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Abstract

We study the convergence properties of two optimization algorithms for off-policy
policy gradient based on density-ratio learning. We establish general conditions that
enable convergence and near-optimality guarantees, and show that these conditions
can be satisfied in the linear case under standard assumptions. The keys to our
analyses are the successful integration and application of stochastic first-order
methods on solving saddle-point and non-convex optimization problems.

1 Introduction

Policy gradient (PG) is a very popular class of methods in empirical reinforcement-learning (RL)
research, and has also attracted significant attention from the theoretical community recently [1]].
Despite its appealing properties, classical PG typically requires on-policy roll-outs, making them not
directly applicable to offline (or batch) RL. Recent development in marginalized importance sampling
(MIS) methods [12, 13, 4} 5], however, has yielded promising off-policy policy-gradient estimators. For
example, Nachum et al. [[6] reformulated off-policy policy-optimization to a max-max-min problem,
which faithfully optimizes the policy with sufficiently expressive function approximators [7]. A more
general form of the problem considered by Yang et al. [3] is:

max max min £(7, w, Q) :=max max min £(mg, w¢, Q¢)

mell weWw Qe 0€0 (€Z EeE
= (1= 7)oy [Qe(0, 7)) + Ean (s, @) (7 +7Qe('s0) = Qe(s,a) )]
+ AQEar[F(Qe(s, )] = AuEa [g(we(s,0))] M

where 7, w, () are respectively parameterized by (0,(, &) € © x Z x E (0, Z and E are all convex
sets), and we use II, W, O to denote their function classes; 1/ is the initial state distribution, d*
denotes the normalized discounted state-action occupancy induced by behavior policy 1 (see Sec. 2.1]
for a formal definition); Q¢ (s, 7g) is short for Eq oy (.15)[Qe (s, a)]; f, g are regularizers.

Despite the promising formulation, the problem takes a complex max-max-min form, which makes
the optimization challenging. In this paper, we study the convergence guarantees of two natural
optimization strategies for (the empirical version of) Eq.(2), and establish the conditions under which
we can prove convergence rate and characterize the quality of the solutions. The actual objective,
based on a sample D from d*, is

max max min £° (7, w, Q) :=max maxmin £ (1, w¢, Q¢)

Tl weW QeQ 0cO (eZ geE
::(1 - Py)]ESONVD [Qf(s(h 79)] + IE:dD [wC(Sa a’) (T + 'YQE(S/v 7-‘—9) - QE(Sv a))]
A Aw
+ 5 Ean[QF(s, 0)] — S Eqn [wl(s, a)). 2)
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Here we replace 1y with vp to denote the empirical initial distribution, and use d” to denote the
empirical state-action distribution in dataset. We also choose the regularizers to be quadratic functions.

In our analyses, we focus on the case when £ is strongly-concave w.r.t. ¢ and strongly-convex
w.r.t. £, but do not require the concavity related to §. The strong concavity/convexity, among other
assumptions we will introduce in Section[2.2} can be shown to be satisfied in the linear case under
very standard assumptions (Appendix [F).

Due to regularization, generalization error, and mis-specification error, there is inevitable bias between
the stationary points of L (mg, w¢, Q¢) and J(y), respectively, where J () is the expected return
of my. Therefore, we focus on the convergence to the biased stationary point defined below.

Definition 1.1 (Biased stationary point).
IE[HVGJ(TFQ)M < € + €data +Efunc+€reg (3)

where €,.cg, € func, Edata are biases caused by regularization, mis-specified function class, and finite-
sample effects, respectively, as we will explain in Section[2} All norms in this paper is ¢ norm unless
specified otherwise. The expectation is over the randomness of the algorithm (e.g., the randomness in
SGD) and not that of the data.

Paper Outline Our first algorithm, converts the original max-max-min problem to a max-min
problem max s ¢ycox z Mingez L(7g, we, Q¢ ), by simultaneously optimizing ¢ and ¢. Under the
assumptions identified in Section[2.2] we prove that the stationary point returned by any stochastic
optimization algorithm for non-convex-strongly-concave problems is also a biased stationary point in
Definition As aresult, the O(s~3) convergence rate can be established based on a recent result
on non-convex-strongly-concave optimization [8]].

We then study another algorithm, where we iteratively solve the inner strongly-concave-strongly-
convex max-min problem max¢ecz minges £(mg, we, Q¢) for fixed 6 and the outer non-convex
optimization problem maxgee L(mg, w¢, Q¢) for fixed ¢ and £. For the inner loop, we assume an
oracle that solves the saddle-point problem, and provide a concrete example in Appendix [E| For
the outer loop, the main technique difficulty is that, the loss function £(mg, we,, Q¢,) varies across
iterations because we update (y,&; in the inner loop, which prevents us from adapting existing
non-convex optimization algorithms directly. We resolve this difficulty by coordinating the inner and
the outer loops so that we can relate the variation ||(;+1 — (|| and ||€s41 — §t|i with ||0¢+1 — 0¢]|. The
convergence rate to a biased stationary point of our second strategy is O (e~

1.1 Related works

Recently, there has been a lot of interest in turning MIS methods for off-policy evaluation [3} 9] 2]
into off-policy policy-optimization algorithms. Liu et al. [10] presented OPPOSD with convergence
guarantees, but the convergence relies on accurately estimating the density ratio and the value
function via MIS, which were treated as a black box without further analysis. [6, /] discussed policy
optimization given arbitrary off-policy dataset, but no convergence analysis was performed. Another
style of off-policy policy-improvement algorithms is off-policy actor-critic [[11} 12} [13]. Although
[13]] presented a provably convergent algorithm, where only asymptotic convergence was proved and
no finite convergence rate was given.

Meanwhile, along with the progress of the variance reduction techniques for non-convex optimization,
there are several emerging works analyzing convergence rates in RL settings [14} [15 [16} |17} [18]].
However, all of them require on-policy interaction with the environment, whereas our focus is the
off-policy setting.

2 Preliminary

2.1 Markov Decision Process

We consider an infinite-horizon discounted MDP (S, A, R, P,~y, 1), where S and A are the state and
action spaces, respectively, which we assume to be finite but can be arbitrarily large. R: S x A —
A([0,1]) is the reward function. P : S x A — A(S) is the transition function, - is the discount
factor and 1y denotes the initial state distribution.



For arbitrary policy m, we use d™(s,a) = (1 — ¥)Erur somvo[Dopon ¥'P(st = s,a = a)] to
denote the normalized discounted state-action occupancy, where 7 ~ 7,59 ~ 1y means a trajec-
tory 7 = {sq,ao, S1, a1, ...} is sampled according to the rule that sy ~ vgy,a9 ~ 7(:|sg),s1 ~
P(:|s0,a0),a1 ~ 7(:|s1),..., and p(s; = s, a; = a) denotes the probability that the ¢-th state-action
pair are exactly (s,a). We also use Q(s,a) = Err so=s,a0=a 0 V' 7(5¢, a¢)] to denote the
Q-function of 7. It is well-known that Q™ satisfies the Bellman Equation:

Qﬂ-(sv a) = TWQW(& a’) = ErwR(s,a),s’wP(~|s,a),a’~7r(~|s’)[T + 'VQW(Slv a/)]‘

Define J(7) = Egwpg amm(]s0) (@7 (5, 0)] = ﬁES,aNdﬂ' [r(s,a)] as the expected return of policy 7.
If 7 is parameterized by 6 and differentiable, the policy-gradient theorem [19] states that

1
Vod(mg) = mES#NdW [Q7 (s,a)Vglogm(als)].

In the off-policy setting, we can only get access to d*, the discounted state-action occupancy w.r.t.

another policy p. Then we can rewrite Vy.J(7) by introducing the importance ratio w™ (s, a) :=
d” (s,a)
dr(s,a)”

Vod(mg) = 1

In the rest of the paper, we will refer 1 as the behavior policy, and refer 7 as the target policy whose
performance we are interested in.

1
jEs,aNdu [w™(s,a)Q7 (s,a)Vglogm(als)].

In practice, usually, we are only provided with an off-line dataset instead of the exact distribution
d", which we denote as D = {(s;,a;,7;, 32)}‘12‘1 Each tuple is sampled by s;,a; ~ d*,r; ~

R(si,a;),8: ~ P(:]s;,a;), and we use d” to denote the empirical state-action distribution.

2.2 Assumptions and Definitions

‘We now introduce the assumptions and definitions that will later enable us to establish the convergence
guarantees and characterize the solution quality. We will also introduce some algorithm-specific
assumptions later. While some of the assumptions (e.g., Assumption|C)) are quite strong, in Appendix
[F] we show they are automatically satisfied in the linear setting under more standard assumptions.

Assumption A (Smoothness).

(a) Foranys,a € S x Aandf € O, my(s, a) is second-order differentiable w.r.t. 6, and there exist
constants G and H, s.t.

[Velogm(als)| <G, [Vilogmg(als)|op < H )

where || - ||,y is the matrix operator norm.

(b) Forany &, 61,62 € 2,(,(1,62 € Z,(s,a) € S x A, there are constants Cg, Cyy, Lg, Ly, s.t.
|Q£($7a)‘ < Cg; |Q§1 (Sv a) - Q£2 (Sa a)| < LQ”£1 - 52”;
we(s, @)l < Cows g, (5,0) — wey (s,a)] < LullGr — Gall;

Usually, in practice, we normalize the expectation of w¢ to 1, so Cyy > 1 in general.

(¢) Letv € V =0 x Z x = denote a vector formed by concatenating 0, (, €. For any v, vy,ve € V,
LD defined in Eq.@ is differentiable w.r.t. v, and there exists constant L s.t.

IVoLP (v1) = VoL (v2)]l -
=[IVoLE (v1) = VoLP (v2) || + [ VL (v1) = VLD (ua)[| + VL (01) = VeLP (va)]
<Ly = Ozl + LGy — Gl + L[§1 — &2l

Assumption B (Exploratory Data). Recall the behavior policy is denoted as . We assume there
exists a constant C' > 0, for arbitrary = € Il and any (s,a) € S x A, we have

d”(s, a) dgu (87 a’)
T(s,q) = <C " (s,a) = 205 o o
w (Sﬂa‘) d“(S,CI,) = Wq (S a) d“(s,a) Py
where djj, (s, a) == (1 = V)Eron so,a0mdm () [Doreo Y'P(st = s,a; = a)] is the normalized dis-

counted state-action occupancy by treating d* as initial distribution.



Assumption C (Strongly-Convex-Strongly-Concave). We use uz and ux= to denote the dimension of
vector parameters ¢ and £. Given arbitrary € ©,( € R*z, LP(0,(, ) is pg-strongly convex w.r.t.
¢ € =. Given arbitrary § € ©,¢ € Ru=, LP (0, -, €) is pc-strongly concave w.r.t. ¢ € Z.

Remark 2.1. In fact, the regularization terms is necessary if we want Assumption[C|to hold when
one of w™ and Q™ is realizable. We defer the discussion to Appendix|B|

Assumption D. Denote ((},&;) as the saddle point of £ (6, ¢, &) without constraint on ¢ and &.
For arbitrary 7y parameterized by 6 € ©, ((;, &) € Z x E.

Remark 2.2. Based on Assumption[A| [Q since both Z and = are convex sets, Assumption|D|implies
that

IVeLP(0,65,6)1l = IVeLP (0,65, €5)] = 0

Definition 2.3 (Generalization Error). Suppose there exists a constant &/, for arbitrary
o, we, Q¢ € II x W x Q, we have:

|L(m0, we, Qe) — L7 (9, we, Qe)| < lata
||V9£(7T9, w:;m QZ) - VG‘CD(W%U}TU Q;)”2 < Eiiata
where (w};, Q},) := arg max, ey mingeo L(m, w, Q).

Proposition 2.4. Denote 4410 := (26¢Ke + 26¢ + 2K¢ + V2/2)4 /26,10 Where &) . is defined
in Deﬁnition ke = L/pe, ke = L/ pe. Under Assumption and@ we have:

Vv in £ [ -V i ‘CD s Wy < €data
IV masc min £(ry, w, Q) — Vi max min L7(mp, w, Q)| < £dar
We defer the proof to Appendix [A]

Definition 2.5 (Mis-specification Error).

(1) For arbitrary 7 € II, denote w¢r := arg minyew ||w — w7 ||3 parameterized by (™ € Z, where
W} = arg max,,cgis|i4 Mingepisia £(m, w, Q). We define

— T2
€1 = max [Jwer —wz 3

(2)  For arbitrary policy 7 € Il and w € W, denote Q¢x := arg mingeg L£(, w,()) parameterized
by &7, € E. We define

_ o o 2
f2:= dnax Qe M8 Qemisiia (mw, @)l

A consequence of Assumptions [A]and [C]is Proposition [2:6] that we can use ¢; and e, defined in
Definition to bound the weighted difference between the saddle points of £ (7, w, Q) with and
without constraining w and @ on W x Q, respectively, which is crucial to analyzing the bias resulting
from the mis-specified function classes. We defer its proof to Appendix [A]

Proposition 2.6. Under Assumption|Aland|Q) for arbitrary w € 11, we have:

Eae [l (5,0) — wi(s,a)[?] <oy = 4 max o, ¢ o LwAmas
Jlw? (s, a) —w S,a SE = £ 13
dF o L w AQ)\w ! H¢ ’
. . )‘f’nax L"QU)\IZT‘&X
Ear[Q;(s0) ~ QE(s,0)fY] Seq = B3 e, + (2447 me)ey

where (w},, Q},) denotes the saddle point of L(7,w, Q) constrained by w,Q € W x Q, (wf,QF)
denotes the saddle point of L(7,w, Q) without any constraint on w and Q, Amax = max{Ag, Ay},
L, is defined in Assumption@ fi¢ is defined in Assumption@



2.3 Main goal of the analyses

First, by applying the triangle inequality, we have:
Vo (m0)|| <[V in L2 (mp,w, VoJ(mg) — V in L7 (g, w,
Ve (mo) || <[[Vo max min (mo, w, Q)| + Vo (mg) — Vo max min (70, w, Q)|
where w*, Q* denotes the saddle point of £ (g, w, Q) constrained by w, Q € W x Q. Optimizing

the loss function £ (m,w, Q) may offer us a better § to decrease the first term, while based on above
Assumptions, we can bound the second term in the following Theorem.

Theorem 2.7. [Bias] Under Assumption[A][B|[Q given arbitrary 0 € ©, we have

||v0 516% glelrgl ED(W% w, Q) - VGJ(WG)H S Ereg + € func + €data

where € gq1, is defined in Proposition and

G eoC coewC
Efunc::l_,)/(\/C‘gQ“FCW\/’I_Q’Y +\/FY]-Q_V’\; +’YCQ\/€W)
(ey and e¢ defined in Prop. 2.6)

’}/O(/\Q + )\Q)\wC) 02()\Q + )\Q)\wC)
3 + 3
(1=7) (I=7)

AwQ
I—vy

+ ) +

( +>\w) T

G ( 02 )\w)\Q
( 1—7v

e T Ty 1—7%1—7

We defer its proof to Appendix B}

As we can see, ||V max,ey mingeo £ (19, w, Q) — Vo J(mg)|| can be controlled by three terms.
Edata Teflects the generalization error, and should be small if we have plenty of data. ,.., depends on
the magnitude of regularization, and will decrease as A, and Ag. As for € 45, it depends on the
approximation error €yy and €g, which are propotional to €, and 5. Besides, because p¢ should be
proportional to \,, and L., does not depend on regularization, the coefficients before €1 and €5 should
not vary a lot as we change \,, and \g while keeping A\, =~ A (but €1 and €2 may change with \,,
and \g). In general, a larger dataset, better function classes and smaller \,, and Ap may result in
smaller bias, while smaller regularization can lead to weaker strong-concavity or strong-convexity of
the loss function and make the convergence slower.

C )

Based on the discussion above, our goal is to find stochastic optimization algorithms, which can
return us 7y after consuming Poly(s~!) samples from dataset (we omit the dependence on others
such as p¢, p1¢ and etc.), satisfying the following biased stationary condition in Deﬁnition

]E[HVGJ(TFG‘)M < € + Edata +€func+5reg 5)
where €444 is defined in[2.3]and € . and &,.4 are defined in Theorem 2.7}

Since D can be extremely large, we consider stochastic optimization, and introduce another crucial
assumption about the stochastic gradient:

Assumption E (Variance of Estimated Gradient). We use E , , s/ ,40,q/[-] s a short note of
E(s,a,r,s’)NdD,ao~7r(~\s),a’~7r(~\s’) H

and use £(5:0:ms".a0,a") (0, ¢, €) to denote the gradient estimation with only one sample defined by:

(1~ )Qe(s, ao)moaols)Tls € o] + i (5,0) (r + 1@ (s a)mo(a'l5") ~ Qe(s, @) + 22 Q5. ) ~ S (s, a)

where I[s € Sy] equals 1 only if s is generated at the first step in a trajectory and equals O otherwise
(note that we allow the case when a state in the initial state sets can be visited at step ¢t > 1.). We
assume that, there exists a positive constant o, for arbitrary 6, (,£ € © x Z x E, we have:

]Es,a,r,s’,ag,a/ [HVG»C(S)CL’T}S/)QO)Q/) (97 Ca 5) - v9£D (97 Ca 5)“2] < 02
Eq 00,5000 [[| Ve L0000 (9 ¢ €) = Ve L£P(0,¢,6)]|] < 0
Es a5 g, [[|[ Ve LE@0090 (9, ¢ €) — Ve L£LP(0,¢,€)|%] < 0

Remark 2.8. The upper bound on the variance of the gradients w.r.t. 0, and £ are usually assumed
to be different. Here we use o to refer to the maximum of these upper bounds to simplify notations.



3 Strategy 1: Converting Max-Max-Min to Max-min problem

A heuristic optimization strategy for (2) is to rewrite the original max-max-min problem
maxp max ming £2(6, ¢, €) to a max-min problem maxg ¢ ming £ (6, ¢, €). Given Assumption [A]
and we know maxy ¢ ming £ (6, ¢, ) is a standard non-concave-strongly-convex problem, which

can be solved efficiently based on the recent progress on non-convex-strongly-concave optimization
(20} 18].

In this section, we prove the equivalence between the stationary point of the non-convex-strongly-
concave saddle-point problem and the stationary point of our policy gradient objective:

Theorem 3.1. [Equivalence Between Stationary Points] Under Assumption[A| [(land[D} suppose there
existsa 0 € O s.t. ||Vomaxcecz mingez L (0, ¢, €)|| = 0 and there is an Algorithm provides us one
stationary point (0, (1, &r) of the non-concave-strongly-convex problem maxg ¢ ming L2 (6, ¢, €)
after running T iterations, which statisfying the following conditions in expectation over the random-
ness of algorithm.

E[|Vo.cLP (01, Cr. dor (¢r))]

=E[|VoL (07, Crs dor (Cr))I| + VL (01, Cr, dor (¢7))]] < -

(lﬂ:g + 1)(”( + 1) ©

where ¢g(¢) = arg mingcz LP(0,¢,€). Then, we have

]E[HVGJ('R—OT)'H < €+ €data + €func T Ereg

In Appendix [C] we will give the detailed proof. Besides, we also list algorithm examples which can
return us stationary points satisfying Eq.(6).

4 Strategy 2: Stochastic Recursive Momentum with Saddle-Point Oracle

In this section, we propose a new algorithm, based on stochastic recursive momentum and a saddle-
point oracle. We will provide a concrete example of the oracle algorithm in the Appendix [E}

Definition 4.1 (Oracle Algorithm). Suppose we have an oracle algorithm Oracle. For arbitrary
strongly-concave-strongly-convex problem f((, &) with saddle point (¢*,£*) € Z x Z, and arbitrary
0 < 8 < 1andc > 0, starting from a random initializer ({p,{p) € Z x = and executing finite steps,
Oracle returns a solution ({f, £k ) satisfying

Elllcx = ¢*II* + 1€k — €717 < SE[IGo — ¢*II” + lI§o — 71" + ¢ ™

o™

Next, we present our oracle based stochastic recursive momentum algorithm (O-SRM), inspired by
the on-policy SRM [17]]. In our algorithm, we choose © = R"“® where ug is the dimension of ©. As
a result, we will not do projection after update 6 and there must exist stationary points of J(my) and
max¢ez mingez L£(0,¢, €). We will use VLB (6, ¢, €) as a short note of the empirical version of
the gradient estimator, i.e.

VoLB(0,¢,6) = % Z(l —NQ(s", i) Vo logm(ad|s)[s" € So] +yw(s',a’)Q(s",a"")Vglogm(a'|s"?)
B
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where (s, a’,r?, s') fori = 1,2, ..., | B| are elements in B sampled from d?, and af, ~ 7(-|s?),a’* ~

7(-|s").

Algorithm 1: O-SRM

Input: Total number of iteration 7'; Learning rate 1, 1)¢, 7)¢; Dataset distribution dP; Oracle
parameter 3.
Initialize 6y, (_1,& 1
COa 50 — OraCle(Th RN 007 <—17 5—17 dD)
Sample By ~ dP with batch size | By| and estimate g = VL5 (6y, (o, &)
fort=0,1,2,...T — 1do
0t+1 < Ht —+ T]ggé
<t+17 €t+1 — Oracle(ﬁ, 9t+17 Ct7 gta dD7 5)
Sample B ~ dP;

gt =(01-0a) (95 — VoLB(0,, Cmft)) + VoL (0r41, Gg1, &)
end
Output: Sample 0,,; ~ Unif{fy, 61, ..., 07} and output 7.

4.1 Additional Assumptions for Algorithm 1]

Assumption F (Diameter). We use Z and = to denote the sets of parameters ¢ and &, respectively,
we assume Z and = are both convex and bounded set, and there exists a constant d, such that the
diameters of Z and = are bounded by d.

4.2 Algorithm Analysis

We first derive the smoothness of J(mp):

Proposition 4.2. Under AssumptiOnE] J(79) = Errong,somwo [P peo VT (St ar)] is Ly smooth with
H N (1+7)G?

(T=m2 (-9

Theorem 4.3. Under Assumption[A{F| and [H} given arbitrary €, by choosing Algorithm 3] as the
Oracle, Algorithm[I|will return us a policy m,,,, satisfying

LJZ:

E[HVGJ(W@T)H] <e+ \/g(greg + €data + 6func)

if the hyper-parameters in Alg. [I|and 3] satisfy the following constraints:

16L, 16 864C,, od> _
T :[max{96, 872, (1—’)/)5‘2\/120 <2CC,#C’UJ,Q + H2CQQC}2/\;>, T}} = O(E 2)7
1202 96(L? +20Cy,.0)02 mc  ne 1
|B| :[max{1’ 22 }]7 ‘N| = [ mln{ ,LL<477<7 [L§4775 }52 (;( + i ]7 K = Coracle 10g(5)7

8g2

2

e (1= o
L2 Ce,L? 2

6 :min{i, ([m +120(2C¢ uCuq + H2C’12/VC'QQ)D—1/2}

a=0.9; [ =min{ (1-a)’}; Bo=[—]

where [-] is the upper rounding function, Cy, o = G*L2,C% + G*C}, L3, Cc i = ko (ke +1)% +
Hg(lﬁ:# + 1)2, L is defined in Prop. N¢ and ne satisfy the constraints in Theoremand Coracle
is an independent constant.

Besides, the total gradient computation to obtain 6,,; should be |Bo|+|B|-T+|N|-K-T = O(e™%).

We defer the proofs to Appendix [D}



5 Conclusion

In this paper, we study two natural optimization strategies for density-ratio based off-policy policy
gradients, establish their convergence rates, and characterize the quality of the results. In the future,
it will be interesting to extend the results to other settings with milder assumptions, or improve the
dependence on ! on the convergence rate of our second strategy.
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A Useful Lemma

Lemma A.1 (Lemma B.2 in [21]). Define
o) =min £7(6.¢.&)  ¢0(¢) =argmin L2(9,¢,€),  for ¢ € RN

§EE
Wo(&) = max £2(0,¢,€) V(&) = argmax L7(0,(,€),  for € € R
ez

Under Assumption[A|and|[Q] for fixed 6, we have:
(1) The function ¢g(-) is k¢ = i—Lipschitz.

(2) The function ®y(-) is 2k¢L = Qﬁ—:—smooth and pc-strongly concave with V®y(-) =
Ve LP (0, d0(C)-
(3) The function g (-) is ke = N—LC—Lipschitz.

(4) The function Wy(-) is 2kcL = Qﬁ—j—smooth and fie-strongly convex with VUy(-) =

VeLP(0,49(),€).
Remark A.2 (For clarification). According to Danskin’s Theorem, in V®y(-) := VL2 (0, ¢, $o(C)),
when we compute NV :LP (0, ¢, ¢9(C)), we treat %ﬁ as a constant, instead of a function w.r.t. (.
Therefore, for arbitrary ', &', based on Assumption|Al we always have:

V@ (-) = Ve LP (0, < LIC— ¢l + Lliga(¢) — €'l
We have a similar clarification w.r.t. V¢ ¥ (§).

Lemma A.3. For a-strongly-convex function f(x) and [3-strongly-concave function g(x) w.r.t. © €
X, where X C R" is a convex set. Then, we have

1
o — a3l < IVaf @) ®)
Sle—a3I? < f2) - f(a7) ©)
1
= = a3 < 5V=9)] (10)
e — 231 < (x) — o) an

where x’; and x;; the minimum and maximum of f(x) and g(z), respectively.

Proof. Since f(x) is a-strongly-convex, we have
(Vof (@) = Vaf(2}) T (z — 27) > allz — 2}
* * * «
F@) = f@}) + Vol @}) T (@ = 2}) + Sl — 27
Since z} is the minimizer of f(x), we know that

VoS @) (= a) > 0
Combining all the above inequalities together and we obtain

Hx—x}llzéévxf(x) (x —a}) < *IIVf o)l — %

fx) = f(2F) + §||m -

which implies
. 1
Iz~ 3]l < IV f @)
« * *
§||1’ - meQ <f(z) — f(z})
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By applying the above results for —g(z) which is a 8-strongly-convex function and we can complete
the proof.

Lemma A 4. For positive definite matrix A, and arbitrary o > 0, we have:

-1

(ATA) - ((aI +A)T (ol + A))

Proof. Suppose for symmetric matrix A and B, we have the relationship A >~ B > 0. According to
the inverse matrix lemma, we have

B'-A'=B'!'-B+A-B)'=B+BA-B)'B)!
Because A = B -~ 0, we have (B + B(A — B)"!B)~! » 0, therefore B™1 = A1

Then, we only need to prove
(eI+A)T(aI+A)~ATA
We have
(eI+A)T(aI+A)=’T+a(A+AT)+ATA
Combining A = AT = 0 and a > 0, we can finish the proof. ]

Lemma A.5 (Non-negative Elements). We use PT = (P7™)T € RISIAIXISIAl 15 denote the trans-
pose of the transition kernel. All the elements in (I — vPT)~1 are non-negative. Moreover; the
element indexed by (s;,a;) in row and (sp, aq) in column equals to the unnormalized discounted
state-action occupancy of (s;, a;) starting from (s,, aq) and executing .

Proof. For arbitrary initial state-action distribution vector o € RISIAXT (T—~P7)~1 1 is a vector
whose elements are unnormalized state-action occupancy with p as initial distribution, which is

larger or equal to 0. As a result, by choosing standard basis vector as (g, we can finish the proof. ]

Proposition 2.4. Denote cqatq = (26¢ke + 2k¢ + 2k¢ + V/2/2)\/2€),,., Where €l is defined
in Deﬁnition ke = L/pe, ke = L/ pe. Under Assumption and@ we have:

Vi max min L(mg, w — Vg max min £P (7, w <e
| o Iax iy (0, w, Q) o Imax min (mo,w, Q)| < edata
Proof. For the simplicity of notation, we give the proof for a fixed 7.

Denote (w};, Q) parameterized by ((};, ;) as arg max,ew arg mingeo £(m, w, Q) and denote
(w*, Q*) parameterized by (C*,£*) as arg maxyeyy argmingeg £ (7, w, Q). First, we try to
bound ¢* — ;. We use (), and QP (parameterized by &, and £2) as the short notes of
arg minge o £(m, w, Q) and arg minge o LP (7, w, Q), respectively. Then,

“C(ﬂ-7 w, Qw) - LD(TFv w, Q5)|
S maX{E(ﬂ-a w, QB) - ‘C(Tra w, Qw)a ,CD(TF, w, Qw) - LD(T“ w, Qg)} S Eiiatu,

As aresult,
(7T,’U) 7Q ) IQneHQl (ﬂ',wa)
SﬁD(ﬂ-v w*a Q*) - QEHQI £(7T7 ’U)*, Q) + £(7T, w;» Q:,) - ggg £D(7T7 w:7 Q)
S2€:jata

According to Lemma mingeo LP (7w, Q) is fi¢-strongly concave. Therefore,

* * 2 * * . % 2
16 = Gl < o [P w",Q%) = i £P(m 130 Q) < /22l

12



Next, we bound ||£* — &;|. For arbitrary 7 € IT and w € W, we have:
,CD(T[', w, Qw) - LD(TF7 w, QB) S ﬂD(Tra w, Qw) - ‘C(ﬂ-7 w, Qw) + E(Tra w, Qg) - ﬂD(Tra w, Qg) S ngiata
Since L is ¢ strongly-convexity, as a result of Lemma

2
ng - gg” < ;{ 26:10,150, (12)
Then, we have

l€* = €3Il <Ng” — argmin £ w}, Q)| + |larg min £, w, Q) — €|

e — argmin £° (x, w}, Q)| + | g min £, Q) — avg min £(r, w5, Q)|
L 2
<—I¢" = Gl + —1/2¢04ta
fhe P e Vet
2L 2./
S( + 7) 2€£iata
Hete  He

where in the last but two step, we use Lemma[AT}(1).
As a directly application of Assumption[A] we have:

v in £ -V in £P

Vo max mnin (0, w, Q) — Vo max mnin (0, w, Q)|

:”Ve[’(ﬂ-ea w:ju QZ) - VG‘CD(T(—97 wZ7 Q:,)” + HVG‘CD(F@7 U}Z, QZ) - V@‘C’D (71-97 ’LU*, Q*)H
<\ €hata T LICT = Cull + LIIE* = &,

<(2m¢he + 26¢ + 26 +V2/2)1 /2800,

Proposition 2.6. Under Assumption|Aland|Q) for arbitrary w € 11, we have:

E [|’UJ* (8 a) - 'lUTr(S a)|2] <e =4 )\Ignax e + 2‘[/3;)\1113,)(6
dr WS, S, Sew = Mo 1 o 9
23 2 )2
E *(s,a) — QF(s,a)|?] <eg i= 8 g 4 (2 4 47w max,
duHQu( ) Q[:( )| ] Q )\QQ/\w 1 ( )\Q,ug ) 9

where (w};, Q7,) denotes the saddle point of L(m,w, Q) constrained by w,Q € W x Q, (w}, QF)

denotes the saddle point of L(m,w, Q) without any constraint on w and @), Amax = max{Ag, Ay},
Ly, is defined in Assumption[A| i is defined in Assumption|C]

Proof. In the following, we will frequently consider two loss functions. The first one is £(7, w, Q)
defined in Eq.(T), where w and Q are parameterized by ¢ and &, respectively, and we will write
(w,Q) € W x Q. The second one is F (7, x, y) defined by:

_ S A Aw
.7-'(7T,x7y) :(1—’)/)(V6F)TA 1/2y+$T(A1/2R—(I_7A1/2P A 1/2)y)+7QyTy_7(ET$

where (z,y) € RISIAL « RISIAI For simplification, in the following, we will use max, min, as a
short note of maX, cgr|s||Al minyeR\SHA\ .

As we can see, the difference between £(7,w, Q) and F(r, z,y) is not only that we don’t have any
constraint on z and y, but also that we absorb one A'/2 into vector z and y. In another word, for
arbitrary 7w, w, @), we have

L(m,w,Q) = F(r, A *w, AV?Q).

Obviously, F (7, x,y) is A,-strongly-concave-Ag-strongly-convex and Apax-smooth w.r.t. z,y €
RISIAL
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In the following, we use wy parameterized by (j to denote arg max,,e)y min, F(m, AV, Y).

According to Lemma min, F(m,z,y) is a 2 ’\;“5" -smooth and \,,-strongly-concave function
with gradient V, min, F(, 2, y). Since V,F (7, A'/?w%, AY/2Q7%) = 0, we have,
HA1/2 A1/2 7r||2
_f(w, A1/2w2, Al/QQZ) — min F(m, Al/QwH*{, Y) (Strong concavity of min, F (7, z,y))
y

=F(m, AV ?wE, AVPQF) — max min F(m, A ?w, )
w Yy

<F(m, AY?wZ, AV2QT) — min F(m, A ?wen, y) (we~ is defined in Def. [2.5)
y

)\

Zmax || AV 2w — AV 20T |2 (Smoothness of min, F (7, z,y))
AQ

)\2 )\2
MAX |ler — w7 = 222 ey (see definition of 1 in Def[2.3))
AQ AQ

which implies

)\2
A1/2 A1/2 712 < 9 [max 13
| zll )\Q/\wﬁl (13)

Applying Lemma for (w, Q) € W x Q, we know mingcz L£(m, we, Q) is pc-strongly-concave
w.r.t. ¢. Since ¢* 1s the minimizer of minge= L(7, we, Q¢) and Z is a convex set, we have

BIC =GP <L(rw;, Qp) — min £(r. wh, Q)
(Stong concavity of mingeg £(m,w, Q); LemmalA.3)
=F(m, AV 2wi, AV2Q7) — gleigf(w, AYV2wh AY2Q)
<F(m A, AYRQL) — min F(m, A Puik, )
<F(m, A 2w, AY2QR) — min F(m, AP y)

(Because w, = arg max,,cyy min, F(m, AY2w, y))
>\max * . *
<A A1/25 — argmin P, AV 2w )
(Smoothness of F(m, x,y) for fixed « and V, min, F = 0)

AIH&X

<
- 2

€2

In the last but two inequality, we use the fact that F(m, AY/? *,-) iS Apax-smooth and

V, min, F(, A2 »,Q) = 0; in the last equality, we use the definition of 5 in Def. (2).
Combing (2) in Assumptlon@, for arbitrary s,a € S x A, we have:

* * * * L2 Am X
(s 0) = wi(s, )l < LyllC" = GRll” < = 755 e (14)
Therefore, as a result of Eq.(T3) and Eq.(T4):
Equ [lw), — wE*] <2Bqe[Jwg — wE[*) + 2Eqn [Jwi — w], |2]
=2||AY 2w — AY2wk |2 4 2B gu[lwh — w e
>\12naX L121)>\max
1+ 2——— 13}

Q)‘w k¢
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According to Lemma again, arg min, F (7, z,y) is >‘/‘\‘g" -Lipschitz w.r.t. z, we have

Ea[|Q;, — QF %] = |AY2Q;, — AV2Q7|1?
<2||AY2Q), — argmin F(m, A wy, Q)|* +2|| arg min F(m, A *w, y) — AMQE|?

bounded by g3

<29 +2 m‘”‘HAl/? — AY27 2

)\3 L2 )\2
<8 max 2 4 w’ 'max
Ao e Aot
As a result,
)\2 L2 >\max )\3 L2 /\2
e =4 42 ——¢y; g =831+ (244 )ey
)\Q)\w 1224 )\2 )\ )‘QMC

B The analysis of Bias

Theorem B.1 (Bias resulting from regularization). Let’s rewrite Eq.(I) in a vector-matrix form:

max min £(m,w,Q) = (1-)05)TQ + w' A(R - (I—vP”)Q) SQTAQ- —wTAw

where v and P™ denotes the initial state-action distribution and the transition matrix w.r.t. policy

7, respectively; A € RISIAIXISIAL genotes the diagonal matrix whose diagonal elements are
d"(-,-). Denote (W}, QF) as the saddle point of L(m, w, Q) without any constraint on w and Q (i.e.

w, Q € RISIAL) then we have:

wf =w" + (Mol + (I = PIANI —PT)A) (AR — AgAuw")
On =Q" — (/\w/\QI LAY —APT)A(I — 7P”)> B (Au,AQQ“ + (1 - W)A’1V3)>

where w™ Z“ is the density ratio and Q™ is the Q function of . we use PT = (P™)" to denote

the transpose of the transition matrix.

Proof. Recall the loss function

Lirw,Q) =1-70)TQ+w AR —w Al —/P™)Q + QQTAQ 21” w' Aw

By taking the derivatives w.r.t. (), since A is invertible, the optimal choice of () should be:
1 - ™ T
Q= EA I =P Aw — (1 = 7))

Plug this result in, and we have

1

L(m,w, Q) = 2)\@((1—) —(I—fo)Aw)TA’1<(1— NE) — (I — 7P“)Aw)+wTAR

Taking the derivative w.r.t. w, and set it to O:

0= /\—A(I YPTA~ ((1 )W) — (I — 7PI)Aw> + AR — AyAw
Q

15
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As a result,

1 -1,1
wz =(Aw1 +—(I —yPT)A (I — ’YPI)A> (*(I —PTATH L —y)rf + R)
AQ AQ
—1
:<)\w)\QI + (I —yP™)ANT - 7PZ[)A> ((1 —APTA NI — yPT)AA (] — APT) L1 — ) + AQR)

—w™ (Aw/\QI +(I—APMA NI - WPI)A) o (AQR - AQAww“)

n_ L A1 ((I — AP AWE — (1 — 7)%’5)

L _>\Q
1
——A ((1 —APT) AW — (I — 7P§)Aw”>
Q
1 —1
— AT - WP:)A(AQ)\MA + AL —yPT)ATIT - VPZ)A) <)\QAR - )\Q)\wAw”)
Q

:<)\w)\Q(I —APT) A + A(I - »yP’f))_1 (AR - AwAuﬂf)
:()\w)\Q(I AP IA £ AT - 'yP”))il (A(I —APT)QT — )\wAw”)
—Qr — (/\w/\Q(I CAPT)IA AT - ypff)f1 </\w/\Q(I —APT)TLAQ™ + /\wAw”)

=Q" — (Mol + AT = APTA(I —7P7)) - (MA@ + X1 = NA'W))

Lemma B.2. Under Assumption[B}
o —uglf, <SRt AMO)
- (L—=)*

C? AwA
T _ 71'2< wQ+)\w2

where (W™, Q™) and (W}, QF.) are defined in Theorem lz||a = =" Az denotes the norm of
column vector x weighted by A.

Proof. From Theorem[B.1] we have

W =™ + (/\w/\QI L (I —APDAL(I 7PZ§)A) o (AQR - )\Q/\ww”>

-1
Q7 =Q" = (Nudel + A HI = PDAU = 7P7))  (AAg@™ + Au(1 = NA™'4))
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We use 1 € RISIAIXL o denote a vector whose all elements are 1. Then, we have

w7~ wEli =) (Mol + (I~ PTATI ~PDIA) " (AR~ AoAuu) I
:H(AMAQI+-AFN(I-VP”)Aflur—WP:)AEQ)_lA?ﬂ(AQR-AQAww”)W
<IATV2(1 = APT)TAL = APT) 7 (AR — AgAuw™ )|
=[|A~Y2(1 = APT) T AQT|?

Ao + AoA,C 2 _ o —
<P T 2OV o pryiag 3

- (1-9)?
Ao + Ao, C)2 o
0 AN a1 - pr)
7()\Q+>\Q)\MC)2 T 2 Cz(AQ+>\Q)\wC)2
- _ 4 ||rwd“HAS _ 4
(1-7) (1-7)

where in the first inequality, we use Lemma in the third equality, we use Q™ to denote the Q
function after replacing true rewards with A\g R — Ag\,,w™; in the second inequality, we use Lemma
[A-3)and the result that [Aq R — AgAww™| < Ag +A@AwC given Assumption|B} in the last inequality,
we use Assumption [B]again. Similarly,

-1
1" = Q21 <ll(Mdel + AT =7 PDAU = 7P7)) (MA@ + Al = 1)AE) )3
—1
Il (A@Aul + ATVAT = APTA(I = 4PTIAT2) A2 (AAuQ" + Au(1 = DAT) )|
<AV = 4P AT = 4P T (M AQAQT + Au(1 = 1)) ) I
=M AQAA (T =y PT) LA (T = APT) T AQT + Ay ALA(1 — AP7) L

A Cia- - .
i“ AL —APT)TIATHT = APT) T AL+ A AV APT) )
-7

<l

T\ — )‘w/\ ™ ™
<IN = AP7) (T2 + o) 3

__c Puda
T(l=)? -y

where in the last but third inequality, we use Lemmaand the fact that w™ is also non-negative. ]

+ Ap)?

Lemma B.3. Under Assumption@ Sfor arbitrary function f(s,a),
(1 - V)ESONVo,aDNTr[f(SOv @O)] + VEs,a,s’Nd/‘,a’Nﬂ[wﬂ(S’ a)f(slv al)] = Ed“ [wﬂ(sv a)f(57 a)]
(15)

1 C
Es@fvdl’i’,‘, [f2(57 a)] S E]Es,afvd” [f2(3a a)] (16)

B wnal (s, 0] < T

where df, = (1 — )Err so.00mdi (-) Dot V' P(st = S,a¢ = a)] is the normalized discounted
state-action occupancy by treating d* (-, -) as initial distribution; s,a, s’ ~ d",a’ ~ T is a short note
of s,a ~dt, s ~ P(s'|s,a),a’ ~ m(-]s).

Proof. Eq.(T3) can be proved by the equation:

d™(s,a) = (1= y)wo(s)m(als) +7 Y _ plsls’,a')d™ (', a')w(a] )

For Eq.(T6), the first step is because v Y-, ,, d*(s',a")p(s|s', a')m(als) < 12 df.(s,a), and the
second step is the result of Assumption O]
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Theorem 2.7. [Bias] Under Assumption[A| [B}[Q given arbitrary 6 € ©, we have

Vo max min £ (mp, w, Q) — VoJ < €reg + Efunc + €
|| gglev}\(}énelg (7T9 w Q) 0 (71—0)”_ reg func data

where € g4 is defined in Proposition and

eoC coewC
Efune =T~ (\/C€Q+C \/7 QV \/Wf_y; +’YCQ\/5W)
(ew and e g defined in Prop. 2.6)
C(A Ao, C C?(\ AoAwC) A C
1CAQ + 20 C) | C7(Ag + A0 )( Q+)\w)7)

(1—7)° (1-7)? 1—~ 1—v

+ Aw) +

G (( C? )()\w)\Q

fres =g 1—~

Proof. Firstly, by applying the triangle inequality:
v in L7 (g, w, Q) — Vo.J <|Iv in L7 (w9, w,Q) — V in £(mg, w,
IVo max min £7(mg, w, Q) — VoI (mo) | <[V max min £7(m, w, Q) — Vo max min L(rp, w, Q)

weW

Bounded in Assumption
+[|Ve muz}mxménﬁ(m, w,Q) — Vo max IQIIEIIQI L(mg, w, Q)|

t1

+[|VoJ(mg) — Vg mgmeinﬁ(ﬂg,w,Q)H

ta
where we use max,, ming as a short note of max,,cgisii4 MiNGeRIs(Al-

In the following, we again use (w7’ ,9F 77) to denote the saddle point of £(my, w, Q) without any
constraint on w and @, and use (w},, Q},) to denote the saddle point of L(mg,w, Q). Next, we

upper bound ¢; and ¢; one by one. For simplicity, we use s,a,s’ ~ d", a’ ~ g as a short note of
s,a~dt s ~ P(ss,a),a ~ my(-]s).

Upper bound ¢;  With misspecification Definition 2.5 we can easily bound ¢;:
b zllveﬁ(ﬁe, wy, Q) — VoL(mg, wz®, Q7|

<01 = B e [( Q0. 00) = QF (50 00) Vo log o aolso)] |

T B el (5,0) (@1, 0') — QF () Vo logn(al| )|

T B i rel (0 (5,0) — 0 (5,0)) (35", ) — QF (/) Vi log ()]

+— j 5 B .5 armme (W (5,0) — W} (s,0))Q(s',a') Vo log m(a|s)]|
G FOW G

S l1Q(s,0) — QF (s,0)) + T2

]Es,a,s’wd“,a’wﬁe[‘Q;(Slyal) - 26 (8/,0,/)”
(T =7)vg(s,a) < d™(s,a) < Cd"(s,a))
G
D B manatn 105, 0) = 0 5,0 (@) @)~ QE (5, ]
’yCQG

+ 1=~

ES’G’S'Nd“,a'NM HwZ(S7 a) - w? (87 a)”

G - p yCwG . -
<o B 103(0.0) — QF (5 @]+ T2 B i [ Q37 ) — QF (') 2

+ 7\/1&1# [wi’ (s,0) — wji (s, a)[*|Es 0,50 ~an armm, [|Q7 (57, @) — Q' (87, @) 2]

L ’YCQG \/Edu

(s,a) = wi(s,a)) ]
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S%\/C]EduHQZ(S,G) - Q7 (s,a)!] + ijwi\/lvc ]Ed“HQ (s,a) — Q7 (s,a)l?]

G C
P T B e (s,0) — i (s,0) PJEar Q7 (5.) — QF'(s,0) 2]

T FYCQG\/IECUL [Jw¥ (s,a) —wp’ (s, a))|?]

’)/€QC ’}/Egéwc
< -
_1_7<\/C’5Q+C'W\/1_7 +\/ 1~ +'YCQ\/€W)

In the last equation, we first use Eq.(I6) in Lemma[B.3] and then apply Proposition 2.6]

Upper bound ¢, Similarly, we can give a bound for ¢2:
ty =[|VoJ(mg) — Vo L(ma, wr’, Q7))
<= B [(Q7 (50, 0) = QF (s0,00) Vo log mcol o)
9B [0 (s5,0) (Q™(s',0') = Q' (', ) Vo log m(a'])]|
s Bl (5,0) = w5, )) (QU(/ ') — Q' (') ) Vi log m(a'| )|
o a0 (5,0) = w (5,0)Q (' ) Vo log n(a'| )|
:% IEqu [w™ (s, a) (QM (s,a) — Q7 (s, a)) Vo logn(a|s)]|l (Eq.(13) in Lemma [B3)
o Bt arm, [0 (5,0) = 0 (5, ) (Q (', 0') = QF (', ) Vo log (@I )|

+ %H]Es,a,s/wd“,a/wﬂ'g (W™ (s,a) —wF (s,a))Q™ (s, a")Vglog m(a|s)]|]

1
CG -
<75 EallQ(s,0) — QF (s,0)]
e ) ] ]
Bty [ (07 (5,0) = 0] (5,0)) (@ (< a') = QF (<) ]
VG . _
Ty Esasmaanm 07 (5,0) — W (5,0)]

TV Elle QP+ 2 a7 .0 —u s, )P

+ 7\/Ed“ [[wr’ (s, a) —w™ (s, a)|2]]ES,a,S’~d“,a’~7reHQM(Slval) = Q7 (s,a) ]

VBl - QEP + 2 Bl (s.0) — w (s a)F)

G ~C 77 .
T\ 1= 7]Edun[’ (5,a) —w™(s,a)|?|Equ[|Q™ (s,a) — QF (s,a)|?]

(Eq[T6]in Lemma[B23)
10AQ + 2 uC) | C?(Ag + A@AuC) (A“’)‘Q + Aw) 29 )
(1—7)3 (1—7)3 e R

+ Aw) +

2
< G ( C ()\w)\Q
l—y\(1—=7)"1-v

]
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B.1 Importance of the Regularization

Here we want to highlight that the additional regularization terms on ) and w are crucial. For
example, suppose Q7 € Q and w™ € W for some policy =, if A, = Ao = 0, we have

VCEZ, V(ﬁD(Wa,wg,Qw) =V<(1—’y)E D[QW(S(),TF)] =0

So~Vy

VE€ B, VeLP(mo,w™,Q¢) = VeE,ym/ulr] =0

which means Q = Q™ (or w = w™ *) can result in that the gradient w.r.t. ¢ (or &) vanishes to 0, and
it’s impossible that £? is a strongly-concave-strongly-convex function.

C Missing Examples and Proofs in Section 3]

C.1 Missing proofs

Theorem 3.1. [Equivalence Between Stationary Points] Under Assumption[A}[Qand[D} suppose there
existsa 0 € O s.t. ||Vgmaxcez minges L (0, ¢, €)|| = 0 and there is an Algorithm provides us one
stationary point (01, (1, &r) of the non-concave-strongly-convex problem maxg ¢ ming L2 (6, ¢, €)
after running T iterations, which statisfying the following conditions in expectation over the random-
ness of algorithm.

E[|Ve,cLP (07, Cr, dor (Cr) ]

=E[|[Vo L (07, Cr, dor (C) | + VLD (01, (s po, (Cr))I] < -

(Hg + 1)(&( +1) ©

where ¢g(() = argming = L (0, ¢, €). Then, we have

E[HVGJ('R—HT)'H <€+ €data + € func T Ereg

Proof. First of all, as a results of Assumption [A] [ and and the condition that
Vo maxcez mingez L2 (6,¢,€)|| = 0 for some § € O, we know there must exists 7 € ©
and (7 € Z which can satisfy Eq.(6). Therefore, it’s possible for an algorithm to return us a (67, (r)

satisfy Eq.(6).
Next, suppose we already have Eq.(6), it implies that

max{E[|[VoL" (01, (. $or (Cr) ], EIIVLY (01, ¢r, o, (Cr) ]} < a7

€
(Iig + 1)(/@( +1)
We can upper bounded E[||V¢.J (mg,.)||] with the triangle inequality:
E[| Vo (mo, )] <E[IVoL (07, Cr, dor (¢r)) | +EVeL (07, C*,€%) = VoL (07, Cr, dor (¢7)) ]
Bounded in Eqm
+E[[|VoL? (07,¢*,€") = Vo (16, )]

Bounded in Theorem21

g
et D(rc+ 1)
+E[||VoLP (07, (%, 6°) — VoLP (01, Cr, b0, (C)) ]

+ € func + Ereg + €data

where we use (*, £* to denote the saddle-point of max e z mingez L (07, ¢, €); in the last inequality
we use Eq[T7]and Theorem 2.7}

Next, we try to bound the last term. According to the definition, (* is also the maximum of function
®y..(-) = mingez L (07, -, €) defined in Lemma Applying Property (2) in Lemma (TO) in
Lemma[A3]and inequality (I7), we obtain that

€

(ke +1)(ke +1)

1 1
< — @ = —||VeLP (07, Cr, b0, <
1¢r = ¢*[I < MII o, (C7) | MCII L7 (07, Cry dor (Cr))|l < e
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N N AR W N =

Then we can bound:
VoL (07, C*, €%) — Vo LP (01, Cr, dor. (1))
<L|¢r = N + LIE* = g0 (Cr))Il = LlI¢r — CF| + Ll dor (CF) — dor (Cr))l

ER¢
<(L+ L — <
S(L+ DRl — ¢l < g

where in the first inequality we use the smoothness Assumption[A] and in the second inequality we
use (1) in Lemma[A.T] As aresult,

€ ER¢
E V J < - unc Te ata
[” 0 (ﬂ-eT)”] _(Hf+1)(ﬂc+1) + 1+Ii< +€f +6 9+€d t

<e+ € func + Ereg + Edata

C.2 Algorithm Examples

We first introduce a useful assumption:

Assumption G (Diameter). We use = to denote the set of parameters &, we assume = is a convex
and bounded set with a diameter d > 0.

C.2.1 Example 1: Stochastic Gradient Descent Ascent [20]

Algorithm 2: Direct SGDA

Initialize 6, Co, &0
fort=0,1,2,.. 7T do
Sample N (s,a,r,s') ~ dP,a’ ~ 7, (s') tuples and computing:
Opr1 < 0p + neYeﬁD(Qt, Gt &)
Corr < G+ 0V LP (01, Crs &)
Eir1 < Pe(& — ngﬁgﬁD(Ht, Ct,€1)) /1 Pe is the projection operator.
end

Adapting from Theorem 4.5 and Proposition 4.11 in [20]], we have the following theorem

Theorem C.1. Define A = maxg  mingez £7(0,¢,€) — mingeg LP (0, o, €). Under Assump-

tion E] @ and E with step sizes ne = O(1/L),nc = ng = 9(1//$2L) and batch size
2 9 _9 (K,g-‘rl) (K<+1) (KgLA—‘erLZDz)

N = O(max{l, ke(ke + 1)% (ke + 1)%0%72}), if T = O( , Algo-

rithm 1 will return us (07, (r, &) satisfying the e-stationary condition in Eq (). in another word,
o, satisfies

E[||J<7T9T>||] < 5+5data+5func+5reg (18)
where € gqyq is defined in Assumption2.3] and € pune and €4 are defined in Theorem[2.7}
C.3 Example 2: Stochastic Recursive Gradient Descent Ascent [8]

In [8]], the author presented another algorithm has better dependence on . Similarly, we can adapt
their algorithm and we ignore the details here.

D Missing details for Algorithm 1]

In the following, we will use £, £F and £P* as shortnotes of L (0, ¢, &), LB (04, (i, &) and
LP (0, ¢, &), where ¢}, & is the only one saddle point of £ (6;, ¢, €). Besides, we use VoL
and Vg LP as a shortnote of the gradient averaged over d” and the gradient averaged over batch,
respectively.
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Lemma D.1. Suppose we have two empirical gradient estimator VgﬁtBH and N o LE built with the
same batch data B, under Assumption[A] we have:

E[|VoLF, — VoLl |
<3(G*LLCREIGiu1 — GlIP + G2LACHElI€ — &) + HCHCHEN0141 — 6.]2])

Proof.

E[|VeLiy — VoLy |?]

S%E{B . ZB: (1 — )]s € So] (Qt+1(s,ao) - Qt(s,ao))vg log ¢ (ag|s)

+qwi(s,a) (Quia (') = Qu(s', ) ) Vo log m(a|s))
+[[(1 = )I[s € SolQe+1(s, ao) (Vo log m11(aols) — Vo logﬂt(a0|3)>
+ywi(s,a)Qri1 (s, ) (Ve log my+1(a’|s") — Vglog Wt(a/|5/)) &
+ 7 (wesa(s,0) = wils,0))Qusa (', ) Vo log ma (1)) |
<3(v G LLCRE] G — Gl1Y) + L (1) +10w) Eflen — &I
+ 1205 (1 =) + 90w Ellr — 0,
S3<G2L120029E[||4t+1 — GlI*] + GPLLCHE[([611 — &l1*] + H*CHCHE]6r11 — 9t||2]>

where in the first inequality, we use Young’s inequality; in the second one we use Assumption[A} in
the last one, we use 1 < Cyy,.

Lemma D.2. Under Assumption @ and @] consider Ty, , g, parameterized by 01,02 €
©. Denote (Cf,€;) and ((3,€5) as the saddle-point of maxcez mingez LP(61,(,€) and
max¢ez mingez L (0s, (, €) respectively, then we have

165 = Gl < mulre +1)[162 — b
167 = &1l < ek + 1)[101 — 2]

Proof. With Assumption[A]and Assumption D] we have
IVeLE (0, 6 €N = IV eLE (01,67, €7) = Ve £P (02, 61,60 < Llloh — 2] (19)
IVeL (0, ¢ D)1 = Ve L (01, C10€1) = VLD (02, ¢ D) < L6 — 6| (20)
Recall in Lemma we know g, (¢) should be a p-strongly-concave function. Then, we have

165 = Gl SV, (G = — (VL (62, (T, da, (7))
1228 He
]- * * * * ]‘ * *
SE\\VcﬁD(927C1,¢eQ(Cl)) = VLD (02, G, €7) + ITCIIV@D(HQ,CD&))II
1 * * * L
S—[IVeLP (02, CT 00, (CT) — VLD (02, ¢ €D + —[61 — 62
1228 1278
L L
<o, (CF) = €5+ =161, — 0
NCH% (Cl) 51H ﬂC” 1 2||

L L
< |IVeLP (O, ¢ )|+ —1601 — 0
MWII eL7(02, 1,60l MCII 1— 02

<kpu(ke +1)[|61 — 02

where in the first step, we use Lemmal[A.3} in the fourth inequality, we use Assumption [A} in the fifth
inequality, we use the Assumptionthat, given 0o, (7, LP (02, (. €) is pe-strongly-convex w.r.t. £
and ¢y, (¢}) is the optimum of it; in the last inequality, we use Eq.(T9) again.
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We can give a similarly discussion for ||£F — & |:
&7 = &1l <—1VeWa, (€D = —IVeLP (02,10, (€7), 1)
He He
1 * * * * 1 * *
S;EIIVgED(Qz,woz(ﬁl),&) — VeLP(0s,¢5, 67 + ;EHVS‘CD(H%Clafl))H
1 s g6 s enyi g L
<—|[VeL (02,16, (&7), ) — VeLP (02, ¢1, €0 + — 161 — 6|
123 He
L L
Si * _ , * + _ 9 _ 9
e 167 — 2o, (E1) e 161 — 02|
L L
<——|IVeLP (02, ¢ 0| + — |61 — 6
Msﬂc” L7 (02, ¢15 6l %H 1= 6

<kg(ky +1)[|01 — 02|

]

Lemma D.3 (Relate the shift of ¢; and & with 6;). We consider the Assumptions [A] [} [F] and
Denote (04, (, &) as the parameter value at the beginning at the step t in Algorithm|l| and denote
(¢F, &) € Z x E as the only saddle point for LP (0;,(, €) given 0;. Recall the Oracle in Definition
that, for arbitrary t iteration, it will return us (1, 41 satisfying

Bl — Gaall + W — €l < SEIIG — Gl + 16 — €2l +

where 0 < /2 < 1. Then, we have:

t
_r - 6c
Elll¢er1 — Gell® + 1641 — &lI?] <68771d* + 6mCe Zﬁt Elllgg 1% + -5
=0

where d is the diameter defined in Assumption and C; ,, is a short note Oflii (ke+1)%+ [{Z (ku+1)%

Proof. We willuse A(¢, €) to denote E[||¢ —(||? +|€ — & ||?]. We first study some useful properties
of At (Ca 5)
Property1 Fort>1

A(G 1, 600) =ENIG — Goall? + 11 — &7
<C¢ B0 — 0:—1]%]

=13 CcuBllgy |17

where in the inequality, we use Lemma [D.2} and the last equality results from the update rule
0y = 0,1 + 7799};71

Property 2 Fort > 0,
AuGr) SEA(G 1, E1) + o= SEIIG — GIF + e - &1 +c
SBE[[[Ge—1 = Gl + €1 — &allP + 16— Goall® + 1€ = & l’] + ¢
=BA—1(G—1,-1) + BA(G 1, §-1) + ¢

t t—1
<B'Do(Go o) + D BTTTIALG &)+ D BTe
=1 7=0
t—1 t
BT +5Ce Y BTTEgg |7+ ) BTe
7=0 =0

t—1
< +m5Ce > BTTE gl +
7=0

C

1-p
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where the first inequality is because of the property of the Oracle; for the second inequality we use
Young’s inequality; In the last step, we use

Ao(Co,60) = ElllGo — G5 l1* + 160 — &511%) <
With the two properties above, we can bound:
E[ll¢er1 — Gll? + €1 — &)
<SBE[[Cer1 — Gl + 161 = &l + 1165 — G IP + 165 — &1 + 116G — GIIP + 16 — &17)
=301 (Cer 1, §ev1) + 3D 41(G, &) + 3A¢(Gry &)

ORI - GIP + s — €117+ e < B2 + o

t t—1
<36"72d® + 305Cc, Y BT Elllgg %] + 305 Ce uElllgh|1°] + 3871 + 305Cc Y B TE g5 1I°)
7=0 7=0

n 6c
1-3
t
6c
o t+1 32 2 t—1 T2
=3(1+8)8"d +37700<,u§::0(1+5)5 Ellgs 1*)+ =5
t
-7 T 60
<68"1d* +6njCen 3 B TEllg 17 + 13

7=0
where for the first one we use an extended version of Young’s inequality || Zle zil]? <
k Zle lz;||%; in the second inequality, we use the Property 1 and 2 to give the upper bound;
in the third inequality, we use the fact that 0 < g < 1. []

Lemma D.4. Under the same condition of Lemma m above, with an additional constraint 3 <
(1 — «)?/2 and an additional Assumption|E} for t > 0, we have:

Ellgs™ — Vo (0r41)1%]

6 2
SS(Edata + Efunc + ET€9)2 + 3(1 - a)2t+2E[”gg B VGAC(?Hz] * |('IB(7
1— a)Q(H-Q) c
Lz t+2d2 L 1 w 5( d2
+ (BB + 1) + 108Cuo (T g+ cr =)

t
+ 3 (108931 = )20 (20 1 Cuq + HORCH ) + 6L Cc, 8+ )Ellgi |
1=0

where €qata; € func, Ereg are the same as those in Theorem[2.7] and
Cu,q = G*L;,C3 + G*LHCy
Proof. Recall that we will use VoLP, VoLP and VoLP* as a shortnote of VeLB(0;, (s, &),

VoLP(0;,C, &), VoLP (04, (], &) respectively. First we can use the Young’s inequality to ob-
tain

Elllg5t! — Vo (0r) ]
<3E[| VoL — Vo (Buosn) ] +3E[lg5™ — VoL 2] +3E[VoLE, — VoLl

Bias (Bounded in Theorem [2.7) p1 p2

Since the first term has already been bounded in Theorem 2.7} Next, we bound p; and p:

Upper bound p;  We again use C ¢ as a short note of &7, (k¢ + 1)* + £Z(k,, + 1)*. From Lemma
[D3] we know that,

6¢c
1-p

t
ElllGir1 = GlI* + €1 — &IIP] <6871 + 603 C.pu Y B Elllgg||*] +

7=0
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Then, we have

p1 =E[llg5"™" = VoLEA %)

[y

:E[H(l —a)(gs — VoLy) + V9£t8+1 - Veﬁgl +(1-a)

]
—E[| (1 = a)gh — Vo£P) + a(VoLliy = Volly) + (1 = a)(VoLly - VoLP)
2
(1= a)(VoLly = VorP)| ]
=(1 - a)’E[llgs — VoL? |l

FE[|a(VoLPy — VoL) + (1 - a)(VoLly — VoLP) — (1 a)(VoLly — VoLP)|?
(Drop 0 expectation)

<(1 - a)Ellgh - VoLPIP] + 20°E[|(VoLP, — VoLl

2
+2(1 - a)QJE[H(vgz:ﬁl — VL) — (VoLB, - vgaf)H } (Young’s Ineq.)
20202 2
<1~ aBllgh - VoLl + =5+ 201 — B[ VoLl = VorP) | |
(Assumption
20202
<(1— a)*Ellg) — VoLl + 5

+6(1— 0)? (G2 LECREG1 — GlI*) + G LACHE g1 — &2 + H2CRCHEL|0:41 — 0:]))

202021 — (1 — «)?t+2
Bl 1-(1-0a)?

<(1 - a)**"*E[l|gg — VoLE |I*) +

t
+6E[ D (1 - )27 (GRLCY |G — G2+ GPLECY i — &2+ HACRCH 10141 — 03] |

1=0
% % c
<(1— o) 2Ellgf — VoLE | + - +362 02 (B 4 1)
(a<1)
t
+36m5 Y (Ceun wQZ Q)2TTIET 4 (1 - )XY HCRCY, ) El 1)
=0

(Lemma[D.3]and ab + cd < (a + b)(c + d) for a,b,c,d > 0)

2002

2t-+2 0 D2 Bl —a)*t+2) (1—a)’c
S(l - a) * EHIQO - v050 ” ]+ ‘B‘ +360w,Q< (1 _ a) -8 d” + (1 _ (1 _ ()4)2)(1 _ ,8))
t _ 1— a)2 _
#3008 Y (1 - @)X (CoCug ot + HPCRCH Bl bl
=0
2t+2 0 D2y, 200° B(1—a)*t+2) (1—a)’c
S(l - a) * E[ng - VHCO ” ]+ ‘B‘ +360w,Q< (1 _ a)g -8 d” + (1 _ (1 _ (X)Q)( _ ,8))
t
+ 3603 3 (1= )27 (20, Cung + HACHCH, )Elghl1] 1)

=0

where the fourth equality because E[VoLE] = V4 LP holds for all ¢ and so the cross terms has 0
expectation; the first inequality is because variance is less than the second momentum; the second
inequality we apply Lemma and Assumption [A} in the last but two inequality, we apply the
summation formula of equal ratio sequence and use the fact that 0 < o« < 1, 8 < 1; in the last step,
we use our condition 3 < (1 — «)?/2
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Upper bound p; Next, we give an upper bound for p,. From the Property 2 in Lemma[D.3] we
know that

A1 (Ger1, &ev1) =E[IC41 — G llP) +Ell1é11 — &5 117

t
<BPAP +m5Ce > BT ENg 1% +
7=0

R
=

As a result

p2 =E[|VoLl, — Ve LEN I ] <2LE[|[Gig1 — Gl + 1641 — &5 117

)

Cc

<o (B 4 93C Y 0P RG +

7=0

Combine these two results we can finish the proof:

Elllgg™ = Vo (0+1)11%] < 3E[ VoL — Vo (0er1)II°] + 3p1 + 3p2

6 2
SS(edata + €func + €r69)2 + 3(1 - O{)2t+2E[||gg - VG‘C(?Hz] + g
B(1 — a)2t+2) (1—a)?c
+108C,,. = &* +
o= (Gmar=r  * Toa—an s
t
1087 D0 (1 = )X (20, Cu @ + HECRCH, VBl lgi )
1=0
i c
L2 (B2 + 70 3 8Bl I+ 1)
7=0
2 2t+2 0 py2 , 6ac’
§3(5data + € func + 5reg) + 3(1 - a) E[”gﬁ - VG‘CO H ] + |B|
1— a)Q(t+2) c
L2 t+2 42 = 1 5( 2
+(or2 (a4 5t 08Cua I—a2—5"° +a(2—a)(1—ﬁ))
t
+3 (108779 a)2(t=i+1) (2CC,MCw,Q + HQCQQCE,V) + 6L2n30g,uﬁt‘i“)1@[llgéH2]

=0

]

Proposition 4.2. Under Assumption|A] J(m9) = Errory somvo [Ypeo V7 (5t, )] is Ly smooth with

H (1++)G?

BT T

Proof. Recall that,
VeJ(m) = / p(7|0) Z vir Z Vg logmg(aj|s;)dr
T i=0 §=0
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Therefore,

Vv2J(7) / (710) Z'y rzzvalogm; (a;|s;j)dr

+ / p(r10)Ve 1ogp<r|e>2wizve log (a;]s;)dr

i=0 =0

:/p(ﬂe)ZWing log mg(a,|s;)dr
T i=0 5=0
+/p(7|9)27iri(ZV9 logw(at|st))(ZV@logﬂ(at|st))TdT
T i=0 j=0

Jj=0

(2

Therefore,
V5 log mo(aj|s;)|lopdT

V39 mllap < [ pirl) >
T =0 7=0

+/p(7|9)ZViII(ZVe log m(ag|st)) (D Vologm(arlse)) " lopdr
T i=0 j=0 J=0
<Y AHDH+Y A(i+1)°G
1=0 1=0
H (1+7)G?
1=v)2  (1-9)?

L]

Theorem 4.3. Under Assumption [AfF] and[H| given arbitrary €, by choosing Algorithm [3|as the
Oracle, Algorithmmwill return us a policy my, ., satisfying

E[”V@J(W@T)H] <e+ \/g(ereg + €data + 5func)

if the hyper-parameters in Alg. [[\and[3|satisfy the following constraints:

16LJ 16 ooa ) 864C,od? .,
T =[max{96, ,(1_7)52\/120<2C<,,Lcw,Q+H CQCW),i(SQ 1 = 0(72);

202 96(L? +20Cy,.0)02 me  ne 1
B| = 1, ——1}; N| = : — —)|; K = o’r‘aCe1 - )3
| | [maX{ ; 62 }]7 ‘ | [ min{”iﬁ% H§477§ }52 (ug + e )], c 1 Og(ﬂ)
2 (-9t a, 802
1 C@H ,8 922 2 —1/2
n9 =min{ —— ST ([6(1 — 5 + IZO(QCCMCIU,Q +H CWCQ)D }

where [-] is the upper rounding function, Cy, o = G*L2,C3 + G*C}, L3, Cc 0 = k2 (ke +1)% +
Hg(lﬁl# + 1)2, L is defined in Prop. 1¢ and Mg satisfy the constraints in Theoremand Coracle
is an independent constant.

Besides, the total gradient computation to obtain 0., should be |Bo|+|B|-T+|N|-K-T = O(s™%).
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Proof.
J(Or11) =J (01 + nogy )

2
ng L.y
>J(0r) +ne(gs ) Vo (61) — 792 llgs II?

2
uli Ul ng MLy
=J(0r) + El VoI (0)||% — e} lga — VaJ(07)|* + (*2 - 92 )lgg II°

Mo Mo Mo
>J(0r) + *IIVGJ(9T)||2 - 5||99T ~ Vo J(07)]* + ZHQQTII2

T
Mo 1
Zuw 2 =2 (5" lgh — VoI (61 = 59511
t=0

P

where in the second equation, we use the fact that (g7 ) " VoJ(01) = 3[|VeJ(07)]? + Sll92 [I> —
31195 — Ve J (67)|1%; in the second inequality, we add a constraint for 7 that 79 < 57—

Next, we give a upper bound for p with Lemma [D.4}

p= lege Vo (0))]* - ||g§||2

£l 6ao?
Z { Edata t € func + €Teg)2 + 3(1 - a)2t+2E[||gg - VG‘C(I))H2] + |B|
1—a)2t+2) c
L2(3t+242 1 ) B( 2
+ (612(5"2d2 + 5)+ 08Cu.q R +a(2_a)(1_ﬁ))

-

+ 37 (10801 — @) (20, Cop + HACBCR) + 6L*RC, 8 VEllgh 2] — SELIgbl?}
=0
T Bl VoI S+ O e g et
+ ijmggn?]{ 5 1083 bl [Cenl (1= (a0, Cug + H2C3CH) |}
t= =1
+ 2uljgp - vacpy) + 0 4 (L L; 108C0 )
a1 of Conl?8 (11— a)? o2
+ 3 BllailP) (= 5+ 10808 [Tl =55 + T = g (2CcnCuna + HPCHCH)
SEllgh - Vot + S0 + <f“; 10800 o= )
+ él@mgznﬂ (5 + 10803 [gzlfg + 2 (200 Cuq + HICRCY, )]

6L> 108C,.0

§3T(€data + € func + 57"69)2 + (1 — ﬁ + Oé(2 — a)(l — 6)

)Tc
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6aTo?  6BL2
+

Bl 1-p

In the first, second and third inequality, we use the fact that 0 < (1—a) < 1,0 < B < a(1—a)?/2 <

(1 — «)?/2}. In the fourth inequality, we add the following constraint to drop the terms containing
llgell:

3
+ a1E[||gg — VoL + + 1080, g )d?

C¢ ML26 1 212 12 —1/2
< IS e T

o < (108[18(1 ey R (2CcuCuq + H2CECH)]) 22)

Therefore,
1 < 2 1 1
- 2 <= _ - T 2 172
71 2 VeI O < (10r) J@m+T+1;%(% VoI (0-)]1* - 5195 1)
2 3

Elllgy — VoL3 |I%]

<3(data + Efunc + Ereg)” + +
<B(Edate + 5 DA T =) a1

6ao? 1 ,68L?
- - (13

108C,, q)d?
B ' T+1 + @)
33(5data + 5func + Sreg)2 + (

61> 108Cug
1-5 " al2-a)(1-5)

Po

)e

6ac? 1 6BL2
Elllgs — VoL |2 + +

2 3 1
Bl T'1-p
——

o ——— =
Tng(1—7) ol
—_———

P1 p2 p3 D4

+108C,, o)d?

Next, we want to carefully choose hyper-parameters to make sure po, p2 < £2/8,p1, p3, ps < €2 /4.

We consider 8 < min{z—z, %, 1(1— )% a(l — @)?}. Since 0 < o < 1, we have 3 < 1.

Control py For simplicity, we directly choose o = 0.9, while « can be other constant-level values
between 0 and 1. Since 5 < 1/2, we know

po < (12L% 4 240C,, g)c

To make sure py < £2/8, we need

2

£
= 12(I% 1 200, 0)
ie.
802 (777( LTy g2
min{ 57, BPEH N e pe” T 12(L7 +20C0,q)
Therefore,

L2+ 200, 0)o?
96(L° +20Cy, )0 (K+T’—5)=O(5*2)

=
min{ 5 e

Control p; Since we have two constrains on 7y, first we need to make sure, if 79 = ﬁ

=
PP=ra—y) =1
Combining 4.2} the above implies that:
16L
T> _16L, (23)
(1 —7)e?
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Secondly, to make sure constraint (22) (recall that we choose o = 0.9):

=g (10 S (a0 000 4 o03cR ) ])

o [ec.L2p 2 \/
= - 2072 (12
STa-y\ 1-8 TTa—q) 120(2C¢uCuq + HCHC3, )

2 (1 — )% 2 \/
ST =) ? 2072 (12
ST —) \/GL Ceou Cepl? + T —~) 120 <QC’<#CM7Q + H CQCW)

2V/6¢* 2
- 120(2C¢ 4o + H>CHC2
T +T(1_7)\/ 0(2C¢ uCuq + H2CHCH, )

2 2 . . . .
To make sure p; < %, we need the above two terms less than % at the same time, which implies

16 _
(1—’v)€2\/120 (QCC,#Cw,Q + H2C2chv) =0(c?) (24)

Control p, In fact, at the beginning step, Ep,[g5] = VoLE. Therefore,

T>16V3; T>

2

. g
b2 Bo|
To make sure | By| > 86%2, we just set
802
[Bol = —- (25)
€
Control p; We want p3 < %. To do that, we add the following constraint
B 1202
1Bl 120 (26)
! €
which implies that |B| > 12¢°
Control p; Since 8 < {1/2,%/L?}, we have
1 ,68L% o 1,2 6L? 5 122 Cy.od?
=— 108Cw.0)d" < =(— 108Cy.Q)d" = 108—
m=ri g+ @) _T(L21—1/2+ @) Tt T
To make sure py < %, we need the above two terms individually smaller than %
864C,, od>
T>96 T>——29° (27)
€
Combine 23)-(27), we need
16L; 16 5 o\ 864C, od?
T Z I'na.X{967 5727 (1—'}/)62\/120 <2CC»#C“)’Q + H2CQCW>7 T}
1202 802
B> =5 a=09 |B|=—
€

22
As for K in Algorithm based on Theorem we can choose K = Coracic log(%) = O(log 1)
where ¢,,qcle 1S an independent constant.
As a result, the total computation before obtaining 6,,,; should be:
1
|Bo| +|B|-T+|N|-K-T=0("2)+0("")+0(E"?) - Olog g) 0™ =0(™)
]
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E A Concrete Example for Saddle-Point Solver Oracle

In this section, we provide an example for the oracle in Definition[4.1} which is inspired by SVRE[22].

E.1 An additional assumption

In this sub-section, we list one additional assumption for our oracle algorithm. We will illustrate the
practicality of it in Appendix [F

Assumption H. Denote N as a batch data sample according to d” whose batch size is constant | N|.
We assume there exists two constants L and L, such that:

Enear [V LY (0,¢1,&1) — VLN (0, Co, )17 + [ VeLN (8, (1, 61) — VeLY (8,62, &)1
- T
<Enear | = Le(Ve£ (0.61.60) = VLN (0,62, 62)) (G- Go)

B T
+ Le(VeLN (0,61, 6) = Ve (6,6,6) ) (61— &)]
Enear [V LY (0,1,61) — Ve LY (0, 6o, &) |17 + [VeLN (0,61, &) — Ve LY (0, 6o, &2) ||
<LZ¢1 = Gl + LE|l& — &P
where we use £V to denote:

|V

. 2 (= mQ ap)m(apls s € Sol +w(s'a) (7" + Q0" a)m(as") - Q(s', ")

N _
L (03C7£)*W ~

n )‘762@2(8@‘7@1) _ )‘7w,w2(8i7ai)

and (s%, a’,r, s'") are sampled from D while af ~ 7(:|s?),a’ ~ m(-|s?).

E.2 Stochastic Variance-Reduced Extragradient with Batch Data

where P and P are projection operator; VLY (6, ¢, €) denotes the average gradient over samples
from batch data N. Besides, we define:

dév(glﬂgla C27€2) ZVCEN(Qa Cl?fl) - VCL:N(G’ <27€2)
d (€1, €1, C2, &) =VeLN(0,(1,61) — VLN (0,62, 62)

Obviously,
]E[glg] = VCKD(Hu Cku 61@)7 E[g]£+1/2] = VCED (67 <k+1/2u §k+1/2)

where the expectation only concerns the randomness of sample when computing g. The above
relationship also holds if we consider gradient w.r.t. £.

For this Algorithm [3| we have the following theorem:

Theorem E.1. Under Assumption|C} [E] [Fland D] in Algorithm B} if step size and batch size satisfy

Ui 7

¢S T 3 o ——
50 max{Lc, pc} 50 max{ L, f¢ }

after K iterations, the algorithm will return us ((i, €k ):

201 K
Eflcx — ¢ 112+ llex — €12 <355 (1= BL) "Elllo — 712+ llgo — €11
82 (774 n Ne

i N e e

where (C*,£*) is the saddle point of LP (0, ¢, &) given input 0.

We defer the proof to the next sub-section.
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Algorithm 3: Stochastic Variance-Reduced Extragradient with Batch Data (SVREB)
Input: Stopping time K; learning rates 7, 7¢; Initial wegihts (o, &o; Distribution d”; Batch size

N|.

Sample dataset N, N¢ ~ dP with batch size | V|
g5 ¢ VeL£Ne(8, o, o)
g VeLN<(6, 6o, &o)
Gt Pe(Go +ncgg)
&1 Pe(€o — megs)
my, mi = VeLNe(6, o, &), VLN (8, o, o)
fork=1,2,.. K +1do
Sample dataset N¢, N¢ ~ dP with batch size | N|
N,
9;5 = mi +de (G ks Co—15Ek—1)
N
Qi = mi + dg * (Cros Eks Co—15 Ek—1)
Gerr/a = PG +1cgy)
Enrr/z = Pelbe —neg)
Sample dataset N/, N} ~ d” with batch size |N|
N/
g]CH_l/Q =m§ + de “ (Crr1/2s Ehriy2 Ch—1,Ek—1)
N/
Gigrj2 = M +de *(Crpr/2s Shrr/a Geo1, 6k1)
Cht1 = Pe(Cr + 77<9;§+1/2)
§k+1 = ,Pg(fk - 7759]§+1/2)
/I The following has been computed in step and
mi_i,_l) mi“ — VLN, Cry &r), Ve LNE(O, Cr, k)
k+—k+1
end
Output: (x, {x

E.3 Proofs for Algorithm

For simplification, we will use w = [(,{] € Z x E := Q to denote the
vector concatenated by (¢ and &. Similarly, ¢, = [—957 gf |, and Fn(w) =
E ot ap e (= VL0 00 (6, ), VL0000 (6,, )]}, where N is the batch
data sampled according to d”, and V £(*:*75",40:¢") (9 ¢ €) is the gradient computed with one sam-
ple (s,a,r, s, a9,a’). We use F(w) := Eny~p[Fn(w)] to denote the gradient expected over entire
dataset distribution. Besides,
ngs ==1cgs  neg; 7wl = nglICI” +ngllel?s pllwl® = nellCl® + neli€ll?
L2lw|> =LZ|[CI® + LElIEN®s  n*L? = nZLE + nZLE; M= Tcpe e e
The update rule for Algorithm [3|can be summarized as
Extrapolation : w1/ = Po(w: — 19t)
Update : w1 = Po(wi — 19141/2)

Besides, in this section, the expectation £ concerns all the randomness starting from the beginning of
the algorithm.

Lemma E.2 (Lemma 1 in [22]]). Let w € Q and w™ := Pq(w + u), then for all w' € Q, we have
lw® =W < lw =2+ 20" (0T — &) = 0t —w|f?

Lemma E.3 (Adapted from Lemma 3 in [22]). For any w € ), when t > 0, we have

lwrr — wl* < flwp — w]|* - 2179;1/2(%“/2 —w) +1°lg: — ger1/2]l = llweg1/2 — we)?
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and when t = 0, we have

lwr = wl? < Jlwo — wll* = 2ngg (w1 — w)

Proof. For t = 0, by simply applying Lemma E.2|for (w, u,w™,w’) = (wo, —ngg ,w1,w), we have:
lwr = W <[lwo = wl|* = 2ngg (w1 = w) = [lwr = woll* < [lwo — wI* = 2ngg (w1 — w)
For t > 0, the proof is exactly the same as Lemma 3 in [22]]
[]

Lemma E.4 (Bound ||g;: — gt+1/2||2). Fort > 0, we have:
E[llgs — gry1/2/”] S10E[||Fi (we) — Fn(w*)I*] + 10E[|| Fx (w*) — Fn (w—1)[|*] + SL°E[[lwy — wy g1 2]]

Proof. Fort > 0:

E[l| g _9t+1/2||2}
=E[[|Fy(w:) — Fn(wi—1) +mg — Fnr(wig1/2) + Fnr(wg—1) — me|?]
=E[[|Fi (we) = Fy(w*) = Fx(wi-1) = Fno(wgy12) £ Frr(we) = Fyo(w*) + Fyr(we-1)]|]
<BE[||Fiv (we) — Fn(w*)|?] + 5E[[| Fy (w*) = Fi (wi—1)]|]

+ 5E[|| Fs (weg1/2) — Fne (we)|*]] + 5E[|| Fnr (wy) — Fye (w*)|?] + 5E[|| Fys (w*) = Fie (we—1)||]
=10E[|| Fn (wt) = Fn(w*)[|*] + 10E[[| Fn (w*) = Fn (wi—1)[”] + 5E[| Fn+ (wi1/2) = Fe (we)||?]]

where in the inequality we use the extended Young’s inequality; in the last equation we use the fact
that

En~p[[Fn(w:) = Fxn(w)|*] = Entap[l| Fnr (we) = Far(w)]?],  Vw € Q
Besides, according to Assumption
E[|| Fno(wiy1/2) = Far(we)[*]] < LPE[[Jw; — wep/]]
As a result,
E[llg: = ge+1/2l”] S10E[[|Fn (w) — Fn (w*)||*] + 10E[[| Fn (w*) — Fiv (we—1)[|*] + 5L*E[|[w; — wiy12]]
[]

Proposition E.5. Under Assumption|Q] for arbitrary 0, the operator F(w) satisfying:
(Fler) ~ Flwn)) (w1 —w2) > o -l
Proof. Based on Assumption[C} we have:
—LP(0.G1.6) 2~ L2(0,C2.&2) = VeLP(0,6.6) " (2~ Q) + GG — Gl
—LP(0.62.60) 2~ LP(0,C2.&2) = VeLP(0,62.&) " (G~ &) + GG — Gl
LP(0,61,€2) 2LP(0,01,6) + VL (0,61.6)" (&2 — &) + 5 llea — &
(0,G2,60) LD (0,62, &2) + VeLP (0.2, 8) T (61— &) + G ll&2 — &l
Sum up and we can obtain
(F(Wl) - F(Wz))T(wl - w2) = (F(Clvgl) - F(C27§2))T([C1,§1] - [C2,€2])

T T
== (VeLP(8,G1,6) = VeLP (8.6, )) (G = Go) + (VeLP(0:61,6) = VeLP (6,60, 2)) (61— &)
Zpclle = GI* + pelléo = &l1” 1= pllwr — o

LD

]
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Theorem E.1. Under Assumption|Q [E] [Fland D} in Algorithm[3] if step size and batch size satisfy
1 1

_— < ——mM
50 max{L¢, pic}’ € =50 max{Le, e}
after K iterations, the algorithm will return us ((x, £x):
201

2 1 - 24 * (12 _¢*|2
Ellc — ¢ + lew — €°17) <208 (1= E1) “Elico — I + o — €71
N 80 (e e

min {5, BN g e

ne <

where (C*, %) is the saddle point of LP (0, (, &) given input 0.

Proof. When t > 0, from Lemma [E3] we have
lwe1 — W*||2 <Jjws — ‘U*||2 - 277%11/2(%“/2 —w") = [lwpy1/2 — wt||2 + 772||9t - 9t+1/2\|2

Next, we use P41 to denote E[||wi+1 — w*||?] + 7E[||Fy (w*) — Fn(w;)||?], where 7 will be
determined later, then we have

Pry1 =E[l|lwrsr — w*|)?] + 7E[|| Fx (w*) = Fn(w)|?]

<E[|lw; — w*[|”] = 2nE[F (wiy1/2) T (wer1/2 = 0*)] = Elllwes1/2 — will?)

+07Elllge = ger1/2/”) + TE[| Fn (") — Fn(w,)|%]

— 20E[(m; — F(wi-1)) " (wis172 — w")]

Elg/ 1 jpWir172 — w*)] = E[(F(wir1/2) = Flwi—1) + 1) T (Wig1/2 — w*)))

<E[|lw; — w*[I*] = 2nE[F (wi1/2) T (Wer12 — w*)] = (1= 57> L*)E[|lwer1 2 — will’]

+ (1 + 10)E[|| Fy (wi) — Fn (w*)[1?] + 100°E[|| Fy (w*) = Fn (wi—1)||’]

+ 20/Eflme — F(wn) PEl w2 — w0 [P]

(Lemmaand Cauthy Inequality: E[a"b|c] < +/E[[|a?|cJE[|[b]|2]c])

<E[llws — w*||*] = 20E[F (wit1/2) | (Wig1/2 — w*)] — (1 = 50° L) E[||weg1/2 — wel?]

+ (1 + 100" E[|| Fx (w;) — Fn(w*)[|*] + 100°E[|| Fx (w*) = F (wy—1)]|°]

8n M X
+ ;E[Ilmt — F(wi—1)[I?] + gE[Hth/z — W% 2/]a"0] < lall* +[1b]1*)

<E[||we — w*[[*] = 20E[F (wrs1/2) " (Wrs1/2 — w*)] = (1 = 250 L? — 27 L)E||wp 4172 — we]?]
+ (27 + 200" E[| Fv (wig1/2) — Fn ()|*] + 100°E[|| Py (w*) = Fiy (wi—1)]|?]

82
I 775) un

—Ew 12—0Jt2+E wt—w*z
TG 30+ B Bl =l + Bl =)
(Assumptlon Young’s Inequality; E[[| Fi (wit1/2) — Fi (we)[|?] < L*E[[|wit1/2 — we||?])

<E[|w; — w*||’] = 20E[F (wit1/2) " (wer1/2 — w™)] — (1 = 260°L? — 27 L) E[||wpy1/2 — wil|’]

+ (27L + 20 L)E[(Fn (0*) = F (wi4172)) ' (@* = wipa/2)] + 100°E[||Fy (0*) = Fiv (we—1)||?]

802 Mg Hn
+—(=+ =)+ =
[N (u< ug) 4
=E[|w; — w*|[*] = (20 — 20Ln® — 27 L)E[(F(wi41/2) — F(w*)) T (wiy1/2 — w*)]
— (1= 25n2L? — 27 L*)E[[|wy 12 — we||*] + 100°E[|| Fy (w*) — Fi (we—1)||]

80 Ney , N
+ —=(=+ =)+ =
Mo T

By Prop. [E.5] we have:

(Elllwe+1/2 — well* + Ef|lwe — w* 1)) (Assumption [H)

(Elllwer1/2 = well* + Efflwr — o))

* /1“ *
(F(w*) = Fwpg1/2)) T (@* — wyy1/2) > pllw* — wiprjol® > §||wt — w*[]* = pllwes12 — wel?
(28)
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By choosing 0 < n¢ < m, 0<ne < m, and 7 = 15772, we know
2n — 20Ln* — 27L = 2y — 50Ln* > 0

As aresult, we can use (]T_g[) to get:

Prvr (1= pm+ 10 L+ 7l + EDElwr — w1

— (1 — 2502L2 — 2rL2 — 2un + 20uLn?® + 2urL — %)E[H%H/Q — w3

10772 9 802 e e
—+ TE FNw* 7FNU)_ + —(— —_—
B ) = P+ f (2
3 _ ) 9 _
< (1= Jpm + 25um* L) Bf||w, — w*[|*] + (559°L* + S pn — 50pLn* = 1) E[[lwp 172 — we’]
p1 P2
2 80® me | Me
+ S7E[||Fy (w*) — Fy(we—) [Pl + 7 (— + =
37 ==l INI e pe
since 0 < nu < 1/50 and 0 < nL < 1/50
3 25un 1%
<1-2 D8 _q B
G 4
L9 o9
P2=%500 " 200 T =500 T 200
As aresult
Prr <O~ B[, — w*|?] + 7B P () — Fi(wp)2) + S0 (% 4 T
4 3 INT e e
1 80% ne | me
§(1—m1n —, = )P +—(=+—=
s )P m G )
[ 8a® me | Me
~(1-E)p+ e+ (i < 1/50)
(=) INT pe e
un)t 802 ne e
<(1-"N'p Te | D
_( 4 1+min{f"i’“,%}INI(MC ug)
u”)t . i ) 80 ne | Me
=(1—-—/—) (E[||wy —w*||] + TE|[|| F§ (W) — Fn(w + — — 4+ =
(1= 1) Bl =]+ 7B ) ~ FrCo)lP) + e ey G+ )

], from Lemma we have:

Next, we take a look at E[||w; — w*

=E[[lwo — w*|[*] + 2nE[(F(wo) — g0) " (w1 — w*)] + 2nE[(F(w*) — F(wo)) " (w1 — w")]
<E[lwo — w*[|*] + 2nE[||F (wo) — golI*JE[lwr — w*[|*] + 2nE[(F(w") = F(wo)) " (w1 — w")]
<E[l|lwo — w*[|*] + %E[Ilwl = w[l] + 3n°E[[| F(w") — F(wo)||*] + %]E[le —w*[|?]

1
<E[|wo — w*[|*] + %E[Ilwl — o]+ 30 E[[F (@) = F(wo)I”] + 3Elllor — ™|
1
<E[l|wo — "] + SE[llwr — "] + 30°E[| F(w") — F(wo)[|*] (np < 1/50)

Therefore,
Elllwr — w|?] < 2E[[lwo — w*[|*] + 69°E[|| F(w*) — F(wo)|1?]
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Finally, using the fact that E[|| Fiy (w*) — Fn(wo)|?] < L2E[||w* — wo|?], we have

2 2
Ellens =11~ Sy Gl ) < ot~ e ey G )
<(1 - 20) (@Bl — w* I?) + 7B F(w") ~ F(wo)l?] + Tl Fy () ~ Ex (o))
=(1 - 21Y' (2Efllwo — "] + 67 PPElw* — woll?) + 1572 LE[lw” — wol)
<(1- B (24 o + o Bl — woll)
<05 (1= 40 Bl - vl
which finishes the proof. U]

F Practicality of the Assumptions in Section

First, it is common to use policy classes whose first and second order derivatives are bounded [15} 16],
so the Assumption[A}(1) is a reasonable one. Also, Assumption [B]is a common assumption in batch
RL that guarantees exploratory dataset [23]], and the smoothness Assumption [A}(c) is frequently
considered in optimization literatures.

The remaining assumptions are indeed quite strong. That said, below we show that when WV and Q
are the same linear class, we can satisfy these assumptions relatively easily. Indeed, Uehara et al. [4]
showed that MIS-based OPE reduce to the familiar off-policy LSTD algorithms with linear classes
[24,25], and we show that Assumptions[A}(b), [Cl D] [El [Fl [G] can be satisfied in this case if we simply
assume Assumption|l} which is standard in the off-policy LSTD literature.

Definition F.1 (Linear function classes). We have a feature class {¢(s,a) € R“*!|Vs,a € S x A}
subject to ||(s, a)|| = 1, and two parameter spaces Z, = € R“*!. The approximated value function
Q¢ and density ratio w are represented by

w(») = ¢('7')T<v Q(») = ¢(a)T£
Remark F.2. Since ||¢(-,-)|| < 1, the matrix E 440 [¢(s,a)P(s,a) "] is semi-positive definite and
its largest eigenvalue is less than 1.
Assumption I. There exists a positive constant oy, that, the matrix E; ;.40 [@(s,a)d(s, a)
is full-rank, and all its eigenvalues are no less than o,,; besides, the matrix

Eq oo aimap [@(s,0)P(s,a) T — vd(s,a)p(s’,a’)] is invertible, and its minimal sigular value is
no less than oy

'

Remark F.3. In Assumption[l] we only add requirement on the smallest singular value of M and do
not care about whether all its eigenvalues are positive or not.

For simplicity, we choose A, = A\g = A > 0. We use ® ¢ RISIAIX® to denote the matrix
concatenated by all features, use K to denote ® " AP ® and use M to denote ® " AL (I — PT,)®,
where AP is a diagonal matrix whose diagonal elements are d” (-, -), and P7, is the empirical
transition matrix induced from dataset distribution. Notes that if we never see some s in dataset, then
the corresponding element in A" should be 0, and we do not need to worry about the corresponding
row in P7,. By choosing linear function classes, we can rewrite £ to:

A A
£P(7,6,) =(1 = 7)Eay [QUs0, ™) + Eulr +9Q(s", ) — Qs,0)] + 5 B0 [@3(5, )] — SEgn[w*(s,a)]
A A
=(1=pPE+ T @TAP(R — (I - PH)PE) + 3¢ KE — SCTKC
~(1 - )pe + (T RTAYR — (TMe + JeTKE - JCTKC

Since L¥ is quadratic, under Assumptionm, matrix K is full-rank with minimal eigenvalue larger than
Omin and maximal eigenvalue smaller than 1, then £ (r, ¢, €) is Aomin-strongly-concave-Ac min-
strongly-convex, and A smooth. Combining bounded second order derivatives of logm, L is also
smooth w.r.t. §. Therefore, we know Assumption [C|holds.
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Next, we try to give a bound for the norm of the saddle point of £ (7, w¢, Q¢) denotes as (C*,£*),
to testify the other assumptions. By taking derivatives w.r.t. £, we have:

=K (M- (1- )@ wp)")
Plug it into ﬁD :
TR o (M7 (1)@ T05)T) K (MTC- (1)@ T () ) +(TTARR
Taking the derlvatwe of (, we have:
C*:<A2K+MK‘1MT>_1(—( VMK~ 18T (vr)T +>\<I>TADR>
and therefore,

& =K (M7 - (-2 ()T)

1
;\K 1MT</\2K+MK 1MT) -(—(1— VMK~ 1®T (17T +A<I>TADR)
F1-)Ke W)

A
=(1— V)A(/\QK + MTK—lM) BT + KM ()\QK + MK~ 1MT) "BTAPR
where in the last step, we use the inverse matrix lemma'

(VK+M'TK'M)™! FK‘ — FK MT(V’K + MK~ 'M " )MK ™!
Because ||¢(-,-)|| < 1, it’s easy to prove that, for arbitrary vector = € RY,

zl} < (M + )l

Therefore,
—1 -1
¢ <0 =) (VK + MK'MT) MK @7 ()Tl + || (2K + MK 'MT) |- @7 APR|
—1 —1
§(1—7)\|(MK*1MT) MK | +)\||()\2K+MK*1MT) I

<=l (MT) ) A (K + MKIMT)

1—7 A
< =D
" Omin +)\0m1n+0 ¢

-1
J€*) < —AI (K + MTKM) [T wp)T
—1
FIKIMT (/\2K + MK*IMT) MK 'KM~!|[|® " APR]|
<1 = (AQK + MTK*1M> |+ 1K™ = (K + MK M) KM

-1
<O- DA (PK+MTK M) |+ [K KM

(1- )>\ 1
=D,
A Omin T Umm * Omin ¢

By choosing Z = {¢||¢|| < D¢ + 1} and E = {¢|||¢|| < D¢ + 1}, Assumptions [D|and[H [G|can be
satisfied when d = 2max{D¢, D¢} + 2. Moreover,

we (s, a) = ¢(s,a) "¢ <[ld(s, a)|l[¢]| < D¢

Qe(s,a) = d(s,a) "€ <[ @(x, a) [l < De
lwe, (s, a) = we, (s, a) || <[l (s, a)[[[[Cr = Call < 62 — Call
1Qe, (5, a) — Qe (s, )| <[[p(s, a)[[[I€1 — &l < 162 — &l
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which means Assumption @-(b) is satisfied by setting Cyy = D¢,Cg = D¢ and Lyy = Lg = 1.
Besides, D¢ and Dy are finite also implies that o in Assumption@is finite.

Finally, we evaluate Assumption For simplicity, we use Ky to denote matrix Eg[¢(s, a)p(s,a) ]
and use My to denote Eg[¢(s,a)@(s,a) " — ¢p(s,a)p(s’,7) "]
VeLN(0,¢1,61) — Ve LN (0,62, 62) = —2MKn (G — &) — My (& — &)
VeLY(0,61,61) — VeLN (0,6, &2) = MK (€1 — 2) — ML (G = Ga)

Therefore,

Enear [V LN (0, Cri61) = VLY (0, G0, &)1 + VLN (0, C1, &2) — VLN (6,6, &)
By qp[(¢1 = G2) T (WWKNKN + MAMy) (G — (o))
+2Enar (&1 — &) T (WWKYKy + MAMy) (& — &)
<2Ennar[(C1 = G) T (VKR + (1+7)1)(G — )
+ 2By gp (&1 — &) T (VKR + (1 +9)°1)(& — &)
<2Epngn[(G = G2) T (VKN + (14 9)°1) (¢ — ()]
+ 2Enan[(61 — &) T(NPKy + (1 +9)°1) (& — &)
=(C1 = G) TNK 4+ 2(1+9)°1D)(G — G2) + (& — &) T NK +2(1+79)°1) (& — &)

In the first inequality, we use Young’s inequality; in the second one, we use the fact that the largest
singular value of My is less than (1 4 +y); the third one is because all eigenvalues of K 5 locate in
[0, 1], and we should have I = Ky = K?V Notice that,

T — T —

i
Enean | = (Ve£V (0:1,60) = VLN (0,62,82)) (61— G2)

+(VeLY(0.6.8) ~ VLN (0.6.6)) (6 - &)]
=MG = G) TK(G = G) + A6 — &) TK(& - &)

Therefore,

(G = Q) TRNK +2(1+ 7)) — Q) + (& — &) TRNK +2(1+7))(6 — &)

2L (3G~ ) TK(G - o) + Al — €2)TK (6 — &)

Jmin)\

<2\ +

Moreover,
(1 =) TENK+2(1+9)°D) (¢ — Q) + (6 — &) TNK +2(14+9)°1)(6 — &)
<X 420+ - @) TG -G + (6 - &) (6 - &)

As aresult, Assumptionholds with L = L¢ = max{2\ + M, V222 +2(1+7)2}.
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