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Appendix A. Extension of DETC to the Unknown Gap Setting

In real world applications, the suboptimal gap ∆ is often unknown. Thus, it is favorable to design
an algorithm without the knowledge of ∆. In this section, we propose a variant of DETC for the
unknown gap setting and further extend it to the batched bandit setting.

A.1. The Proposed DETC Algorithm

When the suboptimal gap ∆ is unknown, the DETC algorithm is displayed in Algorithm 3. Similar
to Algorithm 1, Algorithm 3 also consists of four stages, where Stage I and Stage III are double
exploration stages that ensure we have chosen the right arm to pull in the subsequent stages. Since
we do not have access to ∆, we derive the stopping rule for Stage I by comparing the empirical
average rewards of both arms. Once we have obtained empirical estimates of the mean rewards that
are able to distinguish two arms in the sense that |µ̂1(t)−µ̂2(t)| ≥

√
16 log+(T1/t)/t, we terminate

Stage I. Here t is the current time step of the algorithm and T1 is a predefined parameter. Similar to
Algorithm 1, based on the outcomes of Stage I, we choose arm 1′ = argmaxi=1,2 µ̂i(t) at the end
of Stage I and pull this arm repeatedly throughout Stage II. In Stage III, we turn to pull arm 2′ that
is not chosen in Stage II until the average reward of arm 2′ is significantly larger or smaller than that
of arm 1′ chosen in Stage II. Note that in both exploration stages, we do not need the information
of the suboptimal gap ∆.

In the following theorem, we present the regret bound of Algorithm 3 and show that this regret
is also asymptotically optimal and minimax optimal in this setting.

Theorem 4 Let εT =
√

2 log(T∆2)/(T1∆2). Suppose that εT ∈ (0, 1/2) and T∆2 ≥ 16e3, then

Rµ(T ) ≤ 2∆ +
38 + 8 log+(T1∆2/4) + 2

√
8π log+(T1∆2)

∆

+
4(16e2 + 2) + 2 log(4T∆2(log2(4T∆2) + 1)) +

√
4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆
.

Moreover,if we choose T1 = log2 T , then limT→∞Rµ(T )/ log T = 2/∆.

Here we provide some comparison between existing algorithms and Algorithm 3. For two-
armed bandits, Lai and Robbins (1985) proved that the asymptotically optimal regret rate is 2/∆.
This optimal bound has been achieved by a series of fully sequential bandit algorithms such as
UCB (Garivier and Cappé, 2011; Lattimore, 2018), Thompson sampling (Agrawal and Goyal,
2017), Ada-UCB (Kaufmann et al., 2018), etc. All these algorithms are fully sequential, which
means they have to examine the outcome from current pull before it can decide which arm to pull
in the next time step. In contrast, DETC (Algorithm 4) separates the exploration and exploitation
stages, which is much more practical in many real world applications such as clinic trials and crowd-
sourcing. In particular, DETC can be easily adapted to batched bandits and achieve a much smaller
round complexity than these fully sequential algorithms. We will elaborate this in Section A.2.
Compared with other ETC algorithms in the unknown gap setting, Garivier et al. (2016) proved
a lower bound 4/∆ for ‘single’ explore-then-commit algorithms, while our DETC (Algorithm 4)
improves this regret bound to 2/∆. Therefore, in order to break the 4/∆ barrier in the asymptotic
regret rate, our double exploration technique in Algorithm 3 is crucial.
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Algorithm 3 Double Explore-then-Commit (DETC) for Unknown Gaps
input T, T1

1: Initialization: A1 = 1, A2 = 2, t← 2

Stage I: Explore all arms uniformly
2: while | µ̂1(t)− µ̂2(t) |<

√
16/t log+(T1/t) do

3: Choose At+1 = 1 and At+2 = 2, t← t+ 2;
4: end while

Stage II: Commit the arm with the largest average reward
5: 1′ ← arg maxi µ̂i(t);
6: while t ≤ T1 do
7: Choose At+1 = 1′, t← t+ 1;
8: end while

Stage III: Explore the unchosen arm in Stage II
9: µ′ ← µ̂1′(t), 2′ ← {1, 2} \ 1′, t2 ← 0, θ2′s is the recalculated average reward of arm 2′ after its
s-th pull in Stage III and θ2′s ← 0, for s = 0;

10: while |µ′ − θ2′,t2 | <
√

2/t2 log
(
T/t2

(
log2(T/t2) + 1

))
do

11: At+1 = 2′, t← t+ 1, t2 ← t2 + 1;
12: end while

Stage IV: Commit the arm with the largest average reward after double exploration
13: a← 1′ 1{µ̂1′(t) ≥ θ2′,t2}+ 2′ 1{µ̂1′(t) < θ2′,t2};
14: while t ≤ T do
15: Play arm a, t← t+ 1.
16: end while

Similar to Theorem 1, one can verify that the regret in Theorem 4 is in the order of O(∆ +
1/∆ log(T∆2) if we choose T1 = T , which implies that Algorithm 2 is instance-dependent optimal
and minimax optimal. However, in this case, we will only have the first two stages in Algorithm 3
and thus the DETC algorithm reduces to the single explore-then-commit algorithm in Garivier et al.
(2016). It is an interesting open problem whether our DETC algorithm can achieve the improved
asymptotic regret rate 2/∆ without compromise on the instance-dependent/minimax optimality.

A.2. Batched DETC in the Unknown Gap Setting

In the unknown gap case, both the stopping rules of Stage I and Stage III in Algorithm 3 need to be
modified. In what follows, we describe a variant of Algorithm 3 that only needs to check the results
of pulls at certain time points in Stage I and Stage III. In particular, let T1 = log2 T . In Stage I, we
query the results and test the condition in Line 2 of Algorithm 4 at the following time grid:

t ∈ T2 = {2
√

log T , 4
√

log T , 6
√

log T , . . .}. (7)
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In Stage III, we the condition in Line 10 of Algorithm 4 is only checked at the following time grid.

t2 ∈ T ′2 =
{
N1, 2/∆̂

2N2 log(T log3 T ) + 1/∆̂2N2(log T )
2
3 ,

2/∆̂2N2 log(T log3 T ) + 2/∆̂2N2(log T )
2
3 ,

2/∆̂2N2 log(T log3 T ) + 3/∆̂2N2(log T )
2
3 , · · · , · · · , log2 T

}
.

(8)

where N1 = (2 log T )/ log log T , N2 = (1 + (log T )−
1
4 )2, and ∆̂ = |µ′ − θ2′,N1 | is an estimate of

∆′ based on the test result after the first round (the first N1 steps). Apart from restricting t2 ∈ T ′2 ,
another difference here from Algorithm 3 is that we require t2 ≤ T1. Thus we will terminate
Stage III after at most T1 = log2 T pulls of arm 2′. For the convenience of readers, we display the
modified Algorithm 3 for batched bandits with unknown gaps in Algorithm 4.

Algorithm 4 Batched DETC in the Unknown Gap Setting
input T , T1, T2 defined in (7), and T ′2 defined in (8)

1: Initialization: A1 = 1, A2 = 2, t← 2

Stage I: Explore all arms uniformly
2: while true do
3: if t ∈ T2 then
4: if | µ̂1(t)− µ̂2(t) |≥

√
16/t log+(T1/t) then

5: break
6: end if
7: end if
8: Choose At+1 = 1 and At+2 = 2, t← t+ 2;
9: end while

10: Stage II

11:
...

12:

Stage III: Explore the unchosen arm in Stage II
13: µ′ ← µ̂1′(t), 2′ ← {1, 2} \ 1′, t2 ← 0, θ2′s is the recalculated average reward of arm 2′ after its

s-th pull in Stage III and θ2′s ← 0, for s = 0;
14: while t2 ≤ log2 T do
15: if t2 ∈ T ′2 then
16: if |µ′ − θ2′,t2 | <

√
2/t2 log

(
T/t2

(
log2(T/t2) + 1

))
then

17: break
18: end if
19: end if
20: At+1 = 2′, t← t+ 1, t2 ← t2 + 1;
21: end while
22:

...
23: Stage IV
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Theorem 5 In the batched bandit problem, the expected number of rounds used in Algorithm 4 is
O(1). Moreover, the regret of Algorithm 4 is also asymptotically optimal, i.e., limT→∞Rµ(T )/ log T =
2/∆.

Here, we only focus on deriving the asymptotic optimality along with a constant round complexity
in the batched bandits setting. For minimax and instance dependent regret bounds, Perchet et al.
(2016) proved that any algorithm achieving the minimax optimality or instance dependent opti-
mality will cost at least Ω(log log T ) or Ω(log T/ log log T ) rounds respectively. It still remains
an interesting open problem to achieve the minimax/instance-dependent optimality along with the
asymptotic optimality and attain the optimal round cost at the same time.

Appendix B. Double Explore-then-Commit Algorithm for K-Armed Bandits

In this section, we extend our DETC framework to K-armed bandit problems. Due to the similarity
in both structures and analyses between Algorithm 1 for known gaps and Algorithm 3 for unknown
gaps, we only present the K-armed bandit algorithm for unknown gaps, which is more challenging.

Without loss of generality, we assume the best arm is 1. Let µ1, . . . , µK be the underlying mean
reward of all K arms respectively. We denote ∆i = µ1−µi as the gap between arm 1 and arm i for
all i ≥ 2. We assume ∆i > 0 for all i ≥ 2. We present the double explore-then-commit algorithm
for K-armed bandits in Algorithm 5. Similar to Algorithm 3 for two-armed bandits, the algorithm
proceeds as follows: (1) in Stage I, we uniformly explore over all the K arms; (2) in Stage II, we
pull the arm with the largest average reward; (3) in Stage III, we aim to ensure that the difference
between the chosen arm 1′ in Stage II and unchosen arms is sufficient by pulling all the unchosen
arm i′ (i ≥ 2) repeatedly until the average reward of arm i′ collected in this stage can be clearly
distinguished from the average reward of arm 1′. We set a check flag ffail initialized as 0, which
will be set to 1 if any unchosen arm i′ is played for log2 T times; (4) in Stage IV, if ffail = 0 and
µ̂1′ is larger than the recalculated average reward for any other arm, then we play 1′ till the end.
Otherwise, 1′ may not be the best arm. Then we play all arms log2 T times, and play the arm with
the largest recalculated average reward till the end.

Similar to the regret defined in (1), we define the regret for a bandit instance {µ1, . . . , µK} as
Rµ(T ) = T max{µ1, µ2} − Eµ[

∑T
t=1 rt]. Now we present the regret bound of Algorithm 5.

Theorem 6 The regret of Algorithm 5 with 1-subGaussian reward satisfies

lim
T→∞

Rµ(T )

log(T )
=
∑
i:∆i>0

2

∆i
. (9)

Remark 7 In the second case of Stage IV of Algorithm 5, we actually believe that we have failed
to choose the best arm via previous stages and need to explore again for a fixed number of pulls
(log2 T ) for all arms and commit the best arm based on the pulling results. Note that this can
be seen as the naive ETC strategy with fixed design (Garivier et al., 2016), which has an asymp-
totic regret rate 4/∆. Fortunately, Theorem 6 indicates our DETC algorithm can still achieve the
asymptotically optimal regret for K-armed bandits (Lai and Robbins, 1985). This means that the
probability of failing in the first three stages of Algorithm 5 is rather small and thus the extra ETC
step does not affect the asymptotic regret of our DETC algorithm.
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Algorithm 5 Double Explore-then-Commit for K-Armed Bandits (DETC-K)
input T , K.

Stage I: Explore all arms uniformly
1: for i = 1, 2 · · · ,K do
2: Play every arm

√
log T times;

3: end for

Stage II: Commit the arm with the largest average reward
4: 1′ ← arg maxi µ̂i;
5: Play arm 1′ log2 T times and let µ′ be the recalculated average reward for this play;

Stage III: Explore the unchosen arm in Stage II
6: {2′, · · · ,K ′} = {1, 2, · · · ,K} \ {1′} and fail← 0;
7: for i = 2, 3, · · · ,K do
8: ti ← 1, θi′s is the recalculated average reward of arm i′ after its s-th pull in Stage III and θi′0 = 0;

9: while |µ′ − θi′,ti | <
√

2/ti log
(
T/ti

(
log2(T/ti) + 1

))
and ti ≤ log2 T do

10: Play arm i′, ti ← ti + 1;
11: end while
12: if ti > log2 T then
13: fail← 1 and break;
14: end if
15: end for

Stage IV: Commit the arm with the largest average reward after double exploration
16: j′ := maxi′ θi′ti ;
17: if µ̂1′ ≥ θj′tj and fail = 0 then
18: Let a← 1′ and play arm a till T time step;
19: else
20: Play every arm log2 T times and let a be the arm with the largest average reward for this play;
21: Play arm a till T time steps.
22: end if

Appendix C. Proof of the Regret Bound of Algorithm 1

Now we are going to prove Theorem 1. We first present a technical lemma that characterizes the
concentration properties of subGaussian random variables.

Lemma 8 (Corollary 5.5 in Lattimore and Szepesvári (2020)) Assume that X1, . . . , Xn are in-
dependent, σ-subGuassian random variables centered around µ. Then for any ε > 0

P(µ̂ ≥ µ+ ε) ≤ exp

(
− nε2

2σ2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
− nε2

2σ2

)
, (10)

where µ̂ = 1/n
∑n

t=1Xt.

Proof [Proof of Theorem 1] Let τ2 be the total number of times arm 2′ is played in Stage III of
Algorithm 1. We know that τ2 is a random variable. Recall that µ1 > µ2 and ∆ = µ1 − µ2.
Recall τ1 is number of times arm 1 is played in Stage I. Let N2(T ) denote the total number of times
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Algorithm 1 plays arm 2, which is calculated as

N2(T ) = τ1 + (T1 − τ1)1{µ̂1(τ1) < µ̂2(τ1)}+ τ2 1{µ̂1(τ1) ≥ µ̂2(τ1)}
+ (T − T1 − τ1 − τ2)1{a = 2}. (11)

Then, the regret of Algorithm 1 Rµ(T ) = E[∆N2(T )] can be decomposed as follows

Rµ(T ) ≤ E
[
∆τ1 + ∆(T1 − τ1)1{µ̂1(τ1) < µ̂2(τ1)}+ ∆τ2 1{µ̂1(τ1) ≥ µ̂2(τ1)1}+ ∆T 1{a = 2}

]
≤ E

[
∆τ1 + ∆T1P(µ̂1(τ1) < µ̂2(τ1)) + ∆τ2P(µ̂1(τ1) ≥ µ̂2(τ1)) + ∆TP(a = 2)

]
≤ ∆τ1 + ∆T1P(τ1 < T1, 1

′ = 2)︸ ︷︷ ︸
I1

+ ∆E[τ2]︸ ︷︷ ︸
I2

+ ∆TP(τ2 < T, a = 2)︸ ︷︷ ︸
I3

. (12)

In what follows, we will bound these terms separately.

Bounding term I1: Let Xi and Yi be the rewards from playing arm 1 and arm 2 for the i-th time
respectively. Thus Xi − µ1 and Yi − µ2 are 1-subGaussian random variables. Let S0 = 0 and
Sn = (X1 − Y1) + · · · + (Xn − Yn) for every n ≥ 1. Then Xi − Yi − ∆ is a

√
2-subGaussian

random variable. Applying Lemma 8 with any ε > 0, we get

P(Sτ1/τ1 ≤ ∆− ε) ≤ exp(−τ1ε
2/4) ≤ exp(−ε2 log(T1∆2)/∆2), (13)

where in the last inequality we plugged in the fact that τ1 ≥ 4 log(T1∆2)/∆2. By setting ε = ∆ in
the above inequality, we further obtain P(τ1 < T1, 1

′ = 2) = P(Sτ1/τ1 ≤ 0) ≤ 1/(T1∆2). Hence

I1 = T1∆P(τ1 < T1, 1
′ = 2) ≤ 1/∆. (14)

Bounding term I2: Recall that T1 ≥ 2 log(T∆2)/(ε2T∆2). Define event E = {µ′ ∈ (µ1′ −
εT∆, µ1′ + εT∆)}, and let Ec be the complement of E. By Lemma 8 and the union bound, P(E) ≥
1− 2/(T∆2). Therefore,

I2 = ∆E[τ2 1(E)] + ∆E[τ2 1(Ec)]

= ∆E[τ2 1(E)] + ∆E[τ2 | Ec] · P(Ec)

≤ ∆E[τ2 1(E)] + ∆T · 2

T∆2

= ∆E[τ2 1(E, 1′ = 1)] + ∆E[τ2 1(E, 1′ = 2)] + 2/∆. (15)

We first focus on term ∆E[τ2 1(E, 1′ = 1)]. Observe that when E holds and 1′ = 1 (i.e.,
the chosen arm 1′ is the best arm), arm 2′ = 2 is played in Stage III of Algorithm 1. For ease of
presentation, we define the following notations:

Z0 = 0, Zi = µ′ − Yi+τ1 , S′0 = 0, S′n = Z1 + · · ·+ Zn, (16)

where Yi+τ1 is the reward from playing arm 2 for the i-th time in Stage III. For any x > 0, we define

nx = (log(T∆2) + x)/(2(1− εT )2∆2).

We also define a check point parameter x0 = 2
√

log(T∆2).
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Let E1 denote the event {E, 1′ = 1}. Note that in Stage III of Algorithm 1 (Line 10), condi-
tioned on E1, we have

2(1− εT )∆|S′t2 | = 2(1− εT )t2∆|µ′ − θ2′,t2 | < log(T∆2),

for t2 ≤ τ2 − 1. Therefore, conditioned on E1,{
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉}
= {τ2 − 1 ≥ dnxe}

⊆
{
S′dnxe ≤

log(T∆2)

2(1− εT )∆

}
. (17)

Let ∆′ = µ′ − E[Yi+τ1 ]. Then, Zi −∆′ is 1-subGaussian. We have that conditioned on E1,

∆′ = µ′ − E[Y1+τ1 ] = µ′ − µ2 ≥ µ1 − εT∆− µ2 = (1− εT )∆. (18)

By Lemma 8, for any ε > 0, we have

P

(
S′dnxe

dnxe
≤ ∆′ − ε

∣∣∣∣∣ E1

)
≤ exp

(
−dnxeε2/2

)
. (19)

Let ε = (1−εT )∆x
log(T∆2)+x

. Conditioned on E1,

dnxe(∆′ − ε) ≥ dnxe((1− εT )∆− ε) ≥ log(T∆2)

2(1− εT )∆
.

Combining this with (19) yields

P
(
S′dnxe ≤

log(T∆2)

2(1− εT )∆

∣∣∣∣ E1

)
≤ P

(
S′dnxe ≤ dnxe(∆

′ − ε)
∣∣∣ E1

)
≤ exp

(
− x2

4(log(T∆2) + x)

)
. (20)

This, when combined with (17), implies

P
(
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉ ∣∣∣∣ E1

)
≤ exp

(
− x2

4(log(T∆2) + x)

)
.

Recall that x0 = 2
√

log(T∆2). For any x ≥ x0, we have x
√

log(T∆2)/2 ≥ log(T∆2). Thus,∫ ∞
nx0

P(τ2 − 2 ≥ v | E1)dv =

∫ ∞
x0

P
(
τ2 − 2 ≥ log(T∆2) + x

2(1− εT )2∆2

∣∣∣∣ E1

)
dx

2(1− εT )2∆2

≤
∫ ∞
x0

P
(
τ2 − 1 ≥

⌈
log(T∆2) + x

2(1− εT )2∆2

⌉ ∣∣∣∣ E1

)
dx

2(1− εT )2∆2

≤ 1

2(1− εT )2∆2

∫ ∞
x0

exp

(
− x2

4(log(T∆2) + x)

)
dx
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≤ 1

2(1− εT )2∆2

∫ ∞
x0

exp

(
− x

2
√

log(T∆2) + 4

)
dx

≤ 1

2(1− εT )2∆2

∫ ∞
0

exp

(
− x

2
√

log(T∆2) + 4

)
dx

=

√
log(T∆2) + 2

(1− εT )2∆2
. (21)

Then, the expectation of ∆τ2 conditioned on E1 is

∆E[τ2 | E1] = ∆

∫ ∞
0

P(τ2 > v | E1)dv

= ∆

∫ nx0+2

0
P(τ2 > v | E1)dv + ∆

∫ ∞
nx0

P(τ2 − 2 ≥ v | E1)dv

≤ 2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆
. (22)

Hence, we have

∆E[τ2 1(E, 1′ = 1)] = ∆E[τ2 | E1] · P(E1)

≤ P(E1) ·
(

2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆

)
. (23)

Let E2 denote the event {E, 1′ = 2}. In a manner similar to the proof of (22), we can show that

∆E[τ2 1(E, 1′ = 2)] = ∆E[τ2 | E2] · P(E2)

≤ P(E2) ·
(

2∆ +
log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆

)
. (24)

Therefore, we have

I2 ≤ ∆E[τ2 1(E, 1′ = 1)] + ∆E[τ2 1(E, 1′ = 2)] +
2

∆

≤ 2∆ +
2

∆
+

log(T∆2)

2(1− εT )2∆
+

2
√

log(T∆2) + 2

(1− εT )2∆
. (25)

Bounding term I3: For term I3, similar to (15), we have

I3 =∆ · TP[τ2 < T, a = 2 | E1] · P[E1]

+ ∆ · TP[τ2 < T, a = 2 | E2] · P[E2] +
2

∆
. (26)

We will first prove that P(τ2 < T, a = 2 | E1) ≤ 1/(T∆2). Recall that S′n =
∑n

i=1 Zi and Zi =
µ′−Yi+τ1 . In addition, Zi−∆′ is 1-subGaussian, and ∆′ ≥ (1− εT )∆ whenever E1 occurs. Then,

E[exp(−2∆(1− εT )Z1) | E1] = E[exp(−2∆(1− εT )Z1 + 2∆∆′(1− εT )− 2∆∆′(1− εT )) | E1]

= E[exp(−2∆(1− εT )(Z1 −∆′)− 2∆∆′(1− εT )) | E1]
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≤ exp((−2(1− εT )∆)2/2− 2(1− εT )∆∆′))

≤ exp(2(1− εT )∆((1− εT )∆−∆′))

≤ 1, (27)

where the first inequality follows from the definition of subGaussian random variables. We consider
the sigma-algebra Fn = σ(E1, Yτ1+i, i = 1, ..., n) for n ≥ 1. Define F0 = E1 and M0 = 1. Then,
the sequence {Mn}n=0,1,... with Mn = exp(−2∆(1 − εT )S′n) is a super-martingale with respect
to {Fn}n=0,1,.... Let τ ′ = T ∧ inf{n > 1 : S′n ≤ −log(T∆2)/(2∆(1− εT ))} be a stopping time.
Observe that conditioned on E1,

{τ2 < T, a = 2} ⊆
{
∃1 < n < T : S′n ≤ −

log(T∆2)

2∆(1− εT )

}
= {τ ′ < T}. (28)

Applying Doob’s optional stopping theorem (Durrett, 2019) yields E[Mτ ′ ] ≤ E[M0] = 1. In
addition, when τ2 < T , we have

Mτ ′ = exp(−2∆(1− εT )S′τ ′)

≥ exp(log(T∆2)) = T∆2. (29)

In other words, {τ2 < T} ⊆ {Mτ ′ ≥ T∆2}. This leads to

P(τ2 < T, a = 2 | E1) ≤ P(τ ′ < T | E1)

≤ P(Mτ ′ ≥ T∆2 | E1)

≤ E[Mτ ′ ]/(T∆2) ≤ 1/(T∆2). (30)

where the third inequality follows form Markov’s inequality. Similarly, P(τ2 < T, a = 2 | E2) ≤
1/(T∆2) also holds. Thus, term I3 can be upper bounded by 3/∆.

Completing the proof: Substituting (14), (25) and I3 ≤ 3/∆ into (12) yields a total regret as
follows

Rµ(T ) ≤ 2∆ +
8

∆
+

4 log(T1∆2)

∆
+

log(T∆2) + 2
√

log(T∆2)

2(1− εT )2∆
+

√
log(T∆2) + 2

(1− εT )2∆
.

Recall the choice of εT in Theorem 1. By our choice that T1 = d2 log(T∆2)/(ε2T∆2))e, we have

T1 ≤ 1 + max{2 log2 T, 8 log(T∆2)/∆2}, (31)

which immediately implies, limT→∞ 4log(T1∆2)/(∆ log T ) = 0. Also note that limT→∞ εT = 0.
Thus, we have limT→∞Rµ(T )/ log T = 1/(2∆).
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Appendix D. Proof of the Regret Bound of Algorithm 3

Next, we provide the proof for Theorem 4. Note that the stopping time of Stage I in Algorithm 3
depends on the samples, and hence, the Hoeffding’s inequality in Lemma 8 is not directly applicable.
To address this issue, we provide the following variant of the maximal inequality (Feller, 2008).

Lemma 9 Let N and M be extended real numbers in R+ and R+ ∪ {+∞}. Let γ be a real
number in R+, and let µ̂n =

∑n
s=1Xs/n be the empirical mean of n random variables identically

independently distributed according to 1-subGaussian distribution. Then

P(∃N ≤ n ≤M, µ̂n + γ ≤ 0) ≤ exp

(
− Nγ2

2

)
. (32)

Moreover, we need following inequalities on the confidence bound of the average rewards. Sim-
ilar results have also been proved in Ménard and Garivier (2017) for bounding the KL divergence
between two exponential family distributions for different arms.

Lemma 10 Let δ > 0 be a constant and M1,M2, . . . ,Mn be 1-subGaussian random variables
with zero means. Denote µ̂n =

∑n
s=1Ms/n. Then the following statements hold:

1. for any T1 ≤ T ,

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(
T1

n

)
≥ δ
)
≤ 1 +

4 log+(T1δ
2)

δ2
+

2

δ2
+

√
8πlog+(T1δ2)

δ2
; (33)

2. if Tδ2 ≥ e2, then

T∑
n=1

P

(
µ̂n +

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
≥ δ

)

≤ 1 +
2 log(Tδ2(log2(Tδ2) + 1))

δ2
+

2

δ2
+

√
4πlog(Tδ2(log2(Tδ2) + 1))

δ2
; (34)

3. if Tδ2 ≥ 4e3, then

P
(
∃s ≤ T : µ̂s +

√
2

s
log

(
T

s

(
log2 T

s
+ 1

))
+ δ ≤ 0

)
≤ 4(16e2 + 1)

Tδ2
. (35)

Proof [Proof of Theorem 4] Let τ1 be the number of times each arm is played in Stage I of Algo-
rithm 3 and τ2 be the total number of times arm 2′ is played in Stage III of Algorithm 3. Similar to
(12), the regret of Algorithm 3 can be decomposed as follows

Rµ(T ) ≤ ∆T1P(τ1 < T1, 1
′ = 2)︸ ︷︷ ︸

I1

+ ∆E[τ1] + ∆E[τ2]︸ ︷︷ ︸
I2

+ ∆TP(τ2 < T, a = 2)︸ ︷︷ ︸
I3

. (36)

Bounding term I1: Let Xs and Ys be the reward of arm 1 and 2 when they are pulled for the s-th
time respectively, s = 1, 2, . . .. Let Zs = (Xs − Ys −∆)/

√
2. Then Zs is a 1-subGaussian random
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variable with zero mean. Let Ss =
∑s

i=1 Zi. Recall that µ̂k,s is the average reward for arm k after
its s-th pull. Applying the standard peeling technique, we have

P(τ1 < T1, 1
′ = 2) ≤ P

(
∃s ∈ N : 2s ≤ T, µ̂1,s − µ̂2,s ≤ −

√
8 log+(T1/(2s))

s

)
≤ P

(
∃s ≥ 1 :

∑s
i=1 Zi
s

≤ −
√

4 log+(T1/(2s))

s
− ∆√

2

)

≤
∞∑
j=0

P

(
∃s ∈ [2j , 2j+1] :

∑s
i=1 Zi
s

+

√
4 log+(T1/(2s))

s
+

∆√
2
≤ 0

)

≤
∞∑
j=0

P

(
∃s ∈ [2j , 2j+1] :

∑s
i=1 Zi
s

+

√
4 log+(T1/2j+2)

2j+1
+

∆√
2
≤ 0

)

≤
∞∑
j=0

exp

(
− 2j−1

(√
log+(T1/2j+2)

2j−1
+

∆√
2

)2
)
,

where the last inequality comes from Lemma 9. Therefore, we have

P(τ1 < T1, 1
′ = 2) ≤

∞∑
j=0

exp

(
− log+

(
T1

2j+2

)
− 2j−2∆2

)

=
1

T1

∞∑
j=0

2j+2 exp(−2j−2∆2)

≤ 16

eT1∆2
+

1

T1

∫ ∞
0

2j+2 exp(−2j−2∆2)dj

≤ 16

eT1∆2
+

−16

log 2 · T1∆2
exp(−2j−2∆2)

∞
0

≤ 30

T1∆2
, (37)

where the first inequality we used the factor that (x+ y)2 ≥ x2 + y2, x, y ≥ 0, the third inequality
follows the fact that the integral function has a maximum value 16/(eT1∆2) and for such function
we have

∑∞
j=0 f(j) ≤ maxj∈[0,∞) f(j) +

∫∞
0 f(j)dj. Thus, we have proved that ∆T1P(τ1 <

T1, 1
′ = 2) ≤ 30/∆.

Bounding term I2: By the definition of τ1 and the stopping rule of Stage I in Algorithm 3, we have

E[τ1] =

T∑
s=1

P(τ1 ≥ s) ≤
T/2∑
s=1

P
(
µ̂1,s − µ̂2,s ≤

√
8 log+(T1/(2s))

s

)

=

T/2∑
s=1

P
(∑s

i=1 Zi
s

≤
√

4

s
log+

(T1

2s

)
− ∆√

2

)

≤
T∑
s=1

P
(
−
∑s

i=1 Zi
s

+

√
4

s
log+

(T1/2

s

)
≥ ∆√

2

)
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≤ 1 +
8 log+(T1∆2/4)

∆2
+

4

∆2
+

2
√

8π log+(T1∆2/4)

∆2
, (38)

where the equality is by the definition of
∑s

i=1 Zi/s =
∑s

i=1(Xi − Yi − ∆)/(
√

2s) = (µ̂1,s −
µ̂2,s − ∆)/

√
2, and the last inequality is due to the first statement of Lemma 10 since −Zi are

1-subGaussian variables as well.
Recall that εT =

√
2 log(T∆2)/(T1∆2) and εT ∈ (0, 1/2). Let E be the event µ′ ∈ [µ1′ −

εT∆, µ1′ + εT∆]. Applying Lemma 8 and union bound, P(E) ≥ 1− 2/(T∆2). Similar to (15), we
have

E[τ2] ≤ E[τ2 1(E, 1′ = 1)] + E[τ2 1(E, 1′ = 2)] + 2/∆2. (39)

To bound E[τ2 1(E, 1′ = 1)], we assume event E holds and the chosen arm 1′ is the best arm,
i.e., 1′ = 1. Let E1 = {E, 1′ = 1}. Let ∆′ = µ′ − E[Yi+τ1 ]. Then conditioned on E1, ∆′ ∈
[(1 − εT )∆, (1 + εT )∆]. Since εT ∈ (0, 1/2) and T∆2 ≥ 16e3, we have that conditioned on E1,
T (∆′)2 ≥ (1− εT )2T∆2 ≥ 4e3. Let Wi = µ′ − Yi+τ1 −∆′. Then −Wi is 1-subGaussian random
variable. By the stopping rule of Stage III in Algorithm 3, it holds that

E[τ2 | E1] ≤
T∑

t2=1

P(τ2 ≥ t2 | E1)

=

T∑
t2=1

P
(
µ′ − θ2′,t2 ≤

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
)) ∣∣∣∣ E1

)

=
T∑

t2=1

P
(
−
∑t2

i=1Wi

t2
+

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≥ ∆′

∣∣∣∣ E1

)

≤ 1 +
2 + 2 log(4T∆2(log2(4T∆2) + 1)) +

√
4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆2
.

(40)

where the last inequality is due to the second statement of Lemma 10 and −Wi are 1-subGuassian.
Let E2 = {E, 1′ = 2}, using the same argument, we can derive same bound as in (40) for E[τ2 |
E2]. Then We have

∆E[τ2] ≤ ∆E[τ2 1(E1)] + ∆E[τ2 1(E2)] +
2

∆

= ∆E[τ2|E1]P(E1) + ∆E[τ2|E2]P(E2) +
2

∆

≤ ∆ +
2

∆
+

2 + 2 log(4T∆2(log2(4T∆2) + 1)) +
√

4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆
.

(41)

Bounding term I3: Similar to (39),

I3 ≤ ∆TP[τ2 < T, a = 2 | E1]P[E1] + ∆TP[τ2 < T, a = 2 | E2]P[E2] +
2

∆
. (42)
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Again, we first assume E1 holds. By definition, we have that conditioned on E1,
∑s

i Wi/s =
µ′ − θ2′,s −∆′ and Wi is 1-subGaussian with zero mean. Recall that we have T (∆′)2 ≥ 4e3. By
the third statement of Lemma 10, we have

P(τ2 < T, a = 2 | E1) ≤ P
(
∃t2 ≥ 1, µ′ − θ2′,t2 +

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≤ 0

∣∣∣∣ E1

)
≤ P

(
∃t2 ≥ 1, µ′ − θ2′,t2 −∆′ + ∆′ +

√
2

t2
log
(T
t2

(
log2 T

t2
+ 1
))
≤ 0

∣∣∣∣ E1

)
≤ 4(16e2 + 1)

T (1− εT )2∆2
. (43)

When E2 holds, the proof is similar to the previous one. In particular, we only need to change the
notations to ∆′ = E[Xi+τ1 ]− µ′, which satisfies conditioned on E2, ∆′ ∈ [(1− εT )∆, (1 + εT )∆].
Hence, we can derive same bound as (43) for term P(τ2 < T, a = 2 | E2) .
Therefore,

I3 ≤
2

∆
+

4(16e2 + 1)

(1− εT )2∆
. (44)

Completing the proof: Therefore, substituting (37), (38), (41) and (44) into (36), we have

Rµ(T ) ≤ 2∆ +
38 + 8 log+(T1∆2/4) + 2

√
8π log+(T1∆2)

∆

+
4(16e2 + 2) + 2 log(4T∆2(log2(4T∆2) + 1)) +

√
4π log(4T∆2(log2(4T∆2) + 1))

(1− εT )2∆
.

Recall that ε2T = 2 log(T∆2)/(T1∆2). Let T1 = log2 T . When T → ∞, we have εT → 0, and
hence limT→∞Rµ(T )/T = 2/∆.

Appendix E. Proof of the Concentration Lemmas

In this section, we provide the proof of the concentration lemma and the maximal inequality for
subGaussian random variables.

E.1. Proof of Lemma 9

Our proof relies on the following maximal inequality for supermartingales.

Lemma 11 (Ville (1939)) If (Sn) is a non-negative supermartingale, then for any x > 0,

P
(

sup
n∈N

Sn > x

)
≤ E[S0]

x
.

Proof [Proof of Lemma 9] The proof follows from the same idea as the proof of Lemma 4 (Maximal
Inequality) in Ménard and Garivier (2017). If µ̂n > 0, then (32) holds trivially. Otherwise, if event
{∃N ≤ n ≤M, µ̂n + γ ≤ 0} holds, then the following three inequalities also hold simultaneously:

µ̂n ≤ 0, −γµ̂n −
γ2

2
≥ γ2 − γ2

2
=
γ2

2
, and − γnµ̂n −

nγ2

2
≥ Nγ2

2
,
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where the second inequality is due to µ̂n ≤ −γ and the last is due to n ≥ N . Therefore, we have

P(∃N ≤ n ≤M, µ̂n + γ ≤ 0) ≤ P
(
∃N ≤ n ≤M,−γnµ̂n −

nγ2

2
≥ Nγ2

2

)
= P

(
max

N≤n≤M
exp

(
− γnµ̂n −

nγ2

2

)
≥ exp

(
Nγ2

2

))
≤ P

(
max

1≤n≤M
exp

(
− γnµ̂n −

nγ2

2

)
≥ exp

(
Nγ2

2

))
≤ E[exp(−γX1 − γ2/2)]

exp(Nγ2/2)

≤ exp

(
− Nγ2

2

)
,

where the third inequality is from Ville’s maximal inequality (Ville, 1939) for non-negative super-
martingale and the fact that Sn = exp(−γnµ̂n − nγ2/2) is a non-negative supermartingale. To
show Sn is a non-negative supermartingale, we have

E[exp(−γnµ̂n − nγ2/2)|S1, . . . , Sn−1] = Sn−1E[exp(−γXn)] exp(−γ2/2)

≤ Sn−1 exp(γ2/2) exp(−γ2/2)

≤ Sn−1,

where the first inequality is from the definition of 1-subGaussian random variables. This completes
the proof.

E.2. Proof of Lemma 10

To prove Lemma 10, we also need the following technical lemma from Ménard and Garivier (2017).

Lemma 12 For all β > 1 we have

1

elog(β)/β − 1
≤ 2 max{β, β/(β − 1)}. (45)

Proof [Proof of Lemma 10] For the first statement, let γ′ = 4 log+(T1δ
2)/δ2. Note that for n ≥ γ′,

it holds that nδ2 ≥ 4 and

δ

√
γ′

n
=

√
4

n
log+(T1δ2) ≥

√
4

n
log+

(T1

n

)
. (46)

Therefore, using the same argument in (49) we can show that where we used the fact that Tδ2 ≥ e2

and hence δ2 = 2 log(Tδ2(log2(Tδ2) + 1))/γ ≥ 1/γ ≥ 1/n. Therefore, we have

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(T1

n

)
≥ δ
)
≤ γ′ +

T∑
n=dγe

P
(
µ̂n ≥ δ

(
1−

√
γ′

n

))

≤ γ +
∞∑

n=dγe

exp

(
− nδ2

2

(
1−

√
γ

n

)2)
(47)
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≤ γ′ +
∞∑

n=dγ′e

exp

(
− δ2(

√
n−
√
γ′)2

2

)
(48)

≤ γ′ + 1 +

∫ ∞
γ′

exp

(
− δ2(

√
x−
√
γ′)2

2

)
dx

≤ γ′ + 1 +
2

δ

∫ ∞
0

(y
δ

+
√
γ′
)

exp(−y2/2)dy

≤ γ′ + 1 +
2

δ2
+

√
2πγ′

δ
, (49)

where (48) is the result of Lemma 8 and (49) is due to the fact that
∫∞

0 y exp(−y2/2)dy = 1 and∫∞
0 exp(−y2/2)dy =

√
2π/2. (49) immediately implies the claim in the first statement:

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(T1

n

)
≥ δ
)
≤γ′ +

T∑
n=dγ′e

P
(
µ̂n ≥ δ

(
1−

√
γ′

n

))

≤γ′ + 1 +
2

δ2
+

√
2πγ′

δ
. (50)

Plugging γ′ = 4 log+(T1δ
2)/δ2 to above equation, we obtain

T∑
n=1

P
(
µ̂n +

√
4

n
log+

(
T1

n

)
≥ δ
)
≤ 1 +

4 log+(T1δ
2)

δ2
+

2

δ2
+

√
8πlog+(T1δ2)

δ2
. (51)

For the second statement, its proof is similar to that of the first one. Let us define the following
quantity:

γ =
2 log(Tδ2(log2(Tδ2) + 1))

δ2
. (52)

Note that for all n ≥ γ, it holds that

δ

√
γ

n
=

√
2 log(Tδ2(log2(Tδ2) + 1))

n
≥

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
, (53)

where we used the fact that Tδ2 ≥ e2 and hence δ2 = 2 log(Tδ2(log2(Tδ2)+1))/γ ≥ 1/γ ≥ 1/n.
Therefore, using the same argument in (49) we can show that

T∑
n=1

P

(
µ̂n +

√
2

n
log

(
T

n

(
log2 T

n
+ 1

))
≥ δ

)
≤ 1 +

2 log(Tδ2(log2(Tδ2) + 1))

δ2
+

2

δ2

+

√
4πlog(Tδ2(log2(Tδ2) + 1))

δ2
.

To prove the last statement, we borrow the idea from Ménard and Garivier (2017) for proving
the regret of kl-UCB++. Define f(δ) = 2/δ2 log(Tδ2/4). Then we can decompose the event
{∃s : s ≤ T} into two cases: {∃s : s ≤ f(δ)} and {∃s : f(δ) ≤ s ≤ T}.

P
(
∃s ≤ T : µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))

+ δ ≤ 0

)
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≤ P
(
∃s ≤ f(δ) : µ̂s ≤ −

√
2

s
log
(T
s

(
log2 T

s
+ 1
)))

︸ ︷︷ ︸
A1

+P(∃s, f(δ) ≤ s ≤ T : µ̂s ≤ −δ)︸ ︷︷ ︸
A2

.

(54)

Note that when Tδ2 ≥ 4e3, f(δ) ≥ 0. Let β > 1 be a parameter that will be chosen later. Applying
the peeling technique, we can bound term A1 as follows.

A1 ≤
∞∑
`=0

P
(
∃s, f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))
≤ 0

)
︸ ︷︷ ︸

A`
1

. (55)

For each ` = 0, 1, . . ., define γl to be

γ` =
β`

f(δ)
log

(
Tβ`

2f(δ)

(
1 + log2 T

2f(δ)

))
, (56)

which by definition immediately implies

√
2γl =

√
2β`

f(δ)
log

(
Tβ`

2f(δ)

(
1 + log2 T

2f(δ)

))
≤

√
2

s
log

(
T

2s

(
log2 T

s

)
+ 1

)
,

where in the above inequality we used the fact that s ≤ f(δ)/β` and that f(δ) ≥ s/2 since β > 1.
Therefore, we have

P
(
∃s, f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))
≤ 0

)
≤ P

(
∃ f(δ)

β`+1
≤ s ≤ f(δ)

β`
: µ̂s +

√
2γ` ≤ 0

)
≤ exp

(
− f(δ)

β`+1
γ`

)
= e−` log(β)/β−C/β, (57)

where the second inequality is by Doob’s maximal inequality (Lemma 9), the last equation is due to
the definition of γ`, and the parameter C is defined to be

C := log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
. (58)

Substituting (57) back into (55), we get

A1 ≤
∞∑
`=0

e−` log(β)/β−C/β =
e−C/β

1− e− log(β)/β
≤ e1−C/β

elog(β)/β − 1
≤ 2emax(β, β/(β − 1))e−C/β,

where the second inequality is due to log β ≤ β and thus elog(β)/β ≤ e, and the last inequality comes
from Lemma 12. Since Tδ2 ≥ 4e3, we have T/(2f(δ)) = Tδ2/(4 log(Tδ2/4)) ≥

√
Tδ2/4 ≥

e3/2, which further implies

C = log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≥ log

(
T

2f(δ)

)
= log

(
Tδ2

4 log(Tδ
2

4 )

)
≥ 3/2. (59)
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Now we choose β := C/(C − 1), so that 1 < β ≤ 2C and β/(β − 1) = C. Together with the
definition of f , this choice immediately yields A1 ≤ 4eCe−C/β = 4e2Ce−C . Note that

Ce−C =

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))−1

log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≤ 2f(δ)

T log2(T/(2f(δ)))
log

(
T

2f(δ)

(
1 + log2 T

2f(δ)

))
≤ 4f(δ)

T log(T/(2f(δ)))

=
8 log(Tδ2/4)

Tδ2 log([Tδ2/4]/ log(Tδ2/4))

≤ 16

Tδ2
, (60)

where in the second and the third inequalities, we used the fact that that for all x ≥ e3/2,

log(x(1 + log2 x))

log x
≤ 2 and

log x

log(x/ log x)
≤ 2. (61)

Therefore, we have proved so far A1 ≤ 64e2/(Tδ2). For term A2 in (54), we can again apply the
maximal inequality in Lemma 9 and obtain

A2 = P(∃s, f(δ) ≤ s ≤ T : µ̂s ≤ −δ) ≤ e−δ
2f(δ)/2 =

4

Tδ2
. (62)

Finally, combining the above results, we get

P
(
∃s ≤ f(δ), µ̂s +

√
2

s
log
(T
s

(
log2 T

s
+ 1
))

+ δ ≤ 0

)
≤ 4(16e2 + 1)

Tδ2
. (63)

This completes the proof.

Appendix F. Round Complexity of DETC for Batched Bandit Models

In this section, we derive the round complexities of Algorithms 1 and 3 for batched bandit models.
We will prove that DETC still enjoys the asymptotic optimality. Note that in batched bandits, our
focus is on the asymptotic regret bound and thus we assume that T is sufficiently large throughout
the proofs in this section to simplify the presentation.

F.1. Proof of Theorem 2

We first prove the round complexity for DETC (Algorithm 1) when the gap ∆ is known.
Proof The analysis is very similar to that of Theorem 1 and thus we will use the same notations
therein. Note that Stage I requires 1 round of queries since τ1 is fixed. In addition, Stage II and
Stage IV need 1 query at the beginning of stages respectively. Now it remains to calculate the total
rounds for Stage III.
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Recall that E is event µ′ ∈ [µ1′ − εT∆, µ1′ + εT∆], E1 = {E, 1′ = 1} and E2 = {E, 1′ = 2}.
We first assume that E1 holds. Let xi = i(2

√
log(T∆2) + 4) and nxi = τ0 + xi/(2(1− εT )2∆2).

For simplicity, assume xi, nxi ∈ N+. From (20), we have

P(τ2 > nxi | E1) ≤ P
(
Snxi

≤ log(T∆2)

2(1− εT )∆

∣∣∣∣ E1

)
≤ exp

(
− x2

i

4(log(T∆2) + xi)

)
≤ exp

(
− xi

2
√

log(T∆2) + 4

)
≤ 2−i.

(64)

Thus, the expected number of rounds of queries needed in Stage III of Algorithm 1 is upper bounded
by
∑∞

i=1 i/2
i = 2. Similarly, if E2 holds, we still have the expected number of rounds in Stage III

is upper bounded by 2. Lastly, if Ec holds, we have P(Ec) ≤ 2/(T∆2). Note that the increment
between consecutive test time points is (2

√
log(T∆2) + 4)/(2(1 − εT )2∆2), thus the expected

number of test time points is at most T (1− εT )2∆2/(
√

log(T∆2)). Then the expected number of
rounds for this case is bounded by 2(1 − εT )2/(

√
log(T∆2)). For T → ∞, the expected number

of rounds cost for this case is 0. To summarize, the round complexity of Algorithm 3 is O(1).
Following the same proof in (21) and (22), it is easy to verify that E[τ2 | E1] ≤ τ0+(2

√
log(T∆2)+

4)/((1 − εT )2∆2), which is no larger than the bound in (22). The bounds for other terms remain
the same. Therefore, the batched version of Algorithm 1 is still asymptotically optimal, instance-
dependent optimal and minimax optimal.

F.2. Proof of Theorem 5

Now we prove the round complexity and regret bound for DETC (Algorithm 3) when the gap ∆ is
unknown.
Proof For the sake of simplicity, we use the same notations that are used in Theorem 4 and its
proof. To compute the round complexity and regret of Stage I, we first compute the probability that
τ1 > 2i

√
log T . We assume T is large enough such that it satisfies√

log T ≥ 16 log+(T1∆2/2)/∆2, (65)

where we recall that T1 = log2 T . Let si = 2i
√

log T for i = 1, 2, . . . and γ = 4 log+(T1∆2/2)/∆2.
From (65), it is easy to verify that si ≥ 32i/∆2, γ/si ≤ 1/8 and

√
4 log+(T1/2si)/si ≤ ∆

√
γ/si.

The stopping rule in Stage I implies

P(τ1 ≥ si) ≤ P

(
µ̂1,si − µ̂2,si ≤

√
8

si
log+

(
T1

2si

))

= P
(∑si

i=1 Zi
si

≤

√
4

si
log+

(
T1

2si

)
− ∆√

2

)
≤ P

(∑si
i=1 Zi
si

≤ ∆

√
γ

si
− ∆√

2

)
≤ exp

(
− si∆

2

2

(
1√
2
−
√
γ

si

)2)
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≤ exp(−i)
≤ 2−i,

where the third inequality follows from Lemma 8 and the fourth inequality is due to the fact that
si ≥ 32i/∆2 and γ/si ≤ 1/8. Hence by the choice of testing points in (7), the expected number of
rounds needed in Stage I of Algorithm 3 is upper bounded by

∑∞
i=1 i/2

i ≤ 2. The expectation of
τ1 is upper bounded by E[τ1] ≤

∑∞
i=1 2i

√
log T/2i ≤ 4

√
log T , which matches the bound derived

in (38).
Now we focus on bounding term ∆E[τ2] and the round complexity in Stage III. Let ε′T =√

2εT =
√

4 log(T∆2)/(T1∆2). Let E be the event µ′ ∈ [µ1′ − ε′T∆, µ1′ + ε′T∆]. Applying
Lemma 8, we have P(Ec) ≤ 1/(T 2∆4). Hence, the expected number of test time points contributed
by case Ec is O(1/(T∆4)) which goes to zero when T → ∞. Similarly, we assume that E holds
and the chosen arm 1′ = 1. Recall E1 = {E, 1′ = 1}. Recall that this condition also implies
∆′ ∈ [(1− ε′T )∆, (1+ ε′T )∆], where ε′T =

√
log(T∆2)/(T1∆2) and T1 = log2 T . When T is large

enough such that it satisfies √
4 log(T∆2)

∆2 log2 T
≤ 1

(log T )
1
3

, (66)

we have ε′T ≤ 1/(log T )
1
3 . Furthermore, we can also choose a large T such that√

log T (∆′)2 ≥ 2(log log T )2. (67)

Applying Lemma 8, we have

P
(
µ2′ −∆′(log T )−

1
4 ≤ θ2′,N1 ≤ µ2′ + ∆′(log T )−

1
4 | E1

)
≥ 1− 2 exp

(
− 2 log T (∆′)2

2
√

log T log log T

)
≥ 1− 2

log2 T
, (68)

where the last inequality follows by (67). This means that after the first round of Stage III in Algo-
rithm 3, the average reward for arm 2′ concentrates around the true value µ2′ with a high probability.
Let E3 be the event µ2′ −∆′/ 4

√
log T ≤ θ2′,N1 ≤ µ2′ + ∆′/ 4

√
log T . Recall that E1 = {E, 1′ = 1}

and E2 = {E, 1′ = 2}. Let H1 = {E1, E3} and H2 = {E2, E3}. We have

E[τ2] ≤ E[τ2 | E1, E3]P[E1, E3] + E[τ2 | E2, E3]P[E2, E3] + E[τ2 | Ec3]P[Ec3] + E[τ2 | Ec]P[Ec]

≤ E[τ2 | H1]P[H1] + E[τ2 | H2]P[H2] + E[τ2 | Ec3]P[Ec3] + 2/(T∆3) (69)

We first focus on term E[τ2 | H1]. We assume event H1 holds. Define

s′i =
2(1 + 1/ 4

√
log T )2 log(T log3 T )

∆̂2
+
i(1 + 1/ 4

√
log T )2(log T )

2
3

∆̂2
,

γ′ =
2 log

(
T (∆′)2[log2(T (∆′)2) + 1]

)
(∆′)2

,
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for i = 1, 2, . . .. Recall the definition of test time points in (8), we know that the (i + 1)-th test in
Stage III happens at time step t2 = s′i. We choose a large enough T such that

log3 T ≥ (∆′)2(log2(T (∆′)2) + 1). (70)

Let ∆′ = µ′ − µ2′ . Hence conditioned on H1, ∆̂ = µ′ − θ2′,N1 ∈ [(1 − 1/ 4
√

log T )∆′, (1 +
1/ 4
√

log T )∆′]. Then we have that conditioned on H1

2(1 + 1/ 4
√

log T )2 log(T log3 T )

∆̂2
≥ 2 log(T log3 T )

(∆′)2
≥ γ′, (71)

where the last inequality is due to (70). On the other hand, we also have that conditioned on H1

s′i ≥
2(1 + 1/ 4

√
log T )2 log(T log3 T )

∆̂2
≥ 2

(∆′)2
. (72)

Therefore, by the definition of γ′, it holds that conditioned on H1

∆′

√
γ′

s′i
=

√
2

s′i
log(T (∆′)2(log2(T (∆′)2) + 1)) ≥

√
2

s′i
log

(
T

s′i

(
log2

(
T

s′i

)
+ 1

))
.

Recall the definition Wi = µ′ − Yi+τ1 − ∆′ used in (40). From the stopping rule of Stage III in
Algorithm 3, conditioned on H1, we obtain

P(τ2 ≥ s′i | H1) ≤ P
(
µ′ − θ2′,s′i

≤

√
2

s′i
log
(T
s′i

(
log2 T

s′i
+ 1
)) ∣∣∣∣ H1

)

= P
(∑s′i

i=1Wi

s′i
+ ∆′ ≤

√
2

s′i
log
(T
s′i

(
log2 T

s′i
+ 1
)) ∣∣∣∣ H1

)

≤ exp

(
− s′i(∆

′)2

2

(
1−

√
γ′

s′i

)2)
= exp

(
− (∆′)2

2
(
√
s′i −

√
γ′)2

)
= exp

(
− (∆′)2

2

(
s′i − γ′√
s′i +

√
γ′

)2)
≤ exp

(
− i2(log T )4/3

8s′i(∆
′)2

)
, (73)

where the second inequality from Lemma 8 and in the last inequality we used the fact that s′i−γ′ ≥
i(1+1/ 4

√
log T )2(log T )

2
3 /(∆̂2) ≥ i(log T )

2
3 /(∆′)2 by (71). Choose sufficiently large T to ensure

(log T )
4
3 ≥ 8s′i(∆

′)2. (74)

Substituting (74) back into (73) yields P(τ2 ≥ s′i | H1) ≤ 1/2i. Similarly, P(τ2 ≥ s′i | H2) ≤ 1/2i,
Thus conditioned on H1 (or H2), the expected rounds used in Stage III of Algorithm 3 is upper
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bounded by
∑∞

i=1 i/2
i ≤ 2. Recall that from (66), ε′T ≤ 1/(log T )

1
3 . Conditional on H1, the

expectation of τ2 is upper bounded by

E[τ2 | H1] ≤ s′1 +
∑
i=2

[(s′i − s′1)P(τ2 ≥ s′i | H1)]

≤ 2(1 + 1/(log T )
1
4 )2 log(T log3 T )

∆̂2
+

2(1 + 1/ 4
√

log T )2(log T )
2
3

∆̂2

≤ 2(1 + 1/(log T )
1
4 )2 log(T log3 T ) + 2(1 + 1/(log T )

1
4 )2(log T )

2
3

(1− 1/(log T )
1
3 )2(1− 1/(log T )

1
4 )2∆2

, (75)

where the last inequality is due to ∆′ ∈ [(1 − ε′T )∆, (1 + ε′T )∆]. Similarly, we can derive same
bound as in (75) for E[τ2 | H2].

For the case Ec3. Note that τ2 ≤ log2 T and we have P(Ec3) ≤ 2/ log2 T by (68). Therefore
E[τ2 | Ec3] can be upper bounded by 2, which is dominated by (75). Since τ2 ≤ log2 T , conditioned
on Ec3, the expected rounds is upper bounded by P(Ec3) · log2 T ≤ 2. To summarize, we have
proved that conditioned on H1 (or H2, or Ec, or Ec3), the expected rounds cost is O(1). Therefore,
the expected rounds cost of Stage III is O(1).

Note that the above analysis does not change the regret incurred in Stage III. A slight difference
of this proof from that of Theorem 4 arises when we terminate Stage III with t2 = log2 T . The term
I3 can be written as

I3 = ∆TP(τ2 = log2 T, a = 2) + ∆TP(τ2 < log2 T, a = 2), (76)

We can derive same bound as (44) for term ∆TP(τ2 < log2 T, a = 2). Now, we focus on term
∆TP(τ2 = log2 T, a = 2). For this case, we have tested log2 T samples for both arm 1 and 2. Let
G0 = 0 and Gn = (X1 − Y1+τ1) + · · ·+ (Xn − Yn+τ1) for every n ≥ 1. Then Xi − Yi+τ1 −∆ is
a
√

2-subGaussian random variable. Applying Lemma 8 with ε = ∆ yields

P
(
Gτ2
τ2
≤ 0

)
≤ exp

(
− τ2∆2

4

)
.

Conditioned on τ2 = log2 T , we further obtain P(a = 2) = P(Gτ2 ≤ 0) ≤ exp(−∆2 log2 T/4) ≤
1/T , where in the last inequality we again choose large enough T to ensure

exp(−∆2 log2 T/4) ≤ 1

T
. (77)

Therefore, we have proved that conditional on τ2 = log2 T ,

P(a = 2) ≤ 1

T
. (78)

Hence, ∆TP(τ2 = log2 T, a = 2) ≤ 1/∆.
To summarize, we can choose a sufficiently large T such that all the conditions (65), (66),

(67), (70), (74) and (77) are satisfied simultaneously. Then the round complexity of Algorithm 3
is O(1). For the regret bound, since the only difference between ALgorithm 4 and Algorithm 3
is the stopping rules of Stage I and Stage III, we only need to combine the regret for terms (75)
and (78) and the fact that ∆E[τ1] ≤ 4∆

√
log T to obtain the total regret. Therefore, we have

limT→∞R(T )/ log T = 2/∆.
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Appendix G. Proof of the Asymptotically Optimal Regret Bound of DETC-K

In this section, we prove the regret bound of DETC for K-armed bandits.
Proof [Proof of Theorem 6] Let Ti be the total number of pulls of arm i throughout the algorithm,
i ≥ 2. Since by definition the regret is Rµ(T ) =

∑
i E[Ti∆i], it suffices to prove

lim
T→∞

E[Ti]

log(T )
=

2

∆2
i

. (79)

Denote τ2,i as the number of pulls of arm i in Stage III of Algorithm 5. Similar to (11) and (12), the
term E[Ti] can be decomposed as follows

E[Ti] ≤
√

log T + log2 TP(1′ = i)︸ ︷︷ ︸
I1

+E[τ2,i]︸ ︷︷ ︸
I2

+TP(µ̂1′ ≥ θj′,tj , fail=0, a = i)︸ ︷︷ ︸
I3

+ log2 TP(fail=1) + TP(fail=1, a = i)︸ ︷︷ ︸
I4

, (80)

where the last term I4 characterizes the failing probability of the first three stages and the ETC step
in the last two lines of Algorithm 5.
Bounding term I1: Let µ̂i,s be the estimated reward of arm i after its s-th pull. Let τ1 =

√
log T .

Let X be the reward of arm 1 and Y i be the reward of arm i for i > 1. Let Sin = X1 − Y i
1 + · · ·+

Xn − Y i
n. After playing arm 1 and arm i τ1 times, using Lemma 8, we get

P(Siτ1/τ1 ≤ ∆i − ε) ≤ exp(−τ1ε
2/4). (81)

For sufficient large T such that T > K and for all i, it holds
√

log T

logK + 2 log log T
≥ 4

∆2
i

, (82)

Setting ε = ∆i in (81), we have P(µ̂1,τ1 ≤ µ̂i,τ1) ≤ 1/(K log2 T ). Applying union bound, we have

P(µ̂1,τ1 ≥ max
i
µ̂i,τ1) = P(1′ = 1) ≥ 1− 1

log2 T
, (83)

which further implies I1 ≤ 1.

Bounding term I2: Let εi =
√

4 log(T∆2
i )/((log T )2∆2

i ). Applying Lemma 8, we have

P(µ′ /∈ (µ1′ − εi∆i, µ1′ + εi∆i)) ≤ 2/(T∆2
i ). (84)

Similar to (66), we choose a large T such that for all ∆i > 0,√
4 log(T∆2

i )

∆2
i log2 T

≤ 1

(log T )
1
3

, (85)

then εi ≤ 1/(log T )
1
3 . Let E be the event µ′ ∈ (µ1′ − εi∆i, µ1′ + εi∆i). Let E1 be the event

{E, 1′ = 1}. Note that Pr(1′ = 1) ≥ 1 − 1/ log2 T , Pr(Ec) ≤ 2/(T∆2
i ) and τ2,i ≤ log2 T , the

term I2 can be decomposed as

E[τ2,i] = E[τ2,i 1(1′ = 1)] + E[τ2,i 1(1′ 6= 1)]
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≤ E[τ2,i 1(1′ = 1)] + 1

≤ E[τ2,i 1(E1)] + E[τ2,i 1(Ec)] + 1

≤ 1 +
2

∆i
+ E[τ2,i | E1]. (86)

We can derive the same bound as E[τ2 | E1] in (40) for E[τ2,i | E1]. We have

I2 = E[τ2,i | E1] ≤ 1 +
2 + 2 log(4T∆2

i (log2(4T∆2
i ) + 1)) +

√
4π log(4T∆2

i (log2(4T∆2
i ) + 1))

(1− εi)2∆2
i

.

(87)

Bounding term I3: When fail = 0, we can follow the same proof for bounding I3 in (43). There-
fore, we can obtain

I3 ≤
2

∆2
i

+
4(16e2 + 1)

(1− εi)2∆2
i

. (88)

Bounding term I4: For term P(fail=1), similar to (86), we have

P(fail=1) = P(fail=1 | 1′ = 1) Pr(1′ = 1) + P(fail=1 | 1′ 6= 1) Pr(1′ 6= 1)

≤ P(fail=1 | 1′ = 1) +
1

log2 T

≤ P(fail=1 | E, 1′ = 1) Pr(E | 1′ = 1) + Pr(Ec | 1′ = 1) +
1

log2 T

≤ P(fail=1 | E1) +
2

T∆2
i

+
1

log2 T
, (89)

where the first and third inequalities are due to the law of total probability, the second inequality is
due to (83), and the last inequality is due to (84). Let ∆′i = µ′ − E[Y i

1 ], Wr = µ′ − Y i
r+τ1 − ∆′i.

We have that conditioned on E1,
∑s

rWr/s = µ′ − θ2′,s −∆′ and Wr is 1-subGaussian with zero
mean. By the third statement of Lemma 10, we have

P(fail = 1 | E1) ≤ P
(
∃ti ≥ 1, µ′ − θi′,ti +

√
2

ti
log
(T
ti

(
log2 T

ti
+ 1
))
≤ 0 | E1

)
≤ 4(16e2 + 1)

T (1− εi)2∆2
i

. (90)

For term TP(fail=1, a = i), we choose large enough T to ensure

exp(−∆2
i log2 T/4) ≤ 1

T
. (91)

Then, following the similar argument in (78), we can obtain

P(fail = 1, a = i) ≤ 1

T
. (92)
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Therefore, substituting (89), (90) and (92) into the definition of I4 in (80), we have

I4 = log2 TP(fail = 1) + TP(fail = 1, a = i)

≤ 2 +
2 log2 T

T∆2
i

+
4(16e2 + 1) log2 T

T (1− εi)2∆2
i

. (93)

Completing the proof: we can choose a sufficiently large T such that all the conditions (82), (85),
(91) are satisfied simultaneously. Substituting (93), (88), (87) and I1 ≤ 1 back into (80), we have

E[Ti] ≤ 4 +
1

(1− εi)2∆2
i

(
O(1) + 2 log(4T∆2

i (log2(4T∆2
i ) + 1)) +

√
4π log(4T∆2

i (log2(4T∆2
i ) + 1))

)
for all i ≥ 2. Note that for T → ∞, εi ≤ 1/(log T )

1
3 . Hence we have limT→∞ E[Ti]/ log T =

2/∆2
i and limT→∞Rµ(T )/ log T =

∑
i 2/∆i.

34


