β
d2 +

c

α(2− α)(1− β)

)
+

t∑
i=0

(
108η2

θ(1− α)2(t−i+1)
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
+ 6L2η2

θCζ,µβ
t−i+1

)
E[‖giθ‖2]− 1

2
E[‖gtθ‖2]

}
≤3T (εdata + εfunc + εreg)

2 + (
6L2

1− β
+

108Cw,Q
α(2− α)(1− β)

)Tc

+
3

1− (1− α)2
E[‖g0

θ −∇θLD0 ‖2] +
6αTσ2

|B|
+ (

6βL2

1− β
+

108β(1− α)2Cw,Q
(1− (1− α)2)((1− α)2 − β)

)
)
d2

+

T∑
t=0

E[‖gtθ‖2]
{
− 1

2
+ 108η2

θ

T−t+1∑
i=1

[Cζ,µL2βi

18
+ (1− α)2i

(
2Cζ,µCw,Q +H2C2

QC
2
W

)]}
≤3T (εdata + εfunc + εreg)

2 + (
6L2

1− β
+

108Cw,Q
α(2− α)(1− β)

)Tc

+
3

α
E[‖g0

θ −∇θLD0 ‖2] +
6αTσ2

|B|
+ (

6βL2

1− β
+ 108Cw,Q

β

α((1− α)2 − β)
)
)
d2

+

T∑
t=0

E[‖giθ‖2]
(
− 1

2
+ 108η2

θ

[ Cζ,µL2β

18(1− β)
+

(1− α)2

1− (1− α)2

(
2Cζ,µCw,Q +H2C2

QC
2
W

)]
≤3T (εdata + εfunc + εreg)

2 + (
6L2

1− β
+

108Cw,Q
α(2− α)(1− β)

)Tc

+
3

α
E[‖g0

θ −∇θLD0 ‖2] +
6αTσ2

|B|
+ (

6βL2

1− β
+ 108Cw,Q

α(1− α)2/2

α((1− α)2 − (1− α)2/2))
)
)
d2

+

T∑
t=0

E[‖giθ‖2]
(
− 1

2
+ 108η2

θ

[ Cζ,µL2β

18(1− β)
+

1

α

(
2Cζ,µCw,Q +H2C2

QC
2
W

)]
≤3T (εdata + εfunc + εreg)

2 + (
6L2

1− β
+

108Cw,Q
α(2− α)(1− β)

)Tc
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+
3

α
E[‖g0

θ −∇θLD0 ‖2] +
6αTσ2

|B|
+ (

6βL2

1− β
+ 108Cw,Q)d2

In the first, second and third inequality, we use the fact that 0 < (1−α) < 1, 0 < β ≤ α(1−α)2/2 ≤
(1− α)2/2}. In the fourth inequality, we add the following constraint to drop the terms containing
‖gθ‖:

ηθ ≤
(

108
[ Cζ,µL2β

18(1− β)
+

1

α

(
2Cζ,µCw,Q +H2C2

QC
2
W

)])−1/2

(22)

Therefore,

1

T + 1

T∑
t=0

‖∇θJ(θτ )‖2 ≤ 2

(T + 1)ηθ
(J(θT )− J(θ0)) +

1

T + 1

T∑
τ=0

(
‖gτθ −∇θJ(θτ )‖2 − 1

2
‖gτθ ‖2

)
≤3(εdata + εfunc + εreg)

2 +
2

(T + 1)ηθ(1− γ)
+

3

α(T + 1)
E[‖g0

θ −∇θLD0 ‖2]

+
6ασ2

|B|
+

1

T + 1
(
6βL2

1− β
+ 108Cw,Q)d2

≤3(εdata + εfunc + εreg)
2 + (

6L2

1− β
+

108Cw,Q
α(2− α)(1− β)

)c︸ ︷︷ ︸
p0

+
2

Tηθ(1− γ)︸ ︷︷ ︸
p1

+
3

αT
E[‖g0

θ −∇θLD0 ‖2]︸ ︷︷ ︸
p2

+
6ασ2

|B|︸ ︷︷ ︸
p3

+
1

T
(
6βL2

1− β
+ 108Cw,Q)d2︸ ︷︷ ︸
p4

Next, we want to carefully choose hyper-parameters to make sure p0, p2 ≤ ε2/8, p1, p3, p4 ≤ ε2/4.
We consider β ≤ min{ ε

2

L2 ,
(1−γ)2ε4

Cζ,µL2 ,
1
2 (1− α)2, α(1− α)2}. Since 0 < α < 1, we have β < 1

2 .

Control p0 For simplicity, we directly choose α = 0.9, while α can be other constant-level values
between 0 and 1. Since β < 1/2, we know

p0 ≤ (12L2 + 240Cw,Q)c

To make sure p0 ≤ ε2/8, we need

c ≤ ε2

12(L2 + 20Cw,Q)

i.e.

8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

) ≤ ε2

12(L2 + 20Cw,Q)

Therefore,

|N | ≥ 96(L2 + 20Cw,Q)σ2

min{µζηζ4 ,
µξηξ

4 }ε2
(
ηζ
µζ

+
ηξ
µξ

) = O(ε−2)

Control p1 Since we have two constrains on ηθ, first we need to make sure, if ηθ = 1
2LJ

p1 =
4LJ

T (1− γ)
≤ ε2

4

Combining 4.2, the above implies that:

T ≥ 16LJ
(1− γ)ε2

(23)
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Secondly, to make sure constraint (22) (recall that we choose α = 0.9):

p1 =
2

T (1− γ)

(
108
[ Cζ,µL2β

18(1− β)
+

1

α

(
2Cζ,µCw,Q +H2C2

QC
2
W

)])1/2

≤ 2

T (1− γ)

√
6Cζ,µL2β

1− β
+

2

T (1− γ)

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
≤ 2

T (1− γ)

√
6L2Cζ,µ

(1− γ)2ε4

Cζ,µL2
+

2

T (1− γ)

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
=

2
√

6ε2

T
+

2

T (1− γ)

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
To make sure p1 ≤ ε2

4 , we need the above two terms less than ε2

8 at the same time, which implies

T ≥ 16
√

3; T ≥ 16

(1− γ)ε2

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
= O(ε−2) (24)

Control p2 In fact, at the beginning step, EB0
[g0
θ ] = ∇θLD0 . Therefore,

p2 =
σ2

|B0|

To make sure |B0| ≥ 8σ2

ε2 , we just set

|B0| =
8σ2

ε2
. (25)

Control p3 We want p3 ≤ ε2

4 . To do that, we add the following constraint

|B|
α
≥ 12σ2

ε2
(26)

which implies that |B| ≥ 12σ2

ε2

Control p4 Since β ≤ {1/2, ε2/L2}, we have

p4 =
1

T
(
6βL2

1− β
+ 108Cw,Q)d2 ≤ 1

T
(
ε2

L2

6L2

1− 1/2
+ 108Cw,Q)d2 =

12ε2

T
+ 108

Cw,Qd
2

T

To make sure p4 ≤ ε2

4 , we need the above two terms individually smaller than ε2

8

T ≥ 96; T ≥ 864Cw,Qd
2

ε2
(27)

Combine (23)-(27), we need

T ≥ max{96,
16LJ
ε2

,
16

(1− γ)ε2

√
120
(

2Cζ,µCw,Q +H2C2
QC

2
W

)
,

864Cw,Qd
2

ε2
}

|B| ≥ 12σ2

ε2
; α = 0.9; |B0| =

8σ2

ε2

As for K in Algorithm 3, based on Theorem E.1, we can choose K = coracle log( 1
β ) = O(log 1

ε )

where coracle is an independent constant.

As a result, the total computation before obtaining θout should be:

|B0|+ |B| · T + |N | ·K · T = O(ε−2) +O(ε−4) +O(ε−2) ·O(log
1

ε
) ·O(ε−2) = O(ε−4)

�
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E A Concrete Example for Saddle-Point Solver Oracle

In this section, we provide an example for the oracle in Definition 4.1, which is inspired by SVRE[22].

E.1 An additional assumption

In this sub-section, we list one additional assumption for our oracle algorithm. We will illustrate the
practicality of it in Appendix F.
Assumption H. Denote N as a batch data sample according to dD whose batch size is constant |N |.
We assume there exists two constants L̄ζ and L̄ξ, such that:

EN∼dD [‖∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)‖2 + ‖∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2)‖2]

≤EN∼dD
[
− L̄ζ

(
∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)

)>
(ζ1 − ζ2)

+ L̄ξ

(
∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2)

)>
(ξ1 − ξ2)

]
EN∼dD [‖∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)‖2 + ‖∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2)‖2]

≤L̄2
ζ‖ζ1 − ζ2‖2 + L̄2

ξ‖ξ1 − ξ2‖2

where we use LN to denote:

LN (θ, ζ, ξ) =
1

|N |

|N |∑
i=1

(1− γ)Q(si, ai0)π(ai0|si)I[si ∈ S0] + w(si, ai)
(
ri + γQ(s′i, a′i)π(a′i|s′i)−Q(si, ai)

)
+
λQ
2
Q2(si, ai)− λw

2
w2(si, ai)

and (si, ai, ri, s′i) are sampled from D while ai0 ∼ π(·|si), a′i ∼ π(·|s′i).

E.2 Stochastic Variance-Reduced Extragradient with Batch Data

where Pζ and Pξ are projection operator; ∇LN (θ, ζ, ξ) denotes the average gradient over samples
from batch data N . Besides, we define:

dNζ (ζ1, ξ1, ζ2, ξ2) =∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)

dNξ (ζ1, ξ1, ζ2, ξ2) =∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2)

Obviously,

E[gζk] = ∇ζLD(θ, ζk, ξk), E[gζk+1/2] = ∇ζLD(θ, ζk+1/2, ξk+1/2)

where the expectation only concerns the randomness of sample when computing g. The above
relationship also holds if we consider gradient w.r.t. ξ.

For this Algorithm 3, we have the following theorem:
Theorem E.1. Under Assumption C, E, F and D, in Algorithm 3, if step size and batch size satisfy

ηζ ≤
1

50 max{L̄ζ , µζ}
, ηξ ≤

1

50 max{L̄ξ, µξ}
after K iterations, the algorithm will return us (ζK , ξK):

E[‖ζK − ζ∗‖2 + ‖ξK − ξ∗‖2] ≤201

100

(
1− µη

4

)K
E[‖ζ0 − ζ∗‖2 + ‖ξ0 − ξ∗‖2]

+
8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

)

where (ζ∗, ξ∗) is the saddle point of LD(θ, ζ, ξ) given input θ.

We defer the proof to the next sub-section.
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Algorithm 3: Stochastic Variance-Reduced Extragradient with Batch Data (SVREB)

1 Input: Stopping time K; learning rates ηζ , ηξ; Initial wegihts ζ0, ξ0; Distribution dD; Batch size
|N |.

2 Sample dataset Nζ , Nξ ∼ dD with batch size |N |
3 gζ0 ← ∇ζLNζ (θ, ζ0, ξ0)

4 gξ0 ← ∇ξLNξ(θ, ζ0, ξ0)

5 ζ1 ← Pζ(ζ0 + ηζg
ζ
0)

6 ξ1 ← Pξ(ξ0 − ηξgξ0)

7 mζ
1,m

ξ
1 ← ∇ζLNζ (θ, ζ0, ξ0),∇ξLNξ(θ, ζ0, ξ0)

8 for k = 1, 2, ...K + 1 do
9 Sample dataset Nζ , Nξ ∼ dD with batch size |N |

10 gζk = mζ
k + d

Nζ
ζ (ζk, ξk, ζk−1, ξk−1)

11 gξk = mξ
k + d

Nξ
ξ (ζk, ξk, ζk−1, ξk−1)

12 ζk+1/2 = Pζ(ζk + ηζg
ζ
k)

13 ξk+1/2 = Pξ(ξk − ηξgξk)

14 Sample dataset N ′ζ , N
′
ξ ∼ dD with batch size |N |

15 gζk+1/2 = mζ
k + d

N ′
ζ

ζ (ζk+1/2, ξk+1/2, ζk−1, ξk−1)

16 gξk+1/2 = mξ
k + d

N ′
ξ

ξ (ζk+1/2, ξk+1/2, ζk−1, ξk−1)

17 ζk+1 = Pζ(ζk + ηζg
ζ
k+1/2)

18 ξk+1 = Pξ(ξk − ηξgξk+1/2)

19 // The following has been computed in step 10 and 11
20 mζ

k+1,m
ξ
k+1 ← ∇ζLNζ (θ, ζk, ξk),∇ξLNξ(θ, ζk, ξk)

21 k ← k + 1
22 end
23 Output: ζK , ξK

E.3 Proofs for Algorithm 3

For simplification, we will use ω = [ζ, ξ] ∈ Z × Ξ := Ω to denote the
vector concatenated by ζ and ξ. Similarly, gt = [−gζt , g

ξ
t ], and FN (ω) =

E(s,a,r,s′,a0,a′)∼N{[−∇ζL(s,a,r,s′,a0,a
′)(θ, ζ, ξ),∇ξL(s,a,r,s′,a0,a

′)(θ, ζ, ξ)]}, where N is the batch
data sampled according to dD, and∇L(s,a,r,s′,a0,a

′)(θ, ζ, ξ) is the gradient computed with one sam-
ple (s, a, r, s′, a0, a

′). We use F (ω) := EN∼D[FN (ω)] to denote the gradient expected over entire
dataset distribution. Besides,

ηgt =[−ηζgζt , ηξg
ξ
t ]; η2‖ω‖2 = η2

θ‖ζ‖2 + η2
ξ‖ξ‖2; µ‖ω‖2 = µζ‖ζ‖2 + µξ‖ξ‖2

L̄2‖w‖2 =L̄2
ζ‖ζ‖2 + L̄2

ξ‖ξ‖2; η2L̄2 = η2
ζ L̄

2
ζ + η2

ξ L̄
2
ξ ; ηµ = ηζµζ + ηξµξ

The update rule for Algorithm 3 can be summarized as
Extrapolation : ωt+1/2 = PΩ(ωt − ηgt)

Update : ωt+1 = PΩ(ωt − ηgt+1/2)

Besides, in this section, the expectation E concerns all the randomness starting from the beginning of
the algorithm.
Lemma E.2 (Lemma 1 in [22]). Let ω ∈ Ω and ω+ := PΩ(w + u), then for all w′ ∈ Ω, we have

‖ω+ − ω′‖2 ≤ ‖ω − ω′‖2 + 2u>(ω+ − ω′)− ‖ω+ − ω‖2

Lemma E.3 (Adapted from Lemma 3 in [22]). For any w ∈ Ω, when t > 0, we have

‖ωt+1 − ω‖2 ≤ ‖ωt − ω‖2 − 2ηg>t+1/2(ωt+1/2 − ω) + η2‖gt − gt+1/2‖ − ‖ωt+1/2 − ωt‖2

32



and when t = 0, we have

‖ω1 − ω‖2 ≤ ‖ω0 − ω‖2 − 2ηg>0 (ω1 − ω)

Proof. For t = 0, by simply applying Lemma E.2 for (ω, u, ω+, ω′) = (ω0,−ηg>0 , ω1, ω), we have:

‖ω1 − ω‖2 ≤‖ω0 − ω‖2 − 2ηg>0 (ω1 − ω)− ‖ω1 − ω0‖2 ≤ ‖ω0 − ω‖2 − 2ηg>0 (ω1 − ω)

For t > 0, the proof is exactly the same as Lemma 3 in [22]

�
Lemma E.4 (Bound ‖gt − gt+1/2‖2). For t > 0, we have:

E[‖gt − gt+1/2‖2] ≤10E[‖FN (wt)− FN (ω∗)‖2] + 10E[‖FN (ω∗)− FN (wt−1)‖2] + 5L̄2E[‖wt − wt+1/2‖]

Proof. For t > 0:

E[‖gt − gt+1/2‖2]

=E[‖FN (wt)− FN (wt−1) +mt − FN ′(wt+1/2) + FN ′(wt−1)−mt‖2]

=E[‖FN (wt)± FN (w∗)− FN (wt−1)− FN ′(wt+1/2)± FN ′(wt)± FN ′(w∗) + FN ′(wt−1)‖2]

≤5E[‖FN (wt)− FN (ω∗)‖2] + 5E[‖FN (ω∗)− FN (wt−1)‖2]

+ 5E[‖FN ′(wt+1/2)− FN ′(wt)‖2]] + 5E[‖FN ′(wt)− FN ′(ω∗)‖2] + 5E[‖FN ′(ω∗)− FN ′(wt−1)‖2]

=10E[‖FN (wt)− FN (ω∗)‖2] + 10E[‖FN (ω∗)− FN (wt−1)‖2] + 5E[‖FN ′(wt+1/2)− FN ′(wt)‖2]]

where in the inequality we use the extended Young’s inequality; in the last equation we use the fact
that

EN∼D[‖FN (wt)− FN (w)‖2] = EN ′∼D[‖FN ′(wt)− FN ′(w)‖2], ∀w ∈ Ω

Besides, according to Assumption H

E[‖FN ′(wt+1/2)− FN ′(wt)‖2]] ≤ L̄2E[‖wt − wt+1/2‖]
As a result,

E[‖gt − gt+1/2‖2] ≤10E[‖FN (wt)− FN (ω∗)‖2] + 10E[‖FN (ω∗)− FN (wt−1)‖2] + 5L̄2E[‖wt − wt+1/2‖]

�
Proposition E.5. Under Assumption C, for arbitrary θ, the operator F (ω) satisfying:(

F (ω1)− F (ω2)
)>(

ω1 − ω2

)
≥ µ‖ω1 − ω2‖2

Proof. Based on Assumption C, we have:

−LD(θ, ζ1, ξ2) ≥− LD(θ, ζ2, ξ2)−∇ζLD(θ, ζ1, ξ1)>(ζ2 − ζ1) +
µζ
2
‖ζ2 − ζ1‖2

−LD(θ, ζ2, ξ1) ≥− LD(θ, ζ2, ξ2)−∇ζLD(θ, ζ2, ξ2)>(ζ1 − ζ2) +
µζ
2
‖ζ2 − ζ1‖2

LD(θ, ζ1, ξ2) ≥LD(θ, ζ1, ξ1) +∇ξLD(θ, ζ1, ξ1)>(ξ2 − ξ1) +
µξ
2
‖ξ2 − ξ1‖2

LD(θ, ζ2, ξ1) ≥LD(θ, ζ2, ξ2) +∇ξLD(θ, ζ2, ξ2)>(ξ1 − ξ2) +
µξ
2
‖ξ2 − ξ1‖2

Sum up and we can obtain(
F (ω1)− F (ω2)

)>(
ω1 − ω2

)
:=
(
F (ζ1, ξ1)− F (ζ2, ξ2)

)>(
[ζ1, ξ1]− [ζ2, ξ2]

)
=−

(
∇ζLD(θ, ζ1, ξ1)−∇ζLD(θ, ζ2, ξ2)

)>
(ζ1 − ζ2) +

(
∇ξLD(θ, ζ1, ξ1)−∇ξLD(θ, ζ2, ξ2)

)>
(ξ1 − ξ2)

≥µζ‖ζ2 − ζ1‖2 + µξ‖ξ2 − ξ1‖2 := µ‖ω1 − ω2‖2

�
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Theorem E.1. Under Assumption C, E, F and D, in Algorithm 3, if step size and batch size satisfy

ηζ ≤
1

50 max{L̄ζ , µζ}
, ηξ ≤

1

50 max{L̄ξ, µξ}
after K iterations, the algorithm will return us (ζK , ξK):

E[‖ζK − ζ∗‖2 + ‖ξK − ξ∗‖2] ≤201

100

(
1− µη

4

)K
E[‖ζ0 − ζ∗‖2 + ‖ξ0 − ξ∗‖2]

+
8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

)

where (ζ∗, ξ∗) is the saddle point of LD(θ, ζ, ξ) given input θ.

Proof. When t > 0, from Lemma E.3, we have

‖ωt+1 − ω∗‖2 ≤‖ωt − ω∗‖2 − 2ηg>t+1/2(ωt+1/2 − ω∗)− ‖ωt+1/2 − ωt‖2 + η2‖gt − gt+1/2‖2

Next, we use Pt+1 to denote E[‖ωt+1 − ω∗‖2] + τE[‖FN (ω∗) − FN (wt)‖2], where τ will be
determined later, then we have
Pt+1 =E[‖ωt+1 − ω∗‖2] + τE[‖FN (ω∗)− FN (wt)‖2]

≤E[‖ωt − ω∗‖2]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− E[‖ωt+1/2 − ωt‖2]

+ η2E[‖gt − gt+1/2‖2] + τE[‖FN (ω∗)− FN (wt)‖2]

− 2ηE[(mt − F (ωt−1))>(ωt+1/2 − ω∗)]
(E[g>t+1/2(ωt+1/2 − ω∗)] = E[(F (ωt+1/2)− F (ωt−1) +mt)

>(ωt+1/2 − ω∗)])

≤E[‖ωt − ω∗‖2]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 5η2L̄2)E[‖ωt+1/2 − ωt‖2]

+ (τ + 10η2)E[‖FN (wt)− FN (ω∗)‖2] + 10η2E[‖FN (ω∗)− FN (wt−1)‖2]

+ 2η
√

E[‖mt − F (ωt−1)‖2]E[‖ωt+1/2 − ω∗‖2]

(Lemma E.4 and Cauthy Inequality: E[a>b|c] ≤
√

E[‖a‖2|c]E[‖b‖2|c])
≤E[‖ωt − ω∗‖2]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 5η2L̄2)E[‖ωt+1/2 − ωt‖2]

+ (τ + 10η2)E[‖FN (wt)− FN (ω∗)‖2] + 10η2E[‖FN (ω∗)− FN (wt−1)‖2]

+
8η

µ
E[‖mt − F (ωt−1)‖2] +

µη

8
E[‖ωt+1/2 − ω∗‖2] (2

√
|a>b| ≤ ‖a‖2 + ‖b‖2)

≤E[‖ωt − ω∗‖2]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 25η2L̄2 − 2τL̄2)E[‖ωt+1/2 − ωt‖2]

+ (2τ + 20η2)E[‖FN (wt+1/2)− FN (ω∗)‖2] + 10η2E[‖FN (ω∗)− FN (wt−1)‖2]

+
8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

) +
µη

4
(E[‖ωt+1/2 − ωt‖2 + E[‖ωt − ω∗‖2])

(Assumption E; Young’s Inequality; E[‖FN (ωt+1/2)− FN (ωt)‖2] ≤ L̄2E[‖ωt+1/2 − ωt‖2])

≤E[‖ωt − ω∗‖2]− 2ηE[F (ωt+1/2)>(ωt+1/2 − ω∗)]− (1− 25η2L̄2 − 2τL̄2)E[‖ωt+1/2 − ωt‖2]

+ (2τL̄+ 20η2L̄)E[(FN (ω∗)− FN (wt+1/2))>(ω∗ − wt+1/2)] + 10η2E[‖FN (ω∗)− FN (wt−1)‖2]

+
8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

) +
µη

4
(E[‖ωt+1/2 − ωt‖2 + E[‖ωt − ω∗‖2]) (Assumption H)

=E[‖ωt − ω∗‖2]− (2η − 20L̄η2 − 2τL̄)E[(F (ωt+1/2)− F (w∗))>(ωt+1/2 − ω∗)]
− (1− 25η2L̄2 − 2τL̄2)E[‖ωt+1/2 − ωt‖2] + 10η2E[‖FN (ω∗)− FN (wt−1)‖2]

+
8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

) +
µη

4
(E[‖ωt+1/2 − ωt‖2 + E[‖ωt − ω∗‖2])

By Prop. E.5, we have:

(F (w∗)− F (ωt+1/2))>(ω∗ − ωt+1/2) ≥ µ‖ω∗ − ωt+1/2‖2 ≥
µ

2
‖wt − ω∗‖2 − µ‖wt+1/2 − wt‖2

(28)
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By choosing 0 < ηζ ≤ 1
50 max{L̄ζ ,µζ}

, 0 < ηξ ≤ 1
50 max{L̄ξ,µξ}

, and τ = 15η2, we know

2η − 20L̄η2 − 2τL̄ = 2η − 50L̄η2 ≥ 0

As a result, we can use (28) to get:

Pt+1 ≤(1− µη + 10µη2L̄+ τµL̄+
µη

4
)E[‖ωt − ω∗‖2]

− (1− 25η2L̄2 − 2τL̄2 − 2µη + 20µL̄η2 + 2µτL̄− µη

4
)E[‖ωt+1/2 − ωt‖2]

+
10η2

τ
τE[‖FN (ω∗)− FN (wt−1)‖2] +

8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

)

≤ (1− 3

4
µη + 25µη2L̄)︸ ︷︷ ︸

p1

E[‖ωt − ω∗‖2] + (55η2L̄2 +
9

4
µη − 50µL̄η2 − 1)︸ ︷︷ ︸
p2

E[‖ωt+1/2 − ωt‖2]

+
2

3
τE[‖FN (ω∗)− FN (wt−1)‖2] +

8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

)

since 0 < ηµ ≤ 1/50 and 0 < ηL̄ ≤ 1/50

p1 ≤1− 3

4
µη +

25µη

50
= 1− µη

4

p2 ≤
11

500
+

9

200
− 1 ≤ 11

500
+

9

200
− 1 ≤ 0

As a result

Pt+1 ≤(1− µη

4
)E[‖wt − ω∗‖2] +

2

3
τE[‖FN (ω∗)− FN (wt−1)‖2] +

8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

)

≤
(

1−min{µη
4
,

1

3
}
)
Pt +

8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

)

=
(

1− µη

4

)
Pt +

8σ2

|N |
(
ηζ
µζ

+
ηξ
µξ

) (µη ≤ 1/50)

≤
(

1− µη

4

)t
P1 +

8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

)

=
(

1− µη

4

)t
(E[‖w1 − ω∗‖] + τE[‖FN (ω∗)− FN (ω0)‖2]) +

8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

)

Next, we take a look at E[‖w1 − ω∗‖], from Lemma E.3, we have:

E[‖ω1 − ω∗‖2]

≤E[‖ω0 − ω∗‖2 − 2ηg>0 (ω1 − ω∗)]
=E[‖ω0 − ω∗‖2] + 2ηE[(F (ω0)− g0)>(ω1 − ω∗)] + 2ηE[(F (ω∗)− F (ω0))>(ω1 − ω∗)]
≤E[‖ω0 − ω∗‖2] + 2ηE[‖F (ω0)− g0‖2]E[‖ω1 − ω∗‖2] + 2ηE[(F (ω∗)− F (ω0))>(ω1 − ω∗)]

≤E[‖ω0 − ω∗‖2] +
2ησ2

|N |
E[‖ω1 − ω∗‖] + 3η2E[‖F (ω∗)− F (ω0)‖2] +

1

3
E[‖ω1 − ω∗‖2]

≤E[‖ω0 − ω∗‖2] +
µη

4
E[‖ω1 − ω∗‖] + 3η2E[‖F (ω∗)− F (ω0)‖2] +

1

3
E[‖ω1 − ω∗‖2]

≤E[‖ω0 − ω∗‖2] +
1

2
E[‖ω1 − ω∗‖] + 3η2E[‖F (ω∗)− F (ω0)‖2] (ηµ < 1/50)

Therefore,
E[‖ω1 − ω‖2] ≤ 2E[‖ω0 − ω∗‖2] + 6η2E[‖F (ω∗)− F (ω0)‖2]
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Finally, using the fact that E[‖FN (ω∗)− FN (ω0)‖2] ≤ L̄2E[‖ω∗ − ω0‖2], we have

E[‖ωt+1 − ω∗‖2]− 8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

) ≤ Pt+1 −
8σ2

min{µζηζ4 ,
µξηξ

4 }|N |
(
ηζ
µζ

+
ηξ
µξ

)

≤
(

1− µη

4

)t
(2E[‖ω0 − ω∗‖2] + 6η2E[‖F (ω∗)− F (ω0)‖2] + τE[‖FN (ω∗)− FN (ω0)‖2])

=
(

1− µη

4

)t
(2E[‖ω0 − ω∗‖2] + 6η2L̄2E[‖ω∗ − ω0‖2] + 15η2L̄2E[‖ω∗ − ω0‖2])

≤
(

1− µη

4

)t
(2 +

6

2500
+

15

2500
)E[‖ω∗ − ω0‖2]

≤201

100

(
1− µη

4

)t
E[‖ω∗ − ω0‖2]

which finishes the proof. �

F Practicality of the Assumptions in Section 2.2

First, it is common to use policy classes whose first and second order derivatives are bounded [15, 16],
so the Assumption A-(1) is a reasonable one. Also, Assumption B is a common assumption in batch
RL that guarantees exploratory dataset [23], and the smoothness Assumption A-(c) is frequently
considered in optimization literatures.

The remaining assumptions are indeed quite strong. That said, below we show that whenW and Q
are the same linear class, we can satisfy these assumptions relatively easily. Indeed, Uehara et al. [4]
showed that MIS-based OPE reduce to the familiar off-policy LSTD algorithms with linear classes
[24, 25], and we show that Assumptions A-(b), C, D, E, F, G can be satisfied in this case if we simply
assume Assumption I, which is standard in the off-policy LSTD literature.
Definition F.1 (Linear function classes). We have a feature class {φ(s, a) ∈ Ru×1|∀s, a ∈ S ×A}
subject to ‖φ(s, a)‖ = 1, and two parameter spaces Z,Ξ ∈ Ru×1. The approximated value function
Qξ and density ratio wζ are represented by

w(·, ·) = φ(·, ·)>ζ, Q(·, ·) = φ(·, ·)>ξ
Remark F.2. Since ‖φ(·, ·)‖ ≤ 1, the matrix Es,a∼dD [φ(s, a)φ(s, a)>] is semi-positive definite and
its largest eigenvalue is less than 1.
Assumption I. There exists a positive constant σmin that, the matrix Es,a∼dD [φ(s, a)φ(s, a)>]
is full-rank, and all its eigenvalues are no less than σmin; besides, the matrix
Es,a,s′,a′∼dD [φ(s, a)φ(s, a)> − γφ(s, a)φ(s′, a′)] is invertible, and its minimal sigular value is
no less than σmin.
Remark F.3. In Assumption I, we only add requirement on the smallest singular value of M and do
not care about whether all its eigenvalues are positive or not.

For simplicity, we choose λw = λQ = λ > 0. We use Φ ∈ R|S||A|×u to denote the matrix
concatenated by all features, use K to denote Φ>ΛDΦ and use M to denote Φ>ΛD(I − γPπ

D)Φ,
where ΛD is a diagonal matrix whose diagonal elements are dD(·, ·), and Pπ

D is the empirical
transition matrix induced from dataset distribution. Notes that if we never see some s in dataset, then
the corresponding element in ΛD should be 0, and we do not need to worry about the corresponding
row in Pπ

D. By choosing linear function classes, we can rewrite LD to:

LD(π, ζ, ξ) =(1− γ)Es0 [Q(s0, π)] + Ew[r + γQ(s′, π)−Q(s, a)] +
λ

2
EdD [Q2(s, a)]− λ

2
EdD [w2(s, a)]

=(1− γ)νπDΦξ + ζ>Φ>ΛD(R− (I − γPπ
D)Φξ) +

λ

2
ξ>Kξ − λ

2
ζ>Kζ

=(1− γ)νπDΦξ + ζ>Φ>ΛDR− ζ>Mξ +
λ

2
ξ>Kξ − λ

2
ζ>Kζ

Since LD is quadratic, under Assumption I, matrix K is full-rank with minimal eigenvalue larger than
σmin and maximal eigenvalue smaller than 1, then LD(π, ζ, ξ) is λσmin-strongly-concave-λσmin-
strongly-convex, and λ smooth. Combining bounded second order derivatives of log π, L is also
smooth w.r.t. θ. Therefore, we know Assumption C holds.
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Next, we try to give a bound for the norm of the saddle point of LD(π,wζ , Qξ) denotes as (ζ∗, ξ∗),
to testify the other assumptions. By taking derivatives w.r.t. ξ, we have:

ξ =
1

λ
K−1

(
M>ζ − (1− γ)Φ>(νπD)>

)
Plug it into LD:

−λ
2
ζ>Kζ − 1

2λ

(
M>ζ − (1− γ)Φ>(νπD)>

)>
K−1

(
M>ζ − (1− γ)Φ>(νπD)>

)
+ ζ>Φ>ΛDR

Taking the derivative of ζ, we have:

ζ∗ =
(
λ2K + MK−1M>

)−1(
− (1− γ)MK−1Φ>(νπD)> + λΦ>ΛDR

)
and therefore,

ξ∗ =
1

λ
K−1

(
M>ζ∗ − (1− γ)Φ>(νπD)>

)
=

1

λ
K−1M>

(
λ2K + MK−1M>

)−1

·
(
− (1− γ)MK−1Φ>(νπD)> + λΦ>ΛDR

)
+ (1− γ)

1

λ
K−1Φ>(νπD)>

=(1− γ)λ
(
λ2K + M>K−1M

)−1

·Φ>(νπD)> + K−1M>
(
λ2K + MK−1M>

)−1

Φ>ΛDR

where in the last step, we use the inverse matrix lemma:

(λ2K + M>K−1M)−1 =
1

λ2
K−1 − 1

λ2
K−1M>(λ2K + MK−1M>)MK−1

Because ‖φ(·, ·)‖ ≤ 1, it’s easy to prove that, for arbitrary vector x ∈ Rd,

max{‖Mx‖, ‖M>x‖} ≤ (1 + γ)‖x‖
Therefore,

‖ζ∗‖ ≤(1− γ)‖
(
λ2K + MK−1M>

)−1

MK−1‖ · ‖Φ>(νπD)>‖+ ‖
(
λ2K + MK−1M>

)−1

‖ · ‖λΦ>ΛDR‖

≤(1− γ)‖
(
MK−1M>

)−1

MK−1‖+ λ‖
(
λ2K + MK−1M>

)−1

‖

≤(1− γ)‖
(
M>

)−1

‖+ λ‖
(
λ2K + MK−1M>

)−1

‖

≤1− γ
σmin

+
λ

λ2σmin + σ2
min

:= Dζ

‖ξ∗‖ ≤(1− γ)λ‖
(
λ2K + M>K−1M

)−1

‖ · ‖Φ>(νπD)>‖

+ ‖K−1M>
(
λ2K + MK−1M>

)−1

MK−1KM−1‖‖Φ>ΛDR‖

≤(1− γ)λ‖
(
λ2K + M>K−1M

)−1

‖+ ‖(K−1 − (K +
1

λ2
M>K−1M)−1)KM−1‖

≤(1− γ)λ‖
(
λ2K + M>K−1M

)−1

‖+ ‖K−1KM−1‖

≤ (1− γ)λ

λ2σmin + σ2
min

+
1

σmin
:= Dξ

By choosing Z = {ζ|‖ζ‖ ≤ Dζ + 1} and Ξ = {ξ|‖ξ‖ ≤ Dξ + 1}, Assumptions D and F, G can be
satisfied when d = 2 max{Dζ , Dξ}+ 2. Moreover,

wζ(s, a) = φ(s, a)>ζ ≤‖φ(s, a)‖‖ζ‖ ≤ Dζ

Qξ(s, a) = φ(s, a)>ξ ≤‖φ(x, a)‖‖ξ‖ ≤ Dξ

‖wζ1(s, a)− wζ2(s, a)‖ ≤‖φ(s, a)‖‖ζ1 − ζ2‖ ≤ ‖ζ1 − ζ2‖
‖Qξ1(s, a)−Qξ2(s, a)‖ ≤‖φ(s, a)‖‖ξ1 − ξ2‖ ≤ ‖ξ1 − ξ2‖
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which means Assumption A-(b) is satisfied by setting CW = Dζ , CQ = Dξ and LW = LQ = 1.
Besides, Dζ and Dξ are finite also implies that σ in Assumption E is finite.

Finally, we evaluate Assumption H. For simplicity, we use KN to denote matrix EB [φ(s, a)φ(s, a)>]
and use MN to denote EB [φ(s, a)φ(s, a)> − φ(s, a)φ(s′, π)>]

∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2) = −λKN (ζ1 − ζ2)−MN (ξ1 − ξ2)

∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2) = λKN (ξ1 − ξ2)−M>
N (ζ1 − ζ2)

Therefore,

EN∼dD [‖∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)‖2 + ‖∇ξLN (θ, ζ1, ξ2)−∇ξLN (θ, ζ2, ξ2)‖2]

≤2EN∼dD [(ζ1 − ζ2)>(λ2K>NKN + M>
NMN )(ζ1 − ζ2)]

+ 2EN∼dD [(ξ1 − ξ2)>(λ2K>NKN + M>
NMN )(ξ1 − ξ2)]

≤2EN∼dD [(ζ1 − ζ2)>(λ2K2
N + (1 + γ)2I)(ζ1 − ζ2)]

+ 2EN∼dD [(ξ1 − ξ2)>(λ2K2
N + (1 + γ)2I)(ξ1 − ξ2)]

≤2EN∼dD [(ζ1 − ζ2)>(λ2KN + (1 + γ)2I)(ζ1 − ζ2)]

+ 2EN∼dD [(ξ1 − ξ2)>(λ2KN + (1 + γ)2I)(ξ1 − ξ2)]

=(ζ1 − ζ2)>(2λ2K + 2(1 + γ)2I)(ζ1 − ζ2) + (ξ1 − ξ2)>(2λ2K + 2(1 + γ)2I)(ξ1 − ξ2)

In the first inequality, we use Young’s inequality; in the second one, we use the fact that the largest
singular value of MN is less than (1 + γ); the third one is because all eigenvalues of KN locate in
[0, 1], and we should have I � KN � K2

N . Notice that,

EN∼dD
[
−
(
∇ζLN (θ, ζ1, ξ1)−∇ζLN (θ, ζ2, ξ2)

)>
(ζ1 − ζ2)

+
(
∇ξLN (θ, ζ1, ξ1)−∇ξLN (θ, ζ2, ξ2)

)>
(ξ1 − ξ2)

]
=λ(ζ1 − ζ2)>K(ζ1 − ζ2) + λ(ξ1 − ξ2)>K(ξ1 − ξ2)

Therefore,

(ζ1 − ζ2)>(2λ2K + 2(1 + γ)2I)(ζ1 − ζ2) + (ξ1 − ξ2)>(2λ2K + 2(1 + γ)2I)(ξ1 − ξ2)

≤(2λ+
2(1 + γ)2

σminλ
)
(
λ(ζ1 − ζ2)>K(ζ1 − ζ2) + λ(ξ1 − ξ2)>K(ξ1 − ξ2)

)
Moreover,

(ζ1 − ζ2)>(2λ2K + 2(1 + γ)2I)(ζ1 − ζ2) + (ξ1 − ξ2)>(2λ2K + 2(1 + γ)2I)(ξ1 − ξ2)

≤(2λ2 + 2(1 + γ)2)
(

(ζ1 − ζ2)>(ζ1 − ζ2) + (ξ1 − ξ2)>(ξ1 − ξ2)
)

As a result, Assumption H holds with L̄ζ = L̄ξ = max{2λ+ 2(1+γ)2

σminλ
,
√

2λ2 + 2(1 + γ)2}.
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